BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen C, Ponnusamy M, Liu C, Gao J, Wang K, Li P. MicroRNA as a Therapeutic Target in Cardiac Remodeling. Biomed Res Int 2017;2017:1278436. [PMID: 29094041 DOI: 10.1155/2017/1278436] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 Benatti HR, Gray-Edwards HL. Adeno-Associated Virus Delivery Limitations for Neurological Indications. Hum Gene Ther 2022;33:1-7. [PMID: 35049369 DOI: 10.1089/hum.2022.29196.hrb] [Reference Citation Analysis]
2 Chen Y, Liu X, Chen L, Chen W, Zhang Y, Chen J, Wu X, Zhao Y, Wu X, Sun G. The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting miR-330-3p. Biochem Biophys Res Commun 2018;505:807-15. [PMID: 30297107 DOI: 10.1016/j.bbrc.2018.09.135] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
3 Ro WB, Kang MH, Song DW, Kim HS, Lee GW, Park HM. Identification and Characterization of Circulating MicroRNAs as Novel Biomarkers in Dogs With Heart Diseases. Front Vet Sci 2021;8:729929. [PMID: 34708100 DOI: 10.3389/fvets.2021.729929] [Reference Citation Analysis]
4 Qiu Z, Wang L, Mao H, Xu F, Sun B, Lian X, Wang J, Kong F, Wang L, Chen Y. miR-370 inhibits the oxidative stress and apoptosis of cardiac myocytes induced by hydrogen peroxide by targeting FOXO1. Exp Ther Med 2019;18:3025-31. [PMID: 31555385 DOI: 10.3892/etm.2019.7908] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
5 Alfar EA, El-armouche A, Guan K. MicroRNAs in cardiomyocyte differentiation and maturation. Cardiovascular Research 2018;114:779-81. [DOI: 10.1093/cvr/cvy065] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
6 Callegari S, Dennerlein S. Sensing the Stress: A Role for the UPRmt and UPRam in the Quality Control of Mitochondria. Front Cell Dev Biol 2018;6:31. [PMID: 29644217 DOI: 10.3389/fcell.2018.00031] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
7 Dlouha D, Ivak P, Netuka I, Benesova S, Tucanova Z, Hubacek JA. An Integrative Study of Aortic mRNA/miRNA Longitudinal Changes in Long-Term LVAD Support. Int J Mol Sci 2021;22:7414. [PMID: 34299034 DOI: 10.3390/ijms22147414] [Reference Citation Analysis]
8 Gong FH, Long L, Yang YS, Shen DH, Zhang YS, Wang XS, Zhang XP, Xiao XQ. Attenuated macrophage activation mediated by microRNA-183 knockdown through targeting NR4A2. Exp Ther Med 2021;21:300. [PMID: 33717243 DOI: 10.3892/etm.2021.9731] [Reference Citation Analysis]
9 Elgebaly SA, Todd R, Kreutzer DL, Christenson R, El-Khazragy N, Arafa RK, Rabie MA, Mohamed AF, Ahmed LA, El Sayed NS. Nourin-Associated miRNAs: Novel Inflammatory Monitoring Markers for Cyclocreatine Phosphate Therapy in Heart Failure. Int J Mol Sci 2021;22:3575. [PMID: 33808213 DOI: 10.3390/ijms22073575] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Fang Y, Tao Y, Zhou H, Lai H. Promoting role of circ-Jarid2/miR-129-5p/Celf1 axis in cardiac hypertrophy. Gene Ther 2020. [PMID: 32632266 DOI: 10.1038/s41434-020-0165-5] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Teodori L, Costa A, Campanella L, Albertini MC. Skeletal Muscle Atrophy in Simulated Microgravity Might Be Triggered by Immune-Related microRNAs. Front Physiol 2018;9:1926. [PMID: 30687129 DOI: 10.3389/fphys.2018.01926] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
12 Gong FH, Chen XL, Zhang Q, Xiao XQ, Yang YS, Song BJ, Chao SP, Cheng WL. MicroRNA-183 as a novel regulator protects against cardiomyocytes hypertrophy via targeting TIAM1. Am J Hypertens 2020:hpaa144. [PMID: 32870256 DOI: 10.1093/ajh/hpaa144] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 Saadat S, Noureddini M, Mahjoubin-Tehran M, Nazemi S, Shojaie L, Aschner M, Maleki B, Abbasi-Kolli M, Rajabi Moghadam H, Alani B, Mirzaei H. Pivotal Role of TGF-β/Smad Signaling in Cardiac Fibrosis: Non-coding RNAs as Effectual Players. Front Cardiovasc Med 2020;7:588347. [PMID: 33569393 DOI: 10.3389/fcvm.2020.588347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Rodrigues SC, Cardoso RMS, Duarte FV. Mitochondrial microRNAs: A Putative Role in Tissue Regeneration. Biology (Basel) 2020;9:486. [PMID: 33371511 DOI: 10.3390/biology9120486] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Shao X, Zhang X, Yang L, Zhang R, Zhu R, Feng R. Integrated analysis of mRNA and microRNA expression profiles reveals differential transcriptome signature in ischaemic and dilated cardiomyopathy induced heart failure. Epigenetics 2021;16:917-32. [PMID: 33016206 DOI: 10.1080/15592294.2020.1827721] [Reference Citation Analysis]
16 Hu D, Cui YX, Wu MY, Li L, Su LN, Lian Z, Chen H. Cytosolic DNA sensor cGAS plays an essential pathogenetic role in pressure overload-induced heart failure. Am J Physiol Heart Circ Physiol 2020;318:H1525-37. [PMID: 32383996 DOI: 10.1152/ajpheart.00097.2020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
17 Wang R, Lin J, Bagchi RA. Novel molecular therapeutic targets in cardiac fibrosis: a brief overview 1. Can J Physiol Pharmacol 2019;97:246-56. [PMID: 30388374 DOI: 10.1139/cjpp-2018-0430] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
18 Popa-Fotea NM, Micheu MM, Bataila V, Scafa-Udriste A, Dorobantu L, Scarlatescu AI, Zamfir D, Stoian M, Onciul S, Dorobantu M. Exploring the Continuum of Hypertrophic Cardiomyopathy-From DNA to Clinical Expression. Medicina (Kaunas). 2019;55. [PMID: 31234582 DOI: 10.3390/medicina55060299] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
19 Reed BG, Babayev SN, Chen LX, Carr BR, Word RA, Jimenez PT. Estrogen-regulated miRNA-27b is altered by bisphenol A in human endometrial stromal cells. Reproduction 2018;156:559-67. [PMID: 30328349 DOI: 10.1530/REP-18-0041] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
20 Zeng N, Huang YQ, Yan YM, Hu ZQ, Zhang Z, Feng JX, Guo JS, Zhu JN, Fu YH, Wang XP, Zhang MZ, Duan JZ, Zheng XL, Xu JD, Shan ZX. Diverging targets mediate the pathological roleof miR-199a-5p and miR-199a-3p by promoting cardiac hypertrophy and fibrosis. Mol Ther Nucleic Acids 2021;26:1035-50. [PMID: 34786209 DOI: 10.1016/j.omtn.2021.10.013] [Reference Citation Analysis]
21 Cheng N, Jin C, Jin P, Zhu D, Hou Z. High glucose protects cardiomyocytes against ischaemia/reperfusion injury by suppressing myocardiocyte apoptosis via circHIPK3/miR-29b/AKT3 signalling. J Cell Mol Med 2021. [PMID: 33951290 DOI: 10.1111/jcmm.16527] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Gomez AH, Joshi S, Yang Y, Tune JD, Zhao MT, Yang H. Bioengineering Systems for Modulating Notch Signaling in Cardiovascular Development, Disease, and Regeneration. J Cardiovasc Dev Dis 2021;8:125. [PMID: 34677194 DOI: 10.3390/jcdd8100125] [Reference Citation Analysis]
23 De Luca G, Cavalli G, Campochiaro C, Bruni C, Tomelleri A, Dagna L, Matucci-Cerinic M. Interleukin-1 and Systemic Sclerosis: Getting to the Heart of Cardiac Involvement. Front Immunol 2021;12:653950. [PMID: 33833766 DOI: 10.3389/fimmu.2021.653950] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
24 Gao F, Chen X, Xu B, Luo Z, Liang Y, Fang S, Li M, Wang X, Lin X. Inhibition of MicroRNA-92 alleviates atherogenesis by regulation of macrophage polarization through targeting KLF4. J Cardiol 2021:S0914-5087(21)00289-6. [PMID: 34750028 DOI: 10.1016/j.jjcc.2021.10.015] [Reference Citation Analysis]
25 Zhang S, Yin Z, Dai F, Wang H, Zhou M, Yang M, Zhang S, Fu Z, Mei Y, Zang M, Xue L. miR‐29a attenuates cardiac hypertrophy through inhibition of PPARδ expression. J Cell Physiol 2019;234:13252-62. [DOI: 10.1002/jcp.27997] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
26 Shih J, Lin H, Hsiao A, Su Y, Tsai S, Chien C, Kung H. Unveiling the role of microRNA‐7 in linking TGF‐β‐Smad‐mediated epithelial‐mesenchymal transition with negative regulation of trophoblast invasion. FASEB j 2019;33:6281-95. [DOI: 10.1096/fj.201801898rr] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
27 Eyyupkoca F, Ercan K, Kiziltunc E, Ugurlu IB, Kocak A, Eyerci N. Determination of microRNAs associated with adverse left ventricular remodeling after myocardial infarction. Mol Cell Biochem 2022. [PMID: 35048282 DOI: 10.1007/s11010-021-04330-y] [Reference Citation Analysis]
28 Pradeep R, Akram A, Proute MC, Kothur NR, Georgiou P, Serhiyenia T, Shi W, Kerolos ME, Mostafa JA. Understanding the Genetic and Molecular Basis of Familial Hypertrophic Cardiomyopathy and the Current Trends in Gene Therapy for Its Management. Cureus 2021;13:e17548. [PMID: 34646605 DOI: 10.7759/cureus.17548] [Reference Citation Analysis]
29 Tao J, Wang J, Li C, Wang W, Yu H, Liu J, Kong X, Chen Y. MiR-216a accelerates proliferation and fibrogenesis via targeting PTEN and SMAD7 in human cardiac fibroblasts. Cardiovasc Diagn Ther 2019;9:535-44. [PMID: 32038943 DOI: 10.21037/cdt.2019.11.06] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
30 Adamcova M, Kawano I, Simko F. The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021;22:4762. [PMID: 33946230 DOI: 10.3390/ijms22094762] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
31 Zhang J, Yu J, Chen Y, Liu L, Xu M, Sun L, Luo H, Wang Y, Meng G. Exogenous Hydrogen Sulfide Supplement Attenuates Isoproterenol-Induced Myocardial Hypertrophy in a Sirtuin 3-Dependent Manner. Oxid Med Cell Longev 2018;2018:9396089. [PMID: 30647820 DOI: 10.1155/2018/9396089] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
32 Mir R, Elfaki I, Khullar N, Waza AA, Jha C, Mir MM, Nisa S, Mohammad B, Mir TA, Maqbool M, Barnawi J, Albalawi SO, Abu-Duhier FM. Role of Selected miRNAs as Diagnostic and Prognostic Biomarkers in Cardiovascular Diseases, Including Coronary Artery Disease, Myocardial Infarction and Atherosclerosis. J Cardiovasc Dev Dis 2021;8:22. [PMID: 33669699 DOI: 10.3390/jcdd8020022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Liang C, Gao L, Liu Y, Liu Y, Yao R, Li Y, Xiao L, Wu L, Du B, Huang Z, Zhang Y. MiR-451 antagonist protects against cardiac fibrosis in streptozotocin-induced diabetic mouse heart. Life Sciences 2019;224:12-22. [DOI: 10.1016/j.lfs.2019.02.059] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
34 Sygitowicz G, Maciejak-Jastrzębska A, Sitkiewicz D. A Review of the Molecular Mechanisms Underlying Cardiac Fibrosis and Atrial Fibrillation. J Clin Med 2021;10:4430. [PMID: 34640448 DOI: 10.3390/jcm10194430] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]