BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cao Y, Hu ZD, Liu XF, Deng AM, Hu CJ. An MLP classifier for prediction of HBV-induced liver cirrhosis using routinely available clinical parameters. Dis Markers 2013;35:653-60. [PMID: 24302810 DOI: 10.1155/2013/127962] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
Number Citing Articles
1 Mohamed I. Prediction of Chronic Obstructive Pulmonary Disease Stages Using Machine Learning Algorithms: . International Journal of Decision Support System Technology 2022;14:1-13. [DOI: 10.4018/ijdsst.286693] [Reference Citation Analysis]
2 Wei TT, Tang QQ, Qin BD, Ma N, Wang LL, Zhou L, Zhong RQ. Elevated red blood cell distribution width is associated with liver function tests in patients with primary hepatocellular carcinoma. Clin Hemorheol Microcirc. 2016;64:149-155. [PMID: 27002894 DOI: 10.3233/ch-162053] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
3 Rady EA, Anwar AS. Prediction of kidney disease stages using data mining algorithms. Informatics in Medicine Unlocked 2019;15:100178. [DOI: 10.1016/j.imu.2019.100178] [Cited by in Crossref: 35] [Cited by in F6Publishing: 3] [Article Influence: 11.7] [Reference Citation Analysis]
4 Spann A, Yasodhara A, Kang J, Watt K, Wang B, Goldenberg A, Bhat M. Applying Machine Learning in Liver Disease and Transplantation: A Comprehensive Review. Hepatology 2020;71:1093-105. [PMID: 31907954 DOI: 10.1002/hep.31103] [Cited by in Crossref: 52] [Cited by in F6Publishing: 39] [Article Influence: 26.0] [Reference Citation Analysis]
5 Badrick T, Richardson AM, Arnott A, Lidbury BA. The early detection of anaemia and aetiology prediction through the modelling of red cell distribution width (RDW) in cross-sectional community patient data. Diagnosis 2015;2:171-9. [DOI: 10.1515/dx-2015-0010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
6 Jeong B, Cho H, Kim J, Kwon SK, Hong S, Lee C, Kim T, Park MS, Hong S, Heo TY. Comparison between Statistical Models and Machine Learning Methods on Classification for Highly Imbalanced Multiclass Kidney Data. Diagnostics (Basel) 2020;10:E415. [PMID: 32570782 DOI: 10.3390/diagnostics10060415] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
7 Vaz K, Goodwin T, Kemp W, Roberts S, Majeed A. Artificial Intelligence in Hepatology: A Narrative Review. Semin Liver Dis 2021. [PMID: 34327698 DOI: 10.1055/s-0041-1731706] [Reference Citation Analysis]
8 Gaber A, Youness HA, Hamdy A, Abdelaal HM, Hassan AM. Automatic Classification of Fatty Liver Disease Based on Supervised Learning and Genetic Algorithm. Applied Sciences 2022;12:521. [DOI: 10.3390/app12010521] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]