BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vanichapol T, Chutipongtanate S, Anurathapan U, Hongeng S. Immune Escape Mechanisms and Future Prospects for Immunotherapy in Neuroblastoma. Biomed Res Int. 2018;2018:1812535. [PMID: 29682521 DOI: 10.1155/2018/1812535] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Wang X, Mao J, Zhou T, Chen X, Tu H, Ma J, Li Y, Ding Y, Yang Y, Wu H, Tang X. Hypoxia-induced myeloid derived growth factor promotes hepatocellular carcinoma progression through remodeling tumor microenvironment. Theranostics 2021;11:209-21. [PMID: 33391471 DOI: 10.7150/thno.49327] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
2 Shukla A, Cano-Mejia J, Andricovich J, Burga RA, Sweeney EE, Fernandes R. An Engineered Prussian Blue Nanoparticles-based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH-MYCN Neuroblastoma Model. Adv Nanobiomed Res 2021;1:2100021. [PMID: 34435194 DOI: 10.1002/anbr.202100021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Li Y, Zhou J, Zhuo Q, Zhang J, Xie J, Han S, Zhao S. Malignant ascite-derived extracellular vesicles inhibit T cell activity by upregulating Siglec-10 expression. Cancer Manag Res 2019;11:7123-34. [PMID: 31534365 DOI: 10.2147/CMAR.S210568] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
4 Cox JR, Blazeck J. Protein engineering: a driving force toward synthetic immunology. Trends Biotechnol 2021:S0167-7799(21)00208-0. [PMID: 34627648 DOI: 10.1016/j.tibtech.2021.09.005] [Reference Citation Analysis]
5 Neviani P, Wise PM, Murtadha M, Liu CW, Wu CH, Jong AY, Seeger RC, Fabbri M. Natural Killer-Derived Exosomal miR-186 Inhibits Neuroblastoma Growth and Immune Escape Mechanisms. Cancer Res 2019;79:1151-64. [PMID: 30541743 DOI: 10.1158/0008-5472.CAN-18-0779] [Cited by in Crossref: 64] [Cited by in F6Publishing: 52] [Article Influence: 16.0] [Reference Citation Analysis]
6 Joshi S. Targeting the Tumor Microenvironment in Neuroblastoma: Recent Advances and Future Directions. Cancers (Basel) 2020;12:E2057. [PMID: 32722460 DOI: 10.3390/cancers12082057] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
7 Morandi F, Sabatini F, Podestà M, Airoldi I. Immunotherapeutic Strategies for Neuroblastoma: Present, Past and Future. Vaccines (Basel) 2021;9:43. [PMID: 33450862 DOI: 10.3390/vaccines9010043] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ding Y, Yan Y, Dong Y, Xu J, Su W, Shi W, Zou Q, Yang X. NLRP3 promotes immune escape by regulating immune checkpoints: A pan-cancer analysis. Int Immunopharmacol 2022;104:108512. [PMID: 35026655 DOI: 10.1016/j.intimp.2021.108512] [Reference Citation Analysis]
9 Raieli S, Di Renzo D, Lampis S, Amadesi C, Montemurro L, Pession A, Hrelia P, Fischer M, Tonelli R. MYCN Drives a Tumor Immunosuppressive Environment Which Impacts Survival in Neuroblastoma. Front Oncol 2021;11:625207. [PMID: 33718189 DOI: 10.3389/fonc.2021.625207] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Vanichapol T, Chiangjong W, Panachan J, Anurathapan U, Chutipongtanate S, Hongeng S. Secretory High-Mobility Group Box 1 Protein Affects Regulatory T Cell Differentiation in Neuroblastoma Microenvironment In Vitro. J Oncol 2018;2018:7946021. [PMID: 30643519 DOI: 10.1155/2018/7946021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
11 MacFarland S, Bagatell R. Advances in neuroblastoma therapy. Curr Opin Pediatr 2019;31:14-20. [PMID: 30480556 DOI: 10.1097/MOP.0000000000000711] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
12 Panachan J, Rojsirikulchai N, Pongsakul N, Khowawisetsut L, Pongphitcha P, Siriboonpiputtana T, Chareonsirisuthigul T, Phornsarayuth P, Klinkulab N, Jinawath N, Chiangjong W, Anurathapan U, Pattanapanyasat K, Hongeng S, Chutipongtanate S. Extracellular Vesicle-Based Method for Detecting MYCN Amplification Status of Pediatric Neuroblastoma. Cancers (Basel) 2022;14:2627. [PMID: 35681607 DOI: 10.3390/cancers14112627] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Uva P, Bosco MC, Eva A, Conte M, Garaventa A, Amoroso L, Cangelosi D. Connectivity Map Analysis Indicates PI3K/Akt/mTOR Inhibitors as Potential Anti-Hypoxia Drugs in Neuroblastoma. Cancers (Basel) 2021;13:2809. [PMID: 34199959 DOI: 10.3390/cancers13112809] [Reference Citation Analysis]
14 Benzekry S, Sentis C, Coze C, Tessonnier L, André N. Development and Validation of a Prediction Model of Overall Survival in High-Risk Neuroblastoma Using Mechanistic Modeling of Metastasis. JCO Clin Cancer Inform 2021;5:81-90. [PMID: 33439729 DOI: 10.1200/CCI.20.00092] [Reference Citation Analysis]
15 Lee DY, Im E, Yoon D, Lee YS, Kim GS, Kim D, Kim SH. Pivotal role of PD-1/PD-L1 immune checkpoints in immune escape and cancer progression: Their interplay with platelets and FOXP3+Tregs related molecules, clinical implications and combinational potential with phytochemicals. Semin Cancer Biol 2020:S1044-579X(20)30258-3. [PMID: 33301862 DOI: 10.1016/j.semcancer.2020.12.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
16 Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Reference Citation Analysis]
17 Friedman A, Siewe N. Overcoming Drug Resistance to BRAF Inhibitor. Bull Math Biol 2020;82:8. [PMID: 31933021 DOI: 10.1007/s11538-019-00691-0] [Reference Citation Analysis]
18 Sawaisorn P, Atjanasuppat K, Anurathapan U, Chutipongtanate S, Hongeng S. Strategies to Improve Chimeric Antigen Receptor Therapies for Neuroblastoma. Vaccines (Basel) 2020;8:E753. [PMID: 33322408 DOI: 10.3390/vaccines8040753] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for Conventional and in Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers, A Review. Cancers (Basel) 2020;12:E1121. [PMID: 32365838 DOI: 10.3390/cancers12051121] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
20 Dehbashi M, Hojati Z, Motovali-Bashi M, Ganjalikhany MR, Cho WC, Shimosaka A, Navabi P, Ganjalikhani-Hakemi M. A Novel CAR Expressing NK Cell Targeting CD25 With the Prospect of Overcoming Immune Escape Mechanism in Cancers. Front Oncol 2021;11:649710. [PMID: 34055618 DOI: 10.3389/fonc.2021.649710] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Zhou W, Xu S, Deng T, Zhou R, Wang C. LncRNA USP30-AS1 promotes the survival of acute myeloid leukemia cells by cis-regulating USP30 and ANKRD13A. Hum Cell 2021. [PMID: 34694569 DOI: 10.1007/s13577-021-00636-7] [Reference Citation Analysis]
22 Nair SS, Weil R, Dovey Z, Davis A, Tewari AK. The Tumor Microenvironment and Immunotherapy in Prostate and Bladder Cancer. Urol Clin North Am 2020;47:e17-54. [PMID: 33446323 DOI: 10.1016/j.ucl.2020.10.005] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Bhoopathi P, Mannangatti P, Emdad L, Das SK, Fisher PB. The quest to develop an effective therapy for neuroblastoma. J Cell Physiol 2021. [PMID: 33834508 DOI: 10.1002/jcp.30384] [Reference Citation Analysis]
24 Xu WL, Shi BJ, Li SL, Yu FX, Guo LN, Li M, Hu ZG, Li GX, Zhou H. Targeted inhibition of myeloid-derived suppressor cells in the tumor microenvironment by low-dose doxorubicin to improve immune efficacy in murine neuroblastoma. Chin Med J (Engl) 2020;134:334-43. [PMID: 33278092 DOI: 10.1097/CM9.0000000000001234] [Reference Citation Analysis]
25 Tydings C, Sharma KV, Kim A, Yarmolenko PS. Emerging hyperthermia applications for pediatric oncology. Adv Drug Deliv Rev 2020;163-164:157-67. [PMID: 33203538 DOI: 10.1016/j.addr.2020.10.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
26 Liu J, Wu XW, Hao XW, Duan YH, Wu LL, Zhao J, Zhou XJ, Zhu CZ, Wei B, Dong Q. Spontaneous regression of stage III neuroblastoma: A case report. World J Clin Cases 2020; 8(2): 436-443 [PMID: 32047796 DOI: 10.12998/wjcc.v8.i2.436] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Chan GC, Chan CM. Anti-GD2 Directed Immunotherapy for High-Risk and Metastatic Neuroblastoma. Biomolecules 2022;12:358. [DOI: 10.3390/biom12030358] [Reference Citation Analysis]
28 Chang X, Bakay M, Liu Y, Glessner J, Rathi KS, Hou C, Qu H, Vaksman Z, Nguyen K, Sleiman PMA, Diskin SJ, Maris JM, Hakonarson H. Mitochondrial DNA Haplogroups and Susceptibility to Neuroblastoma. J Natl Cancer Inst 2020;112:1259-66. [PMID: 32096864 DOI: 10.1093/jnci/djaa024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
29 Wang X, Liu Y, Fan X, Wang J, Ngai WSC, Zhang H, Li J, Zhang G, Lin J, Chen PR. Copper-Triggered Bioorthogonal Cleavage Reactions for Reversible Protein and Cell Surface Modifications. J Am Chem Soc 2019;141:17133-41. [DOI: 10.1021/jacs.9b05833] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
30 Sha Y, Han L, Sun B, Zhao Q. Identification of a Glycosyltransferase Signature for Predicting Prognosis and Immune Microenvironment in Neuroblastoma. Front Cell Dev Biol 2021;9:769580. [PMID: 35071226 DOI: 10.3389/fcell.2021.769580] [Reference Citation Analysis]
31 Wang Y, Luo H, Cao J, Ma C. Bioinformatic Identification of Neuroblastoma Microenvironment-Associated Biomarkers with Prognostic Value. J Oncol 2020;2020:5943014. [PMID: 32963529 DOI: 10.1155/2020/5943014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Jin W, Zhang Y, Liu Z, Che Z, Gao M, Peng H. Exploration of the molecular characteristics of the tumor-immune interaction and the development of an individualized immune prognostic signature for neuroblastoma. J Cell Physiol 2021;236:294-308. [PMID: 32510620 DOI: 10.1002/jcp.29842] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Liu KX, Joshi S. "Re-educating" Tumor Associated Macrophages as a Novel Immunotherapy Strategy for Neuroblastoma. Front Immunol 2020;11:1947. [PMID: 32983125 DOI: 10.3389/fimmu.2020.01947] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
34 Cangelosi D, Morini M, Zanardi N, Sementa AR, Muselli M, Conte M, Garaventa A, Pfeffer U, Bosco MC, Varesio L, Eva A. Hypoxia Predicts Poor Prognosis in Neuroblastoma Patients and Associates with Biological Mechanisms Involved in Telomerase Activation and Tumor Microenvironment Reprogramming. Cancers (Basel) 2020;12:E2343. [PMID: 32825087 DOI: 10.3390/cancers12092343] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
35 Szanto CL, Cornel AM, Vijver SV, Nierkens S. Monitoring Immune Responses in Neuroblastoma Patients during Therapy. Cancers (Basel) 2020;12:E519. [PMID: 32102342 DOI: 10.3390/cancers12020519] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
36 Keyel ME, Reynolds CP. Spotlight on dinutuximab in the treatment of high-risk neuroblastoma: development and place in therapy. Biologics 2019;13:1-12. [PMID: 30613134 DOI: 10.2147/BTT.S114530] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
37 Marofi F, Al-Awad AS, Sulaiman Rahman H, Markov A, Abdelbasset WK, Ivanovna Enina Y, Mahmoodi M, Hassanzadeh A, Yazdanifar M, Stanley Chartrand M, Jarahian M. CAR-NK Cell: A New Paradigm in Tumor Immunotherapy. Front Oncol 2021;11:673276. [PMID: 34178661 DOI: 10.3389/fonc.2021.673276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Nazha B, Inal C, Owonikoko TK. Disialoganglioside GD2 Expression in Solid Tumors and Role as a Target for Cancer Therapy. Front Oncol 2020;10:1000. [PMID: 32733795 DOI: 10.3389/fonc.2020.01000] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
39 Frosch J, Leontari I, Anderson J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers (Basel) 2021;13:1743. [PMID: 33917501 DOI: 10.3390/cancers13071743] [Reference Citation Analysis]
40 Ahmad MZ, Ahmad J, Haque A, Alasmary MY, Abdel-wahab BA, Akhter S. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Review of Vaccines 2020;19:1053-71. [DOI: 10.1080/14760584.2020.1858058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Schmittgen TD. Exosomal miRNA Cargo as Mediator of Immune Escape Mechanisms in Neuroblastoma. Cancer Res 2019;79:1293-4. [PMID: 30936073 DOI: 10.1158/0008-5472.CAN-19-0021] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]