BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Alonso-Padilla J, Lafuente EM, Reche PA. Computer-Aided Design of an Epitope-Based Vaccine against Epstein-Barr Virus. J Immunol Res 2017;2017:9363750. [PMID: 29119120 DOI: 10.1155/2017/9363750] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Quinzo MJ, Lafuente EM, Zuluaga P, Flower DR, Reche PA. Computational assembly of a human Cytomegalovirus vaccine upon experimental epitope legacy. BMC Bioinformatics 2019;20:476. [PMID: 31823715 DOI: 10.1186/s12859-019-3052-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
2 Bazmara S, Shadmani M, Ghasemnejad A, Aghazadeh H, Pooshang Bagheri K. In silico rational design of a novel tetra-epitope tetanus vaccine with complete population coverage using developed immunoinformatics and surface epitope mapping approaches. Med Hypotheses 2019;130:109267. [PMID: 31383332 DOI: 10.1016/j.mehy.2019.109267] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
3 Krishnan G S, Joshi A, Akhtar N, Kaushik V. Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microb Pathog 2021;150:104728. [PMID: 33400987 DOI: 10.1016/j.micpath.2020.104728] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
4 Zhang X, Zhao B, Ding M, Song S, Kang Y, Yu Y, Xu M, Xiang T, Gao L, Feng Q, Zhao Q, Zeng MS, Krummenacher C, Zeng YX. A novel vaccine candidate based on chimeric virus-like particle displaying multiple conserved epitope peptides induced neutralizing antibodies against EBV infection. Theranostics 2020;10:5704-18. [PMID: 32483413 DOI: 10.7150/thno.42494] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
5 Wang B, Chen S, Zheng Q, Liu Y, Shi G. Peptide-Based Vaccination Therapy for Rheumatic Diseases. J Immunol Res 2020;2020:8060375. [PMID: 32258176 DOI: 10.1155/2020/8060375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Waller FM, Reche PA, Flower DR. West Nile Virus Vaccine Design by T Cell Epitope Selection: In Silico Analysis of Conservation, Functional Cross-Reactivity with the Human Genome, and Population Coverage. J Immunol Res 2020;2020:7235742. [PMID: 32258174 DOI: 10.1155/2020/7235742] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Michel-Todó L, Reche PA, Bigey P, Pinazo MJ, Gascón J, Alonso-Padilla J. In silico Design of an Epitope-Based Vaccine Ensemble for Chagas Disease. Front Immunol 2019;10:2698. [PMID: 31824493 DOI: 10.3389/fimmu.2019.02698] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
8 Reche PA. Potential Cross-Reactive Immunity to SARS-CoV-2 From Common Human Pathogens and Vaccines. Front Immunol 2020;11:586984. [PMID: 33178220 DOI: 10.3389/fimmu.2020.586984] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 13.5] [Reference Citation Analysis]
9 Azcárate IG, Marín-García P, Abad P, Pérez-Benavente S, Paz-Artal E, Reche PA, Fobil JN, Rubio JM, Diez A, Puyet A, Bautista JM. Plasmodium falciparum immunodominant IgG epitopes in subclinical malaria. Sci Rep 2020;10:9398. [PMID: 32523082 DOI: 10.1038/s41598-020-66384-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
10 Mayahi V, Esmaelizad M, Ganjalikhany MR. Development of Avian Avulavirus 1 Epitope-Based Vaccine Pattern Based on Epitope Prediction and Molecular Docking Analysis: An Immunoinformatic Approach. Int J Pept Res Ther 2020;26:1513-22. [DOI: 10.1007/s10989-019-09952-x] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Zachova K, Kosztyu P, Zadrazil J, Matousovic K, Vondrak K, Hubacek P, Julian BA, Moldoveanu Z, Novak Z, Kostovcikova K, Raska M, Mestecky J. Role of Epstein-Barr Virus in Pathogenesis and Racial Distribution of IgA Nephropathy. Front Immunol 2020;11:267. [PMID: 32184780 DOI: 10.3389/fimmu.2020.00267] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Ros-Lucas A, Bigey P, Chippaux JP, Gascón J, Alonso-Padilla J. Computer-Aided Analysis of West Sub-Saharan Africa Snakes Venom towards the Design of Epitope-Based Poly-Specific Antivenoms. Toxins (Basel) 2022;14:418. [PMID: 35737079 DOI: 10.3390/toxins14060418] [Reference Citation Analysis]
13 Agrawal P, Raghava GPS. Prediction of Antimicrobial Potential of a Chemically Modified Peptide From Its Tertiary Structure. Front Microbiol 2018;9:2551. [PMID: 30416494 DOI: 10.3389/fmicb.2018.02551] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
14 Sanchez-Trincado JL, Reche PA. Generation of Variability-Free Reference Proteomes from Pathogenic Organisms for Epitope-Vaccine Design. Methods Mol Biol 2020;2131:255-63. [PMID: 32162259 DOI: 10.1007/978-1-0716-0389-5_13] [Reference Citation Analysis]
15 Olotu FA, Soliman MES. Immunoinformatics prediction of potential B-cell and T-cell epitopes as effective vaccine candidates for eliciting immunogenic responses against Epstein-Barr virus. Biomed J 2021;44:317-37. [PMID: 34154948 DOI: 10.1016/j.bj.2020.01.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Hajissa K, Zakaria R, Suppian R, Mohamed Z. Epitope-based vaccine as a universal vaccination strategy against Toxoplasma gondii infection: A mini-review. J Adv Vet Anim Res 2019;6:174-82. [PMID: 31453188 DOI: 10.5455/javar.2019.f329] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
17 Ros-Lucas A, Correa-Fiz F, Bosch-Camós L, Rodriguez F, Alonso-Padilla J. Computational Analysis of African Swine Fever Virus Protein Space for the Design of an Epitope-Based Vaccine Ensemble. Pathogens 2020;9:1078. [PMID: 33371523 DOI: 10.3390/pathogens9121078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Zhang J, He J, Li J, Zhou Q, Chen H, Zheng Z, Chen Q, Chen D, Chen J. The immunogenicity and protective immunity of multi-epitopes DNA prime-protein  boost vaccines encoding Amastin-Kmp-11, Kmp11-Gp63 and Amastin-Gp63 against visceral leishmaniasis. PLoS One 2020;15:e0230381. [PMID: 32176727 DOI: 10.1371/journal.pone.0230381] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Gomez-Perosanz M, Sanchez-Trincado JL, Fernandez-Arquero M, Sidney J, Sette A, Lafuente EM, Reche PA. Human rhinovirus-specific CD8 T cell responses target conserved and unusual epitopes. FASEB J 2021;35:e21208. [PMID: 33230881 DOI: 10.1096/fj.202002165R] [Cited by in F6Publishing: 2] [Reference Citation Analysis]