BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Skonieczna M, Hejmo T, Poterala-Hejmo A, Cieslar-Pobuda A, Buldak RJ. NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells. Oxid Med Cell Longev 2017;2017:9420539. [PMID: 28626501 DOI: 10.1155/2017/9420539] [Cited by in Crossref: 78] [Cited by in F6Publishing: 82] [Article Influence: 15.6] [Reference Citation Analysis]
Number Citing Articles
1 Attanzio A, Restivo I, Tutone M, Tesoriere L, Allegra M, Livrea MA. Redox Properties, Bioactivity and Health Effects of Indicaxanthin, a Bioavailable Phytochemical from Opuntia ficus indica, L.: A Critical Review of Accumulated Evidence and Perspectives. Antioxidants 2022;11:2364. [DOI: 10.3390/antiox11122364] [Reference Citation Analysis]
2 G JM, P P, Dharmarajan A, Warrier S, Gandhirajan RK. Modulation of Reactive Oxygen Species in Cancers: Recent Advances. Free Radic Res 2022;:1-59. [PMID: 36214686 DOI: 10.1080/10715762.2022.2133704] [Reference Citation Analysis]
3 Zhang F, Xin C, Dai Z, Hu H, An Q, Wang F, Hu Z, Sun Y, Tian L, Zheng X. Oncocyte Membrane-Camouflaged Multi-Stimuli-Responsive Nanohybrids for Synergistic Amplification of Tumor Oxidative Stresses and Photothermal Enhanced Cancer Therapy. ACS Appl Mater Interfaces 2022. [PMID: 36052606 DOI: 10.1021/acsami.2c11200] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Kourdova LT, Miranda AL, Racca AC, Rojas ML, Del Puerto MC, Castro C, Genti-Raimondi S, Panzetta-Dutari GM. Downregulation of krüppel-like factor 6 expression modulates extravillous trophoblast cell behavior by increasing reactive oxygen species. Placenta 2022;127:62-72. [PMID: 35973366 DOI: 10.1016/j.placenta.2022.08.002] [Reference Citation Analysis]
5 Erol A. Genotoxicity-Stimulated and CYLD-Driven Malignant Transformation. CMAR 2022;Volume 14:2339-56. [DOI: 10.2147/cmar.s373557] [Reference Citation Analysis]
6 Guo C. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022;10:862791. [DOI: 10.3389/fcell.2022.862791] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Jo A, Kwak JH, Woo SY, Kim BY, Son Y, Choi HS, Kim J, Kwon M, Cho HR, Eo SK, Nam JH, Kim HS, Baryawno N, Lee D, Kim K. Oxime derivative TFOBO promotes cell death by modulating reactive oxygen species and regulating NADPH oxidase activity in myeloid leukemia. Sci Rep 2022;12:7519. [PMID: 35525902 DOI: 10.1038/s41598-022-11543-8] [Reference Citation Analysis]
8 Lee SH, Shin MH, Leem AY, Lee SH, Chung KS, Kim YS, Park MS. NADPH oxidase 4 signaling in a ventilator-induced lung injury mouse model. Respir Res 2022;23:73. [PMID: 35346198 DOI: 10.1186/s12931-022-01992-0] [Reference Citation Analysis]
9 Puttalingaiah RT. Role of Swiprosin-1/EFHD2 as a biomarker in the development of chronic diseases. Life Sci 2022;:120462. [PMID: 35276221 DOI: 10.1016/j.lfs.2022.120462] [Reference Citation Analysis]
10 Szanto I. NADPH Oxidase 4 (NOX4) in Cancer: Linking Redox Signals to Oncogenic Metabolic Adaptation. Int J Mol Sci 2022;23:2702. [PMID: 35269843 DOI: 10.3390/ijms23052702] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Gvaldin DY, Timoshkina NN, Vashchenko LN, Novikova IA, Vladimirova LY, Storozhakova AE, Sagakyants AB. RS4673 and pon1 level in blood plasma – new prospects in prediction and early diagnostics of anthracycline-mediated cardiotoxicity. Klin lab diagn 2022;67:123-8. [DOI: 10.51620/0869-2084-2022-67-2-123-128] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Haq S, Sarodaya N, Karapurkar JK, Suresh B, Jo JK, Singh V, Bae YS, Kim KS, Ramakrishna S. CYLD destabilizes NoxO1 protein by promoting ubiquitination and regulates prostate cancer progression. Cancer Lett 2022;525:146-57. [PMID: 34742871 DOI: 10.1016/j.canlet.2021.10.032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Sule RO, Condon L, Gomes AV, Zhou X. A Common Feature of Pesticides: Oxidative Stress—The Role of Oxidative Stress in Pesticide-Induced Toxicity. Oxidative Medicine and Cellular Longevity 2022;2022:1-31. [DOI: 10.1155/2022/5563759] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
14 Kaur S, Verma H, Kaur S, Singh S, Mantha AK, Dhiman M. Herbal Remedies for Improving Cancer Treatment Through Modulation of Redox Balance. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_270-1] [Reference Citation Analysis]
15 Kaur S, Verma H, Kaur S, Singh S, Mantha AK, Dhiman M. Herbal Remedies for Improving Cancer Treatment Through Modulation of Redox Balance. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_270] [Reference Citation Analysis]
16 Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews 2022;451:214267. [DOI: 10.1016/j.ccr.2021.214267] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 23.0] [Reference Citation Analysis]
17 Sarmiento-Salinas FL, Perez-Gonzalez A, Acosta-Casique A, Ix-Ballote A, Diaz A, Treviño S, Rosas-Murrieta NH, Millán-Perez-Peña L, Maycotte P. Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci 2021;284:119942. [PMID: 34506835 DOI: 10.1016/j.lfs.2021.119942] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
18 Sun M, Ye H, Shi Q, Xie J, Yu X, Ling H, You S, He Z, Qin B, Sun J. Both-In-One Hybrid Bacteria Suppress the Tumor Metastasis and Relapse via Tandem-Amplifying Reactive Oxygen Species-Immunity Responses. Adv Healthc Mater 2021;10:e2100950. [PMID: 34541825 DOI: 10.1002/adhm.202100950] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Kim S, Lee H, Lim JW, Kim H. Astaxanthin induces NADPH oxidase activation and receptor‑interacting protein kinase 1‑mediated necroptosis in gastric cancer AGS cells. Mol Med Rep 2021;24:837. [PMID: 34608499 DOI: 10.3892/mmr.2021.12477] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
20 Akhtar MJ, Ahamed M, Alhadlaq H. Anti-Inflammatory CeO2 Nanoparticles Prevented Cytotoxicity Due to Exogenous Nitric Oxide Donors via Induction Rather Than Inhibition of Superoxide/Nitric Oxide in HUVE Cells. Molecules 2021;26:5416. [PMID: 34500851 DOI: 10.3390/molecules26175416] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Yang N, Zhang T, Cao C, Mao G, Shao J, Song X, Wang W, Mou X, Dong X. BSA stabilized photothermal-fenton reactor with cisplatin for chemo/ chemodynamic cascade oncotherapy. Nano Res . [DOI: 10.1007/s12274-021-3758-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
22 Wang Y, Wang J, Gou K, Kang W, Guo X, Zhu K, Li S, Li H. pH/H2O2 Dual-Responsive Chiral Mesoporous Silica Nanorods Coated with a Biocompatible Active Targeting Ligand for Cancer Therapy. ACS Appl Mater Interfaces 2021;13:35397-409. [PMID: 34313104 DOI: 10.1021/acsami.1c08532] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
23 Jeon H, Jin Y, Myung CS, Heo KS. Ginsenoside-Rg2 exerts anti-cancer effects through ROS-mediated AMPK activation associated mitochondrial damage and oxidation in MCF-7 cells. Arch Pharm Res 2021;44:702-12. [PMID: 34302638 DOI: 10.1007/s12272-021-01345-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
24 Meng X, Zhang X, Lei Y, Cao D, Wang Z. Biodegradable copper-metformin nanoscale coordination polymers for enhanced chemo/chemodynamic synergistic therapy by reducing oxygen consumption to promote H2O2 accumulation. J Mater Chem B 2021;9:1988-2000. [PMID: 33511387 DOI: 10.1039/d0tb02476g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
25 Mostafavinia A, Ahmadi H, Amini A, Roudafshani Z, Hamblin MR, Chien S, Bayat M. The effect of photobiomodulation therapy on antioxidants and oxidative stress profiles of adipose derived mesenchymal stem cells in diabetic rats. Spectrochim Acta A Mol Biomol Spectrosc 2021;262:120157. [PMID: 34271236 DOI: 10.1016/j.saa.2021.120157] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
26 Maraldi T, Angeloni C, Prata C, Hrelia S. NADPH Oxidases: Redox Regulators of Stem Cell Fate and Function. Antioxidants (Basel) 2021;10:973. [PMID: 34204425 DOI: 10.3390/antiox10060973] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
27 Ciesielska S, Slezak-Prochazka I, Bil P, Rzeszowska-Wolny J. Micro RNAs in Regulation of Cellular Redox Homeostasis. Int J Mol Sci 2021;22:6022. [PMID: 34199590 DOI: 10.3390/ijms22116022] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
28 Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021;10:890. [PMID: 34205998 DOI: 10.3390/antiox10060890] [Cited by in Crossref: 67] [Cited by in F6Publishing: 79] [Article Influence: 67.0] [Reference Citation Analysis]
29 Ganguly U, Kaur U, Chakrabarti SS, Sharma P, Agrawal BK, Saso L, Chakrabarti S. Oxidative Stress, Neuroinflammation, and NADPH Oxidase: Implications in the Pathogenesis and Treatment of Alzheimer's Disease. Oxid Med Cell Longev 2021;2021:7086512. [PMID: 33953837 DOI: 10.1155/2021/7086512] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 26.0] [Reference Citation Analysis]
30 Lei M, Chen G, Zhang M, Lei J, Li T, Li D, Zheng H. A pH-sensitive drug delivery system based on hyaluronic acid co-deliver doxorubicin and aminoferrocene for the combined application of chemotherapy and chemodynamic therapy. Colloids Surf B Biointerfaces 2021;203:111750. [PMID: 33862573 DOI: 10.1016/j.colsurfb.2021.111750] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
31 Mota M, Metge BJ, Hinshaw DC, Alsheikh HA, Chen D, Samant RS, Shevde LA. Merlin deficiency alters the redox management program in breast cancer. Mol Oncol 2021;15:942-56. [PMID: 33410252 DOI: 10.1002/1878-0261.12896] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Bukowska-Strakova K, Włodek J, Pitera E, Kozakowska M, Konturek-Cieśla A, Cieśla M, Gońka M, Nowak W, Wieczorek A, Pawińska-Wąsikowska K, Józkowicz A, Siedlar M. Role of HMOX1 Promoter Genetic Variants in Chemoresistance and Chemotherapy Induced Neutropenia in Children with Acute Lymphoblastic Leukemia. Int J Mol Sci 2021;22:988. [PMID: 33498175 DOI: 10.3390/ijms22030988] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
33 Shomali T, Ashrafi M. Statins, cancer, and oxidative stress. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00023-7] [Reference Citation Analysis]
34 Dudek J, Kutschka I, Maack C. Metabolic and Redox Regulation of Cardiovascular Stem Cell Biology and Pathology. Antioxid Redox Signal 2021;35:163-81. [PMID: 33121253 DOI: 10.1089/ars.2020.8201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Chu C, Lyu X, Wang Z, Jin H, Lu S, Xing D, Hu X. Cocktail polyprodrug nanoparticles concurrently release cisplatin and peroxynitrite-generating nitric oxide in cisplatin-resistant cancers. Chemical Engineering Journal 2020;402:126125. [DOI: 10.1016/j.cej.2020.126125] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 24.0] [Reference Citation Analysis]
36 Wu H, Chen F, You C, Zhang Y, Sun B, Zhu Q. Smart Porous Core–Shell Cuprous Oxide Nanocatalyst with High Biocompatibility for Acid‐Triggered Chemo/Chemodynamic Synergistic Therapy. Small 2020;16:2001805. [DOI: 10.1002/smll.202001805] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 24.5] [Reference Citation Analysis]
37 Chen G, Yang Y, Xu Q, Ling M, Lin H, Ma W, Sun R, Xu Y, Liu X, Li N, Yu Z, Yu M. Self-Amplification of Tumor Oxidative Stress with Degradable Metallic Complexes for Synergistic Cascade Tumor Therapy. Nano Lett 2020;20:8141-50. [DOI: 10.1021/acs.nanolett.0c03127] [Cited by in Crossref: 91] [Cited by in F6Publishing: 101] [Article Influence: 45.5] [Reference Citation Analysis]
38 Waghela BN, Vaidya FU, Agrawal Y, Santra MK, Mishra V, Pathak C. Molecular insights of NADPH oxidases and its pathological consequences. Cell Biochem Funct 2021;39:218-34. [PMID: 32975319 DOI: 10.1002/cbf.3589] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
39 Attri P, Park JH, De Backer J, Kim M, Yun JH, Heo Y, Dewilde S, Shiratani M, Choi EH, Lee W, Bogaerts A. Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study. Int J Biol Macromol 2020;163:2405-14. [PMID: 32961197 DOI: 10.1016/j.ijbiomac.2020.09.120] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
40 Bil P, Ciesielska S, Jaksik R, Rzeszowska-Wolny J. Circuits Regulating Superoxide and Nitric Oxide Production and Neutralization in Different Cell Types: Expression of Participating Genes and Changes Induced by Ionizing Radiation. Antioxidants (Basel) 2020;9:E701. [PMID: 32756515 DOI: 10.3390/antiox9080701] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Kim YM, Muthuramalingam K, Cho M. Redox Regulation of NOX Isoforms on FAK(Y397)/SRC(Y416) Phosphorylation Driven Epithelial-to-Mesenchymal Transition in Malignant Cervical Epithelial Cells. Cells 2020;9:E1555. [PMID: 32604782 DOI: 10.3390/cells9061555] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
42 Bhowmick R, Sarkar RR. Differential suitability of reactive oxygen species and the role of glutathione in regulating paradoxical behavior in gliomas: A mathematical perspective. PLoS One 2020;15:e0235204. [PMID: 32584884 DOI: 10.1371/journal.pone.0235204] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
43 Fan CC, Tsai ST, Lin CY, Chang LC, Yang JC, Chen GY, Sher YP, Wang SC, Hsiao M, Chang WC. EFHD2 contributes to non-small cell lung cancer cisplatin resistance by the activation of NOX4-ROS-ABCC1 axis. Redox Biol 2020;34:101571. [PMID: 32446175 DOI: 10.1016/j.redox.2020.101571] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
44 Elangovan S, Holsinger RMD. Cyclical amyloid beta-astrocyte activity induces oxidative stress in Alzheimer's disease. Biochimie 2020;171-172:38-42. [PMID: 32061803 DOI: 10.1016/j.biochi.2020.02.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
45 Saleem MZ, Nisar MA, Alshwmi M, Din SRU, Gamallat Y, Khan M, Ma T. Brevilin A Inhibits STAT3 Signaling and Induces ROS-Dependent Apoptosis, Mitochondrial Stress and Endoplasmic Reticulum Stress in MCF-7 Breast Cancer Cells. Onco Targets Ther 2020;13:435-50. [PMID: 32021288 DOI: 10.2147/OTT.S228702] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
46 Kushwaha PP, Gupta S, Singh AK, Prajapati KS, Shuaib M, Kumar S. MicroRNA Targeting Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Cancer. Antioxidants & Redox Signaling 2020;32:267-84. [DOI: 10.1089/ars.2019.7918] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
47 Tenkorang MAA, Duong P, Cunningham RL. NADPH Oxidase Mediates Membrane Androgen Receptor-Induced Neurodegeneration. Endocrinology 2019;160:947-63. [PMID: 30811529 DOI: 10.1210/en.2018-01079] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
48 Li J, Wu N, Chen X, Chen H, Yang X, Liu C. Curcumin protects islet cells from glucolipotoxicity by inhibiting oxidative stress and NADPH oxidase activity both in vitro and in vivo. Islets 2019;11:152-64. [PMID: 31750757 DOI: 10.1080/19382014.2019.1690944] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
49 Kruk J, Aboul-Enein BH, Bernstein J, Gronostaj M. Psychological Stress and Cellular Aging in Cancer: A Meta-Analysis. Oxid Med Cell Longev 2019;2019:1270397. [PMID: 31814865 DOI: 10.1155/2019/1270397] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 11.7] [Reference Citation Analysis]
50 Guo Y, Zhang X, Sun W, Jia H, Zhu Y, Zhang X, Zhou N, Wu F. Metal–Phenolic Network-Based Nanocomplexes that Evoke Ferroptosis by Apoptosis: Promoted Nuclear Drug Influx and Reversed Drug Resistance of Cancer. Chem Mater 2019;31:10071-84. [DOI: 10.1021/acs.chemmater.9b03042] [Cited by in Crossref: 63] [Cited by in F6Publishing: 68] [Article Influence: 21.0] [Reference Citation Analysis]
51 Kobliakov VA. The Mechanisms of Regulation of Aerobic Glycolysis (Warburg Effect) by Oncoproteins in Carcinogenesis. Biochemistry Moscow 2019;84:1117-28. [DOI: 10.1134/s0006297919100018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
52 Curry DW, Stutz B, Andrews ZB, Elsworth JD. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease. J Parkinsons Dis 2018;8:161-81. [PMID: 29614701 DOI: 10.3233/JPD-171296] [Cited by in Crossref: 62] [Cited by in F6Publishing: 70] [Article Influence: 20.7] [Reference Citation Analysis]
53 Kim EK, Jang M, Song MJ, Kim D, Kim Y, Jang HH. Redox-Mediated Mechanism of Chemoresistance in Cancer Cells. Antioxidants (Basel) 2019;8:E471. [PMID: 31658599 DOI: 10.3390/antiox8100471] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 18.0] [Reference Citation Analysis]
54 Basu P, Hornung RS, Averitt DL, Maier C. Euphorbia bicolor (Euphorbiaceae) Latex Extract Reduces Inflammatory Cytokines and Oxidative Stress in a Rat Model of Orofacial Pain. Oxid Med Cell Longev 2019;2019:8594375. [PMID: 31612077 DOI: 10.1155/2019/8594375] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
55 Skonieczna M, Hudy D, Hejmo T, Buldak RJ, Adamiec M, Kukla M. The adipokine vaspin reduces apoptosis in human hepatocellular carcinoma (Hep-3B) cells, associated with lower levels of NO and superoxide anion. BMC Pharmacol Toxicol 2019;20:58. [PMID: 31511067 DOI: 10.1186/s40360-019-0334-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
56 Roedig H, Damiescu R, Zeng-Brouwers J, Kutija I, Trebicka J, Wygrecka M, Schaefer L. Danger matrix molecules orchestrate CD14/CD44 signaling in cancer development. Semin Cancer Biol 2020;62:31-47. [PMID: 31412297 DOI: 10.1016/j.semcancer.2019.07.026] [Cited by in Crossref: 31] [Cited by in F6Publishing: 37] [Article Influence: 10.3] [Reference Citation Analysis]
57 Agidigbi TS, Kim C. Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases. Int J Mol Sci 2019;20:E3576. [PMID: 31336616 DOI: 10.3390/ijms20143576] [Cited by in Crossref: 130] [Cited by in F6Publishing: 138] [Article Influence: 43.3] [Reference Citation Analysis]
58 Chen S, Gao W, Zhang MJ, Chan JY, Wong TS. Curcumin enhances cisplatin sensitivity by suppressing NADPH oxidase 5 expression in human epithelial cancer. Oncol Lett 2019;18:2132-9. [PMID: 31423287 DOI: 10.3892/ol.2019.10479] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Bjelica S, Diklić M, Đikić D, Kovačić M, Subotički T, Mitrović-Ajtić O, Radojković M, Čokić VP, Santibanez JF. Hydroxyurea-induced senescent peripheral blood mesenchymal stromal cells inhibit bystander cell proliferation of JAK2V617F-positive human erythroleukemia cells. FEBS J 2019;286:3647-63. [PMID: 31090259 DOI: 10.1111/febs.14927] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
60 Ralph SJ, Nozuhur S, Alhulais RA, Rodríguez‐enríquez S, Moreno‐sánchez R. Repurposing drugs as pro‐oxidant redox modifiers to eliminate cancer stem cells and improve the treatment of advanced stage cancers. Med Res Rev 2019;39:2397-426. [DOI: 10.1002/med.21589] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
61 Chokeshaiusaha K, Puthier D, Nguyen C, Sudjaidee P, Sananmuang T. Factor Analysis for Bicluster Acquisition (FABIA) revealed vincristine-sensitive transcript pattern of canine transmissible venereal tumors. Heliyon 2019;5:e01558. [PMID: 31193204 DOI: 10.1016/j.heliyon.2019.e01558] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
62 Szanto I, Pusztaszeri M, Mavromati M. H2O2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases. Antioxidants (Basel) 2019;8:E126. [PMID: 31083324 DOI: 10.3390/antiox8050126] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
63 Liu L, Cui Y, Li X, Que X, Xiao Y, Yang C, Zhang J, Xie X, Cowan PJ, Tian J, Hao H, Liu Z. Concomitant overexpression of triple antioxidant enzymes selectively increases circulating endothelial progenitor cells in mice with limb ischaemia. J Cell Mol Med 2019;23:4019-29. [PMID: 30973215 DOI: 10.1111/jcmm.14287] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
64 Kim SL, Choi HS, Kim JH, Jeong DK, Kim KS, Lee DS. Dihydrotanshinone-Induced NOX5 Activation Inhibits Breast Cancer Stem Cell through the ROS/Stat3 Signaling Pathway. Oxid Med Cell Longev. 2019;2019:9296439. [PMID: 31019654 DOI: 10.1155/2019/9296439] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 10.7] [Reference Citation Analysis]
65 Yasuoka H, Garrett SM, Nguyen XX, Artlett CM, Feghali-Bostwick CA. NADPH oxidase-mediated induction of reactive oxygen species and extracellular matrix deposition by insulin-like growth factor binding protein-5. Am J Physiol Lung Cell Mol Physiol 2019;316:L644-55. [PMID: 30810066 DOI: 10.1152/ajplung.00106.2018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
66 C. Allen R. Essence of Reducing Equivalent Transfer Powering Neutrophil Oxidative Microbicidal Action and Chemiluminescence. Neutrophils 2019. [DOI: 10.5772/intechopen.81543] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
67 Zhang J, Li H, Wu Q, Chen Y, Deng Y, Yang Z, Zhang L, Liu B. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol 2019;22:101116. [PMID: 30769285 DOI: 10.1016/j.redox.2019.101116] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]
68 Ciesielska S, Bil P, Gajda K, Poterala-Hejmo A, Hudy D, Rzeszowska-Wolny J. Cell type-specific differences in redox regulation and proliferation after low UVA doses. PLoS One 2019;14:e0205215. [PMID: 30682016 DOI: 10.1371/journal.pone.0205215] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
69 Kobliakov VA. HIFα as a target for different oncoproteins during carcinogenesis. Usp mol onkol 2019;5:64-71. [DOI: 10.17650/2313-805x-2018-5-4-64-71] [Reference Citation Analysis]
70 Herrero D, Cañón S, Albericio G, Aguilar S, Carmona RM, Holguín A, Bernad A. Oxidative Stress as a Critical Determinant of Adult Cardiac Progenitor Cell-Fate Decisions. Modulation of Oxidative Stress in Heart Disease 2019. [DOI: 10.1007/978-981-13-8946-7_13] [Reference Citation Analysis]
71 Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018;7:E159. [PMID: 30404180 DOI: 10.3390/antiox7110159] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 11.3] [Reference Citation Analysis]
72 Li J, Hui L, Kang Q, Li R. Down-regulation of microRNA-27b promotes retinal pigment epithelial cell proliferation and migration by targeting Nox2. Pathology - Research and Practice 2018;214:925-33. [DOI: 10.1016/j.prp.2018.05.025] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
73 Abd Allah MS, Elosaily GM. Immuohistochemical expression and significance of NADPH oxidase 1 and CXCR4 in hepatitis C virus-induced hepatocellular carcinoma. Egyptian Journal of Pathology 2018;38:120-125. [DOI: 10.1097/01.xej.0000542234.06636.ab] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 You X, Ma M, Hou G, Hu Y, Shi X. Gene expression and prognosis of NOX family members in gastric cancer. Onco Targets Ther 2018;11:3065-74. [PMID: 29872318 DOI: 10.2147/OTT.S161287] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
75 Matos A, Silva APD, Medeiros R, Bicho M, Bicho MC. Microenvironment in Vagina as a Key-Player on Cervical Cancer: Interaction of Polymorphic Genetic Variants and Vaginal Microbiome as Co-Factors. Cervical Cancer - Screening, Treatment and Prevention - Universal Protocols for Ultimate Control 2018. [DOI: 10.5772/intechopen.73108] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
76 Dai Y, Yang Z, Cheng S, Wang Z, Zhang R, Zhu G, Wang Z, Yung BC, Tian R, Jacobson O, Xu C, Ni Q, Song J, Sun X, Niu G, Chen X. Toxic Reactive Oxygen Species Enhanced Synergistic Combination Therapy by Self-Assembled Metal-Phenolic Network Nanoparticles. Adv Mater 2018;30. [PMID: 29315862 DOI: 10.1002/adma.201704877] [Cited by in Crossref: 215] [Cited by in F6Publishing: 229] [Article Influence: 53.8] [Reference Citation Analysis]
77 Acevedo A, González-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 2018;116:101-13. [PMID: 29330095 DOI: 10.1016/j.freeradbiomed.2018.01.008] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 11.8] [Reference Citation Analysis]
78 Burtenshaw D, Hakimjavadi R, Redmond EM, Cahill PA. Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate. Antioxidants (Basel) 2017;6:E90. [PMID: 29135921 DOI: 10.3390/antiox6040090] [Cited by in Crossref: 63] [Cited by in F6Publishing: 67] [Article Influence: 12.6] [Reference Citation Analysis]
79 Chen JC, Hsieh MC, Lin SH, Lin CC, Hsi YT, Lo YS, Chuang YC, Hsieh MJ, Chen MK. Coronarin D induces reactive oxygen species-mediated cell death in human nasopharyngeal cancer cells through inhibition of p38 MAPK and activation of JNK. Oncotarget 2017;8:108006-19. [PMID: 29296219 DOI: 10.18632/oncotarget.22444] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
80 Tan DQ, Suda T. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function. Antioxid Redox Signal 2018;29:149-68. [PMID: 28708000 DOI: 10.1089/ars.2017.7273] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 13.4] [Reference Citation Analysis]
81 Herranz-López M, Olivares-Vicente M, Encinar JA, Barrajón-Catalán E, Segura-Carretero A, Joven J, Micol V. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity. Nutrients 2017;9:E907. [PMID: 28825642 DOI: 10.3390/nu9080907] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 8.4] [Reference Citation Analysis]