BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Muheremu A, Ao Q. Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury. Biomed Res Int 2015;2015:237507. [PMID: 26491662 DOI: 10.1155/2015/237507] [Cited by in Crossref: 82] [Cited by in F6Publishing: 68] [Article Influence: 11.7] [Reference Citation Analysis]
Number Citing Articles
1 Liao CF, Hsu ST, Chen CC, Yao CH, Lin JH, Chen YH, Chen YS. Effects of Electrical Stimulation on Peripheral Nerve Regeneration in a Silicone Rubber Conduit in Taxol-Treated Rats. Materials (Basel) 2020;13:E1063. [PMID: 32120862 DOI: 10.3390/ma13051063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
2 Zhao X, Li B, Guan X, Sun G, Zhang M, Zhang W, Xu J, Ren X. Peg-Enhanced Behavioral Recovery After Sciatic Nerve Transection and Either Suturing Or Sleeve Conduit Deployment in Rats. J Invest Surg 2021;34:524-33. [PMID: 31438740 DOI: 10.1080/08941939.2019.1654047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
3 Alkhalili OA, Muñiz AJ, Hanks JE, Stebbins AW, Elzinga S, Topal T, Lahann J, Feldman EL, Brenner MJ. Scaffold for facial nerve reconstruction. Handbook of Tissue Engineering Scaffolds: Volume Two. Elsevier; 2019. pp. 95-121. [DOI: 10.1016/b978-0-08-102561-1.00004-x] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
4 Hussain G, Wang J, Rasul A, Anwar H, Qasim M, Zafar S, Aziz N, Razzaq A, Hussain R, de Aguilar JG, Sun T. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int J Biol Sci 2020;16:116-34. [PMID: 31892850 DOI: 10.7150/ijbs.35653] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 14.0] [Reference Citation Analysis]
5 Yousefi F, Lavi Arab F, Nikkhah K, Amiri H, Mahmoudi M. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci 2019;221:99-108. [PMID: 30735735 DOI: 10.1016/j.lfs.2019.01.052] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
6 Farzamfar S, Ehterami A, Salehi M, Vaeez A, Atashi A, Sahrapeyma H. Unrestricted Somatic Stem Cells Loaded in Nanofibrous Conduit as Potential Candidate for Sciatic Nerve Regeneration. J Mol Neurosci 2019;67:48-61. [DOI: 10.1007/s12031-018-1209-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
7 Sensharma P, Madhumathi G, Jayant RD, Jaiswal AK. Biomaterials and cells for neural tissue engineering: Current choices. Mater Sci Eng C Mater Biol Appl 2017;77:1302-15. [PMID: 28532008 DOI: 10.1016/j.msec.2017.03.264] [Cited by in Crossref: 98] [Cited by in F6Publishing: 83] [Article Influence: 19.6] [Reference Citation Analysis]
8 Turazza C, Biassoni C, Day JA, Leone A, Pirri C, Frasca G, Stecco C. Fascial manipulation as an adjunct to physiotherapy management in obstetric brachial plexus palsy: A case report. Journal of Bodywork and Movement Therapies 2022. [DOI: 10.1016/j.jbmt.2022.02.026] [Reference Citation Analysis]
9 Samadian H, Maleki H, Fathollahi A, Salehi M, Gholizadeh S, Derakhshankhah H, Allahyari Z, Jaymand M. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. International Journal of Biological Macromolecules 2020;154:795-817. [DOI: 10.1016/j.ijbiomac.2020.03.155] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 14.0] [Reference Citation Analysis]
10 Xu F, Zhang K, Lv P, Lu R, Zheng L, Zhao J. NECL1 coated PLGA as favorable conduits for repair of injured peripheral nerve. Materials Science and Engineering: C 2017;70:1132-40. [DOI: 10.1016/j.msec.2016.03.043] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
11 Cavanaugh M, Silantyeva E, Pylypiv Koh G, Malekzadeh E, Lanzinger WD, Willits RK, Becker ML. RGD-Modified Nanofibers Enhance Outcomes in Rats after Sciatic Nerve Injury. J Funct Biomater 2019;10:E24. [PMID: 31146396 DOI: 10.3390/jfb10020024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ode Boni BO, Bakadia BM, Osi AR, Shi Z, Chen H, Gauthier M, Yang G. Immune Response to Silk Sericin-Fibroin Composites: Potential Immunogenic Elements and Alternatives for Immunomodulation. Macromol Biosci 2021;:e2100292. [PMID: 34669251 DOI: 10.1002/mabi.202100292] [Reference Citation Analysis]
13 Beris A, Gkiatas I, Gelalis I, Papadopoulos D, Kostas-Agnantis I. Current concepts in peripheral nerve surgery. Eur J Orthop Surg Traumatol 2019;29:263-9. [PMID: 30483968 DOI: 10.1007/s00590-018-2344-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
14 Braga Silva J, Marchese GM, Cauduro CG, Debiasi M. Nerve conduits for treating peripheral nerve injuries: A systematic literature review. Hand Surg Rehabil 2017;36:71-85. [PMID: 28325431 DOI: 10.1016/j.hansur.2016.10.212] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
15 Li M, Zhang P, Zhang D. PVDF piezoelectric neural conduit incorporated pre-differentiated adipose-derived stem cells may accelerate the repair of peripheral nerve injury. Medical Hypotheses 2018;114:55-7. [DOI: 10.1016/j.mehy.2018.02.027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
16 Aghajanian S, Taghi Doulabi A, Akhbari M, Shams A. Facial nerve regeneration using silicone conduits filled with ammonia-functionalized graphene oxide and frankincense-embedded hydrogel. Inflamm Regen 2021;41:13. [PMID: 33902759 DOI: 10.1186/s41232-021-00162-x] [Reference Citation Analysis]
17 Lin T, Qiu S, Yan L, Zhu S, Zheng C, Zhu Q, Liu X. Miconazole enhances nerve regeneration and functional recovery after sciatic nerve crush injury. Muscle Nerve 2018;57:821-8. [PMID: 29211920 DOI: 10.1002/mus.26033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
18 Bagher Z, Ehterami A, Nasrolahi M, Azimi M, Salehi M. Hesperidin promotes peripheral nerve regeneration based on tissue engineering strategy using alginate/chitosan hydrogel: in vitro and in vivo study. International Journal of Polymeric Materials and Polymeric Biomaterials 2021;70:299-308. [DOI: 10.1080/00914037.2020.1713781] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
19 Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater 2020;106:54-69. [PMID: 32044456 DOI: 10.1016/j.actbio.2020.02.003] [Cited by in Crossref: 98] [Cited by in F6Publishing: 79] [Article Influence: 49.0] [Reference Citation Analysis]
20 Braga Silva J, Leal BLM, Magnus GA, de Souza Stanham V, Mattiello R, Wolff CG. Comparison of nerve conduits and nerve graft in digital nerve regeneration: A systematic review and meta-analysis. Hand Surg Rehabil 2021;40:715-21. [PMID: 34425267 DOI: 10.1016/j.hansur.2021.08.006] [Reference Citation Analysis]
21 Yang MH, Chen KC, Chiang PW, Chung TW, Chen WJ, Chu PY, Chen SC, Lu YS, Yuan CH, Wang MC, Lin CY, Huang YF, Jong SB, Lin PC, Tyan YC. Proteomic Profiling of Neuroblastoma Cells Adhesion on Hyaluronic Acid-Based Surface for Neural Tissue Engineering. Biomed Res Int 2016;2016:1917394. [PMID: 28053978 DOI: 10.1155/2016/1917394] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Prautsch KM, Schmidt A, Paradiso V, Schaefer DJ, Guzman R, Kalbermatten DF, Madduri S. Modulation of Human Adipose Stem Cells' Neurotrophic Capacity Using a Variety of Growth Factors for Neural Tissue Engineering Applications: Axonal Growth, Transcriptional, and Phosphoproteomic Analyses In Vitro. Cells 2020;9:E1939. [PMID: 32839392 DOI: 10.3390/cells9091939] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Houshyar S, Bhattacharyya A, Shanks R. Peripheral Nerve Conduit: Materials and Structures. ACS Chem Neurosci 2019;10:3349-65. [PMID: 31273975 DOI: 10.1021/acschemneuro.9b00203] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 17.0] [Reference Citation Analysis]
24 Muangsanit P, Roberton V, Costa E, Phillips JB. Engineered aligned endothelial cell structures in tethered collagen hydrogels promote peripheral nerve regeneration. Acta Biomater 2021;126:224-37. [PMID: 33766800 DOI: 10.1016/j.actbio.2021.03.039] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
25 Yao L, Priyadarshani P. Application of Schwann Cells in Neural Tissue Engineering. Glial Cell Engineering in Neural Regeneration. Cham: Springer International Publishing; 2018. pp. 37-57. [DOI: 10.1007/978-3-030-02104-7_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Saïd Z, Pauline C, Claire B, Celia D, Jean-Paul M, Nicolas BM. Olfactory Ecto-Mesenchymal Stem Cells in Laryngeal Nerve Regeneration in Rats. J Voice 2021;35:349-59. [PMID: 31761693 DOI: 10.1016/j.jvoice.2019.10.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
27 Porzionato A, Barbon S, Stocco E, Dalzoppo D, Contran M, De Rose E, Parnigotto PP, Macchi V, Grandi C, De Caro R. Development of Oxidized Polyvinyl Alcohol-Based Nerve Conduits Coupled with the Ciliary Neurotrophic Factor. Materials (Basel) 2019;12:E1996. [PMID: 31234386 DOI: 10.3390/ma12121996] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
28 Leberfinger AN, Ravnic DJ, Payne R, Rizk E, Koduru SV, Hazard SW. Adipose-Derived Stem Cells in Peripheral Nerve Regeneration. Curr Surg Rep 2017;5. [DOI: 10.1007/s40137-017-0169-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
29 Su D, Zhou J, Ahmed KS, Ma Q, Lv G, Chen J. Fabrication and characterization of collagen-heparin-polypyrrole composite conductive film for neural scaffold. International Journal of Biological Macromolecules 2019;129:895-903. [DOI: 10.1016/j.ijbiomac.2019.02.087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. Adv Mater 2021;33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 20.0] [Reference Citation Analysis]
31 Cirillo V, Bushman J, Guarino V, Kohn J, Ambrosio L. 3D conduits for peripheral nerve regeneration. Electrofluidodynamic Technologies (EFDTs) for Biomaterials and Medical Devices. Elsevier; 2018. pp. 329-49. [DOI: 10.1016/b978-0-08-101745-6.00016-5] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
32 Zhao Y, Gong J, Niu C, Wei Z, Shi J, Li G, Yang Y, Wang H. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells. Journal of Biomaterials Science, Polymer Edition 2017;28:2171-85. [DOI: 10.1080/09205063.2017.1386835] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
33 Regas I, Loisel F, Haight H, Menu G, Obert L, Pluvy I. Functionalized nerve conduits for peripheral nerve regeneration: A literature review. Hand Surg Rehabil 2020;39:343-51. [PMID: 32485240 DOI: 10.1016/j.hansur.2020.05.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
34 Abel NA, Januszewski J, Vivas AC, Uribe JS. Femoral nerve and lumbar plexus injury after minimally invasive lateral retroperitoneal transpsoas approach: electrodiagnostic prognostic indicators and a roadmap to recovery. Neurosurg Rev 2018;41:457-64. [PMID: 28560607 DOI: 10.1007/s10143-017-0863-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 3.4] [Reference Citation Analysis]
35 De Stefano P, Federici AS, Draghi L. In Vitro Models for the Development of Peripheral Nerve Conduits, Part I: Design of a Fibrin Gel-Based Non-Contact Test. Polymers (Basel) 2021;13:3573. [PMID: 34685331 DOI: 10.3390/polym13203573] [Reference Citation Analysis]
36 Ma M, Liu G, Meng H, Zheng Y, Peng J, Xie Y, Wang Y, He W, Wei S. Injectable biomimetic shellfish macromolecule conductive microcarriers loaded with adipose-derived stem cells for nerve repair in vivo. Applied Materials Today 2021;25:101195. [DOI: 10.1016/j.apmt.2021.101195] [Reference Citation Analysis]
37 Vallejo FA, Diaz A, Errante EL, Smartz T, Khan A, Silvera R, Brooks AE, Lee Y, Burks SS, Levi AD. Systematic review of the therapeutic use of Schwann cells in the repair of peripheral nerve injuries: Advancements from animal studies to clinical trials. Front Cell Neurosci 2022;16:929593. [DOI: 10.3389/fncel.2022.929593] [Reference Citation Analysis]
38 Escobar A, Reis RL, Oliveira JM. Nanoparticles for neurotrophic factor delivery in nerve guidance conduits for peripheral nerve repair. Nanomedicine. [DOI: 10.2217/nnm-2021-0413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Farzamfar S, Salehi M, Tavangar SM, Verdi J, Mansouri K, Ai A, Malekshahi ZV, Ai J. A novel polycaprolactone/carbon nanofiber composite as a conductive neural guidance channel: an in vitro and in vivo study. Prog Biomater 2019;8:239-48. [PMID: 31833033 DOI: 10.1007/s40204-019-00121-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
40 Lotfi L, Khakbiz M, Moosazadeh Moghaddam M, Bonakdar S. A biomaterials approach to Schwann cell development in neural tissue engineering. J Biomed Mater Res 2019;107:2425-46. [DOI: 10.1002/jbm.a.36749] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
41 Uz M, Donta M, Mededovic M, Sakaguchi DS, Mallapragada SK. Development of Gelatin and Graphene-Based Nerve Regeneration Conduits Using Three-Dimensional (3D) Printing Strategies for Electrical Transdifferentiation of Mesenchymal Stem Cells. Ind Eng Chem Res 2019;58:7421-7. [DOI: 10.1021/acs.iecr.8b05537] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
42 Lien BV, Brown NJ, Ransom SC, Lehrich BM, Shahrestani S, Tafreshi AR, Ransom RC, Sahyouni R. Enhancing peripheral nerve regeneration with neurotrophic factors and bioengineered scaffolds: A basic science and clinical perspective. J Peripher Nerv Syst 2020;25:320-34. [DOI: 10.1111/jns.12414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Nawrotek K, Tylman M, Decherchi P, Marqueste T, Rudnicka K, Gatkowska J, Wieczorek M. Assessment of degradation and biocompatibility of electrodeposited chitosan and chitosan-carbon nanotube tubular implants. J Biomed Mater Res A 2016;104:2701-11. [PMID: 27325550 DOI: 10.1002/jbm.a.35812] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
44 Shueibi O, Zhou Z, Wang X, Yi B, He X, Zhang Y. Effects of GO and rGO incorporated nanofibrous scaffolds on the proliferation of Schwann cells. Biomed Phys Eng Express 2019;5:025002. [DOI: 10.1088/2057-1976/aaf53a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
45 Qiao W, Lu L, Wu G, An X, Li D, Guo J. DPSCs seeded in acellular nerve grafts processed by Myroilysin improve nerve regeneration. J Biomater Appl 2019;33:819-33. [DOI: 10.1177/0885328218812136] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
46 Wu J, Zhang Y, Zhang X, Lin Z, Li G. Regenerative Peripheral Nerve Interfaces Effectively Prevent Neuroma Formation After Sciatic Nerve Transection in Rats. Front Mol Neurosci 2022;15:938930. [DOI: 10.3389/fnmol.2022.938930] [Reference Citation Analysis]
47 Mehrotra P, Tseropoulos G, Bronner ME, Andreadis ST. Adult tissue-derived neural crest-like stem cells: Sources, regulatory networks, and translational potential.Stem Cells Transl Med. 2020;9:328-341. [PMID: 31738018 DOI: 10.1002/sctm.19-0173] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
48 Powell R, Eleftheriadou D, Kellaway S, Phillips JB. Natural Biomaterials as Instructive Engineered Microenvironments That Direct Cellular Function in Peripheral Nerve Tissue Engineering. Front Bioeng Biotechnol 2021;9:674473. [PMID: 34113607 DOI: 10.3389/fbioe.2021.674473] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Shiah E, Laikhter E, Comer CD, Manstein SM, Bustos VP, Bain PA, Lee BT, Lin SJ. Neurotization in Innervated Breast Reconstruction: A Systematic Review of Techniques and Outcomes. Journal of Plastic, Reconstructive & Aesthetic Surgery 2022. [DOI: 10.1016/j.bjps.2022.06.006] [Reference Citation Analysis]
50 Zhang L, Yang W, Tao K, Song Y, Xie H, Wang J, Li X, Shuai X, Gao J, Chang P, Wang G, Wang Z, Wang L. Sustained Local Release of NGF from a Chitosan-Sericin Composite Scaffold for Treating Chronic Nerve Compression. ACS Appl Mater Interfaces 2017;9:3432-44. [PMID: 28032743 DOI: 10.1021/acsami.6b14691] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
51 Soleymani Eil Bakhtiari S, Karbasi S, Toloue EB. Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. Int J Biol Macromol 2021;166:986-98. [PMID: 33152357 DOI: 10.1016/j.ijbiomac.2020.10.255] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
52 Moosaipour M, Pakinia S, Izadi Z, Khalilzadeh B, Jaymand M, Samadian H. Nanofibrous electroconductive nerve guide conduits based on polyaniline‐co‐polydopamine random copolymer for peripheral nerve regeneration. J of Applied Polymer Sci. [DOI: 10.1002/app.52365] [Reference Citation Analysis]
53 Berebichez-Fridman R, Gómez-García R, Granados-Montiel J, Berebichez-Fastlicht E, Olivos-Meza A, Granados J, Velasquillo C, Ibarra C. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells-Their Current Uses and Potential Applications. Stem Cells Int 2017;2017:2638305. [PMID: 28698718 DOI: 10.1155/2017/2638305] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]
54 Towne J, Carter N, Neivandt DJ. COMSOL Multiphysics® modelling of oxygen diffusion through a cellulose nanofibril conduit employed for peripheral nerve repair. Biomed Eng Online 2021;20:60. [PMID: 34130690 DOI: 10.1186/s12938-021-00897-1] [Reference Citation Analysis]
55 Qin J, Wu JC, Wang QH, Zhou SL, Mao SS, Yao C. Transcription factor networks involved in cell death in the dorsal root ganglia following peripheral nerve injury. Neural Regen Res 2018;13:1622-7. [PMID: 30127124 DOI: 10.4103/1673-5374.237183] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
56 Yang S, Zhu J, Lu C, Chai Y, Cao Z, Lu J, Zhang Z, Zhao H, Huang YY, Yao S, Kong X, Zhang P, Wang X. Aligned fibrin/functionalized self-assembling peptide interpenetrating nanofiber hydrogel presenting multi-cues promotes peripheral nerve functional recovery. Bioact Mater 2022;8:529-44. [PMID: 34541418 DOI: 10.1016/j.bioactmat.2021.05.056] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
57 Luo L, He Y, Jin L, Zhang Y, Guastaldi FP, Albashari AA, Hu F, Wang X, Wang L, Xiao J, Li L, Wang J, Higuchi A, Ye Q. Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries. Bioact Mater 2021;6:638-54. [PMID: 33005828 DOI: 10.1016/j.bioactmat.2020.08.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
58 Pillai MM, Kumar GS, Houshyar S, Padhye R, Bhattacharyya A. Effect of nanocomposite coating and biomolecule functionalization on silk fibroin based conducting 3D braided scaffolds for peripheral nerve tissue engineering. Nanomedicine 2020;24:102131. [PMID: 31778808 DOI: 10.1016/j.nano.2019.102131] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
59 Arda MS, Koçman EA, Özkara E, Söztutar E, Özatik O, Köse A, Çetin C. Can a Small Intestine Segment Be an Alternative Biological Conduit for Peripheral Nerve Regeneration? Balkan Med J 2017;34:246-54. [PMID: 28443569 DOI: 10.4274/balkanmedj.2015.1601] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
60 Stocco E, Barbon S, Lamanna A, De Rose E, Zamuner A, Sandrin D, Marsotto M, Auditore A, Messina GML, Licciardello A, Iucci G, Macchi V, De Caro R, Dettin M, Porzionato A. Bioactivated Oxidized Polyvinyl Alcohol towards Next-Generation Nerve Conduits Development. Polymers (Basel) 2021;13:3372. [PMID: 34641183 DOI: 10.3390/polym13193372] [Reference Citation Analysis]
61 Yan X, Wang J, He Q, Xu H, Tao J, Koral K, Li K, Xu J, Wen J, Huang Z, Xu P. PDLLA/β-TCP/HA/CHS/NGF Sustained-release Conduits for Peripheral Nerve Regeneration. J Wuhan Univ Technol Mater Sci Ed 2021;36:600-6. [PMID: 34483596 DOI: 10.1007/s11595-021-2450-6] [Reference Citation Analysis]
62 Moore JT, Wier CG, Lemmerman LR, Ortega-Pineda L, Dodd DJ, Lawrence WR, Duarte-Sanmiguel S, Dathathreya K, Diaz-Starokozheva L, Harris HN, Sen CK, Valerio IL, Higuita-Castro N, Arnold WD, Kolb SJ, Gallego-Perez D. Nanochannel-Based Poration Drives Benign and Effective Nonviral Gene Delivery to Peripheral Nerve Tissue. Adv Biosyst 2020;4:e2000157. [PMID: 32939985 DOI: 10.1002/adbi.202000157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
63 Lecoq FA, Barnouin L, Ardouin L, Hartmann D, Obert L. Inverted human umbilical artery as a 3D scaffold for sciatic nerve regeneration in rats. Cell Tissue Bank 2022. [PMID: 35503142 DOI: 10.1007/s10561-022-10006-8] [Reference Citation Analysis]
64 Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018;7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
65 Li R, Li DH, Zhang HY, Wang J, Li XK, Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol Sin 2020;41:1289-300. [PMID: 32123299 DOI: 10.1038/s41401-019-0338-1] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 20.5] [Reference Citation Analysis]
66 Wu S, Ni S, Jiang X, Kuss MA, Wang HJ, Duan B. Guiding Mesenchymal Stem Cells into Myelinating Schwann Cell-Like Phenotypes by Using Electrospun Core-Sheath Nanoyarns. ACS Biomater Sci Eng 2019;5:5284-94. [PMID: 33455233 DOI: 10.1021/acsbiomaterials.9b00748] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
67 Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res 2020;98:780-95. [PMID: 31608497 DOI: 10.1002/jnr.24538] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
68 Peng SW, Li CW, Chiu IM, Wang GJ. Nerve guidance conduit with a hybrid structure of a PLGA microfibrous bundle wrapped in a micro/nanostructured membrane. Int J Nanomedicine 2017;12:421-32. [PMID: 28138239 DOI: 10.2147/IJN.S122017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 5] [Article Influence: 5.2] [Reference Citation Analysis]
69 Carvalho CR, Reis RL, Oliveira JM. Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. Adv Exp Med Biol 2020;1249:173-201. [PMID: 32602098 DOI: 10.1007/978-981-15-3258-0_12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
70 Behtaj S, Ekberg JAK, St John JA. Advances in Electrospun Nerve Guidance Conduits for Engineering Neural Regeneration. Pharmaceutics 2022;14:219. [DOI: 10.3390/pharmaceutics14020219] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
71 Singh A, Asikainen S, Teotia AK, Shiekh PA, Huotilainen E, Qayoom I, Partanen J, Seppälä J, Kumar A. Biomimetic Photocurable Three-Dimensional Printed Nerve Guidance Channels with Aligned Cryomatrix Lumen for Peripheral Nerve Regeneration. ACS Appl Mater Interfaces 2018;10:43327-42. [DOI: 10.1021/acsami.8b11677] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
72 Millesi F, Weiss T, Mann A, Haertinger M, Semmler L, Supper P, Pils D, Naghilou A, Radtke C. Defining the regenerative effects of native spider silk fibers on primary Schwann cells, sensory neurons, and nerve-associated fibroblasts. FASEB J 2021;35:e21196. [PMID: 33210360 DOI: 10.1096/fj.202001447R] [Reference Citation Analysis]
73 Ghafaralahi S, Ebrahimian-hosseinabadi M, Zargar Kharazi A. Poly(glycerol-sebacate)/poly(caprolactone)/graphene nanocomposites for nerve tissue engineering. Journal of Bioactive and Compatible Polymers 2018;33:529-42. [DOI: 10.1177/0883911518793912] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
74 Gu X, Jin B, Qi Z, Yin X. Identification of potential microRNAs and KEGG pathways in denervation muscle atrophy based on meta-analysis. Sci Rep 2021;11:13560. [PMID: 34193880 DOI: 10.1038/s41598-021-92489-1] [Reference Citation Analysis]
75 Wanner R, Gey M, Abaei A, Warnecke D, de Roy L, Dürselen L, Rasche V, Knöll B. Functional and Molecular Characterization of a Novel Traumatic Peripheral Nerve–Muscle Injury Model. Neuromol Med 2017;19:357-74. [DOI: 10.1007/s12017-017-8450-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
76 Wu S, Qi Y, Shi W, Kuss M, Chen S, Duan B. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. Acta Biomater 2022;139:91-104. [PMID: 33271357 DOI: 10.1016/j.actbio.2020.11.042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
77 Mikesh M, Ghergherehchi CL, Rahesh S, Jagannath K, Ali A, Sengelaub DR, Trevino RC, Jackson DM, Tucker HO, Bittner GD. Polyethylene glycol treated allografts not tissue matched nor immunosuppressed rapidly repair sciatic nerve gaps, maintain neuromuscular functions, and restore voluntary behaviors in female rats. J Neurosci Res 2018;96:1243-64. [PMID: 29659046 DOI: 10.1002/jnr.24227] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
78 Dietzmeyer N, Förthmann M, Grothe C, Haastert-Talini K. Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches. Neural Regen Res 2020;15:1421-31. [PMID: 31997801 DOI: 10.4103/1673-5374.271668] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
79 Zhang L, Zhang H, Wang H, Guo K, Zhu H, Li S, Gao F, Li S, Yang Z, Liu X, Zheng X. Fabrication of Multi-Channel Nerve Guidance Conduits Containing Schwann Cells Based on Multi-Material 3D Bioprinting. 3D Printing and Additive Manufacturing. [DOI: 10.1089/3dp.2021.0203] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
80 Wang G, Yang H, Wu W, Zhang P, Wang J. Design and optimization of a biodegradable porous zein conduit using microtubes as a guide for rat sciatic nerve defect repair. Biomaterials 2017;131:145-59. [DOI: 10.1016/j.biomaterials.2017.03.038] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 6.6] [Reference Citation Analysis]
81 Wang M, Tremblay PL, Zhang T. Optimizing the electrical conductivity of polyacrylonitrile/polyaniline with nickel nanoparticles for the enhanced electrostimulation of Schwann cells proliferation. Bioelectrochemistry 2021;140:107750. [PMID: 33578301 DOI: 10.1016/j.bioelechem.2021.107750] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Duffy P, Mcmahon S, Wang X, Keaveney S, O'cearbhaill ED, Quintana I, Rodríguez FJ, Wang W. Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date. Biomater Sci 2019;7:4912-43. [DOI: 10.1039/c9bm00246d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]