1 |
Dougnon V, Legba BB, Gbaguidi B, Agbodjento E, Agbankpe AJ, Rocha D, Ayi I, Azonbakin S, Diallo A, Bonkoungou IJ, Klotoe JR, Agbangla C, Alitonou GA. A review of some medicinal plants with the potential to defeat antimicrobial resistance: Cases of Benin, Togo, Ghana, Burkina Faso, and Cape Verde. Int J One Health 2022. [DOI: 10.14202/ijoh.2022.124-160] [Reference Citation Analysis]
|
2 |
Opoku-agyemang F, Naa Offeibea Dodoo J, Elorm Hlomador T, Gilday K, Naalamle Amissah J. Conservation and Sustainable Use of Crytolepis sanguinolenta. Herbs and Spices - New Advances [Working Title] 2022. [DOI: 10.5772/intechopen.108249] [Reference Citation Analysis]
|
3 |
Behl T, Gupta A, Albratty M, Najmi A, Meraya AM, Alhazmi HA, Anwer MK, Bhatia S, Bungau SG. Alkaloidal Phytoconstituents for Diabetes Management: Exploring the Unrevealed Potential. Molecules 2022;27:5851. [PMID: 36144587 DOI: 10.3390/molecules27185851] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
4 |
Domfeh SA, Narkwa PW, Quaye O, Kusi KA, Addy BS, Lant S, Sumner RP, Maluquer de Motes C, Awandare GA, Ansah C, Mutocheluh M, Wang K. The Pharmacologically Active Alkaloid Cryptolepine Activates a Type 1 Interferon Response That Is Independent of MAVS and STING Pathways. Journal of Immunology Research 2022;2022:1-13. [DOI: 10.1155/2022/8873536] [Reference Citation Analysis]
|
5 |
Gyebi GA, Ogunyemi OM, Adefolalu AA, López-pastor JF, Banegas-luna AJ, Rodríguez-martínez A, Pérez-sánchez H, Adegunloye AP, Ogunro OB, Afolabi SO, Baazeem A, Alotaibi SS, Batiha GE. Antimalarial phytochemicals as potential inhibitors of SARS-CoV-2 guanine N7-methyltransferase (nsp 14): an integrated computational approach. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2022.2078408] [Reference Citation Analysis]
|
6 |
Kyei LK, Gasu EN, Ampomah GB, Mensah JO, Borquaye LS, Ali MS. An In Silico Study of the Interactions of Alkaloids from Cryptolepis sanguinolenta with Plasmodium falciparum Dihydrofolate Reductase and Dihydroorotate Dehydrogenase. Journal of Chemistry 2022;2022:1-26. [DOI: 10.1155/2022/5314179] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
7 |
Bekoe SO, Orman E, Adjabui SA, Brobbey AA, Oppong-kyekyeku J, Opuni KF, Kuntworbe N, Asare-nkansah S, Dadfarnia S. Development and Validation of an Ion-Pair HPLC-UV Method for the Quantitation of Quinoline and Indoloquinoline Alkaloids in Herbal and Pharmaceutical Antimalarial Formulations. Journal of Chemistry 2022;2022:1-11. [DOI: 10.1155/2022/4625954] [Reference Citation Analysis]
|
8 |
Siddiqui AJ, Jahan S, Singh R, Saxena J, Ashraf SA, Khan A, Choudhary RK, Balakrishnan S, Badraoui R, Bardakci F, Adnan M, Kabir Y. Plants in Anticancer Drug Discovery: From Molecular Mechanism to Chemoprevention. BioMed Research International 2022;2022:1-18. [DOI: 10.1155/2022/5425485] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
|
9 |
Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, Zhao C, Xiao J, Hafez EE, Khan SA, Mohamed IN. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front Endocrinol 2022;13:800714. [DOI: 10.3389/fendo.2022.800714] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 22.0] [Reference Citation Analysis]
|
10 |
Mante PK, Adomako NO, Antwi P, Kusi-Boadum NK. Chronic administration of cryptolepine nanoparticle formulation alleviates seizures in a neurocysticercosis model. Curr Res Pharmacol Drug Discov 2021;2:100040. [PMID: 34909669 DOI: 10.1016/j.crphar.2021.100040] [Reference Citation Analysis]
|
11 |
Domfeh SA, Narkwa PW, Quaye O, Kusi KA, Awandare GA, Ansah C, Salam A, Mutocheluh M. Cryptolepine inhibits hepatocellular carcinoma growth through inhibiting interleukin-6/STAT3 signalling. BMC Complement Med Ther 2021;21:161. [PMID: 34078370 DOI: 10.1186/s12906-021-03326-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
12 |
Kavya NM, Adil L, Senthilkumar P. A Review on Saponin Biosynthesis and its Transcriptomic Resources in Medicinal Plants. Plant Mol Biol Rep 2021;39:833-40. [DOI: 10.1007/s11105-021-01293-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
13 |
Adeleye OA, Femi-Oyewo MN, Bamiro OA, Bakre LG, Alabi A, Ashidi JS, Balogun-Agbaje OA, Hassan OM, Fakoya G. Ethnomedicinal herbs in African traditional medicine with potential activity for the prevention, treatment, and management of coronavirus disease 2019. Futur J Pharm Sci 2021;7:72. [PMID: 33778086 DOI: 10.1186/s43094-021-00223-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
14 |
Zhang Y, Alvarez-Manzo H, Leone J, Schweig S, Zhang Y. Botanical Medicines Cryptolepis sanguinolenta, Artemisia annua, Scutellaria baicalensis, Polygonum cuspidatum, and Alchornea cordifolia Demonstrate Inhibitory Activity Against Babesia duncani. Front Cell Infect Microbiol 2021;11:624745. [PMID: 33763384 DOI: 10.3389/fcimb.2021.624745] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
15 |
Szabó T, Papp M, Németh DR, Dancsó A, Volk B, Milen M. Synthesis of Indolo[2,3-c]quinolin-6(7H)-ones and Antimalarial Isoneocryptolepine. Computational Study on the Pd-Catalyzed Intramolecular C-H Arylation. J Org Chem 2021;86:128-45. [PMID: 33253566 DOI: 10.1021/acs.joc.0c01832] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
16 |
Borquaye LS, Gasu EN, Ampomah GB, Kyei LK, Amarh MA, Mensah CN, Nartey D, Commodore M, Adomako AK, Acheampong P, Mensah JO, Mormor DB, Aboagye CI. Alkaloids from Cryptolepis sanguinolenta as Potential Inhibitors of SARS-CoV-2 Viral Proteins: An In Silico Study. Biomed Res Int 2020;2020:5324560. [PMID: 33029513 DOI: 10.1155/2020/5324560] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
|
17 |
Yeboah P, Forkuo AD, Amponsah OKO, Adomako NO, Abdin AY, Nasim MJ, Werner P, Panyin AB, Emrich E, Jacob C. Antimalarial Drugs in Ghana: A Case Study on Personal Preferences. Sci 2020;2:49. [DOI: 10.3390/sci2030049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
18 |
Yeboah P, Forkuo AD, Amponsah OKO, Adomako NO, Abdin AY, Nasim MJ, Werner P, Panyin AB, Emrich E, Jacob C. Antimalarial Drugs in Ghana: A Case Study on Personal Preferences. Sci 2020;2:45. [DOI: 10.3390/sci2020045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
19 |
Bruck de Souza L, Leitão Gindri A, de Andrade Fortes T, Felli Kubiça T, Enderle J, Roehrs R, Moura E Silva S, Manfredini V, Gasparotto Denardin EL. Phytochemical Analysis, Antioxidant Activity, Antimicrobial Activity, and Cytotoxicity of Chaptalia nutans Leaves. Adv Pharmacol Pharm Sci 2020;2020:3260745. [PMID: 32420545 DOI: 10.1155/2020/3260745] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
20 |
Hlashwayo DF, Barbosa F, Langa S, Sigaúque B, Bila CG. A Systematic Review of In Vitro Activity of Medicinal Plants from Sub-Saharan Africa against Campylobacter spp. Evid Based Complement Alternat Med 2020;2020:9485364. [PMID: 32508957 DOI: 10.1155/2020/9485364] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
21 |
Yeboah P, Forkuo AD, Amponsah OKO, Adomako NO, Abdin AY, Nasim MJ, Werner P, Panyin AB, Emrich E, Jacob C. Antimalarial Drugs in Ghana: A Case Study on Personal Preferences. Sci 2020;2:28. [DOI: 10.3390/sci2020028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
22 |
Feng J, Leone J, Schweig S, Zhang Y. Evaluation of Natural and Botanical Medicines for Activity Against Growing and Non-growing Forms of B. burgdorferi. Front Med (Lausanne) 2020;7:6. [PMID: 32154254 DOI: 10.3389/fmed.2020.00006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
|
23 |
Nadein ON, Aksenov DА, Abakarov GM, Aksenov NА, Voskressensky LG, Aksenov AV. Methods of synthesis of natural indoloquinolines isolated from Cryptolepis sanguinolenta. Chem Heterocycl Comp 2019;55:905-32. [DOI: 10.1007/s10593-019-02557-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
24 |
Mensah KB, Benneh C, Forkuo AD, Ansah C. Cryptolepine, the Main Alkaloid of the Antimalarial Cryptolepis sanguinolenta (Lindl.) Schlechter, Induces Malformations in Zebrafish Embryos. Biochem Res Int 2019;2019:7076986. [PMID: 31360547 DOI: 10.1155/2019/7076986] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
|
25 |
Eze CC, Attama AA, Ibezim EC, Berebon DP, Agbo MC. Malaria parasite clearance rate of crude methanol extract of Cryptolepis sanguinolenta in mice infected with chloroquine sensitive strain of Plasmodium berghei. J Med Plants Res 2018;12:396-403. [DOI: 10.5897/jmpr2018.6647] [Reference Citation Analysis]
|