BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oh GS, Kim HJ, Shen A, Lee SB, Yang SH, Shim H, Cho EY, Kwon KB, Kwak TH, So HS. New Therapeutic Concept of NAD Redox Balance for Cisplatin Nephrotoxicity. Biomed Res Int 2016;2016:4048390. [PMID: 26881219 DOI: 10.1155/2016/4048390] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Ojha S, Venkataraman B, Kurdi A, Mahgoub E, Sadek B, Rajesh M. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity. Oxid Med Cell Longev 2016;2016:4320374. [PMID: 27774117 DOI: 10.1155/2016/4320374] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
2 Mapuskar KA, Steinbach EJ, Zaher A, Riley DP, Beardsley RA, Keene JL, Holmlund JT, Anderson CM, Zepeda-Orozco D, Buatti JM, Spitz DR, Allen BG. Mitochondrial Superoxide Dismutase in Cisplatin-Induced Kidney Injury. Antioxidants (Basel) 2021;10:1329. [PMID: 34572961 DOI: 10.3390/antiox10091329] [Reference Citation Analysis]
3 Choi SH, Leem J, Lee IK. Protective Effects of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, against Cisplatin-Induced Nephrotoxicity in Mice. Mediators Inflamm 2017;2017:4139439. [PMID: 29317794 DOI: 10.1155/2017/4139439] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
4 Ma N, Wei Z, Hu J, Gu W, Ci X. Farrerol Ameliorated Cisplatin-Induced Chronic Kidney Disease Through Mitophagy Induction via Nrf2/PINK1 Pathway. Front Pharmacol 2021;12:768700. [PMID: 34858188 DOI: 10.3389/fphar.2021.768700] [Reference Citation Analysis]
5 Prša P, Karademir B, Biçim G, Mahmoud H, Dahan I, Yalçın AS, Mahajna J, Milisav I. The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochemical Pharmacology 2020;173:113551. [DOI: 10.1016/j.bcp.2019.06.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
6 Ma X, Yan L, Zhu Q, Shao F. Puerarin attenuates cisplatin-induced rat nephrotoxicity: The involvement of TLR4/NF-κB signaling pathway. PLoS One 2017;12:e0171612. [PMID: 28182789 DOI: 10.1371/journal.pone.0171612] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
7 Kumar M, Dahiya V, Kasala ER, Bodduluru LN, Lahkar M. The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence. Biomedicine & Pharmacotherapy 2017;89:1207-15. [DOI: 10.1016/j.biopha.2017.03.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
8 Behiry S, Rabie A, Kora M, Ismail W, Sabry D, Zahran A. Effect of combination sildenafil and gemfibrozil on cisplatin-induced nephrotoxicity; role of heme oxygenase-1. Ren Fail 2018;40:371-8. [PMID: 29707997 DOI: 10.1080/0886022X.2018.1455596] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
9 Gao L, Wu WF, Dong L, Ren GL, Li HD, Yang Q, Li XF, Xu T, Li Z, Wu BM, Ma TT, Huang C, Huang Y, Zhang L, Lv X, Li J, Meng XM. Protocatechuic Aldehyde Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Nox-Mediated Oxidative Stress and Renal Inflammation. Front Pharmacol 2016;7:479. [PMID: 27999546 DOI: 10.3389/fphar.2016.00479] [Cited by in Crossref: 37] [Cited by in F6Publishing: 43] [Article Influence: 6.2] [Reference Citation Analysis]
10 Ma Q, Xu Y, Tang L, Yang X, Chen Z, Wei Y, Shao X, Shao X, Xin Z, Cai B, Wang Q, Mou S. Astragalus Polysaccharide Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Oxidative Damage and Mitochondrial Dysfunction. Biomed Res Int 2020;2020:2851349. [PMID: 31998784 DOI: 10.1155/2020/2851349] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
11 Wei W, Ma N, Fan X, Yu Q, Ci X. The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches. Free Radic Biol Med 2020;158:1-12. [PMID: 32663513 DOI: 10.1016/j.freeradbiomed.2020.06.025] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Lee WS, Ham W, Kim J. Roles of NAD(P)H:quinone Oxidoreductase 1 in Diverse Diseases. Life (Basel) 2021;11:1301. [PMID: 34947831 DOI: 10.3390/life11121301] [Reference Citation Analysis]
13 Bushau-Sprinkle A, Barati MT, Gagnon KB, Khundmiri SJ, Kitterman K, Hill BG, Sherwood A, Merchant M, Rai SN, Srivastava S, Clark B, Siskind L, Brier M, Hata J, Lederer E. NHERF1 Loss Upregulates Enzymes of the Pentose Phosphate Pathway in Kidney Cortex. Antioxidants (Basel) 2020;9:E862. [PMID: 32937931 DOI: 10.3390/antiox9090862] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Mahgoub E, Kumaraswamy SM, Kader KH, Venkataraman B, Ojha S, Adeghate E, Rajesh M. Genipin attenuates cisplatin-induced nephrotoxicity by counteracting oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 2017;93:1083-97. [PMID: 28738532 DOI: 10.1016/j.biopha.2017.07.018] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
15 Tamadon MR, Tirom S, Ghahremanfard F, Baradaran A, Ghorbani R. Evaluation of the Protective Effect of Cystone Against Cisplatin-induced Nephrotoxicity in Patients with Cancer: A Pilot Study. Int J Prev Med 2019;10:180. [PMID: 32133098 DOI: 10.4103/ijpvm.IJPVM_66_18] [Reference Citation Analysis]
16 Tanase DM, Gosav EM, Radu S, Costea CF, Ciocoiu M, Carauleanu A, Lacatusu CM, Maranduca MA, Floria M, Rezus C. The Predictive Role of the Biomarker Kidney Molecule-1 (KIM-1) in Acute Kidney Injury (AKI) Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2019;20:E5238. [PMID: 31652595 DOI: 10.3390/ijms20205238] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
17 Sukoyan GV, Kezeli TD, Dolidze NM, Fedorova MM, Golovach VV, Shimanovskii NL. Sites of Action of Subtoxic Doses of the Iodine-Containing X-Ray Contrast Medium Iopromide on the Kidney and the Search for Means of Preventing the Development of Nephropathy. Pharm Chem J 2017;51:818-23. [DOI: 10.1007/s11094-017-1699-8] [Reference Citation Analysis]
18 Huang Y, Tsai M, Hsieh P, Shih J, Wang T, Wang Y, Lin T, Wang S. Galangin ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation and cell death in mice through inhibition of ERK and NF-kappaB signaling. Toxicology and Applied Pharmacology 2017;329:128-39. [DOI: 10.1016/j.taap.2017.05.034] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 12.0] [Reference Citation Analysis]
19 Malik S, Suchal K, Bhatia J, Khan SI, Vasisth S, Tomar A, Goyal S, Kumar R, Arya DS, Ojha SK. Therapeutic Potential and Molecular Mechanisms of Emblica officinalis Gaertn in Countering Nephrotoxicity in Rats Induced by the Chemotherapeutic Agent Cisplatin. Front Pharmacol 2016;7:350. [PMID: 27752245 DOI: 10.3389/fphar.2016.00350] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
20 Lin SY, Syu JP, Lo YT, Chau YP, Don MJ, Shy HT, Lai SM, Kung HN. Mitochondrial activity is the key to the protective effect of β-Lapachone, a NAD+ booster, in healthy cells against cisplatin cytotoxicity. Phytomedicine 2022;101:154094. [PMID: 35447421 DOI: 10.1016/j.phymed.2022.154094] [Reference Citation Analysis]
21 Geng X, Liu L, Tsai KJ, Liu Z. Role of ZIP8 in regulation of cisplatin sensitivity through Bcl-2. Toxicol Appl Pharmacol 2019;362:52-8. [PMID: 30342059 DOI: 10.1016/j.taap.2018.10.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]