BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Perez-Cruz C, Müller-Keuker JI, Heilbronner U, Fuchs E, Flügge G. Morphology of pyramidal neurons in the rat prefrontal cortex: lateralized dendritic remodeling by chronic stress. Neural Plast 2007;2007:46276. [PMID: 18253468 DOI: 10.1155/2007/46276] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Novaes LS, dos Santos NB, Dragunas G, Perfetto JG, Leza JC, Scavone C, Munhoz CD. Repeated Restraint Stress Decreases Na,K-ATPase Activity via Oxidative and Nitrosative Damage in the Frontal Cortex of Rats. Neuroscience 2018;393:273-83. [DOI: 10.1016/j.neuroscience.2018.09.037] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
2 Miklós IH, Kovács KJ. Reorganization of synaptic inputs to the hypothalamic paraventricular nucleus during chronic psychogenic stress in rats. Biol Psychiatry 2012;71:301-8. [PMID: 22137593 DOI: 10.1016/j.biopsych.2011.10.027] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 2.9] [Reference Citation Analysis]
3 Anderson RM, Johnson SB, Lingg RT, Hinz DC, Romig-Martin SA, Radley JJ. Evidence for Similar Prefrontal Structural and Functional Alterations in Male and Female Rats Following Chronic Stress or Glucocorticoid Exposure. Cereb Cortex 2020;30:353-70. [PMID: 31184364 DOI: 10.1093/cercor/bhz092] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
4 Mychasiuk R, Gibb R, Kolb B. Prenatal bystander stress induces neuroanatomical changes in the prefrontal cortex and hippocampus of developing rat offspring. Brain Res 2011;1412:55-62. [PMID: 21816391 DOI: 10.1016/j.brainres.2011.07.023] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
5 Song C, Ehlers VL, Moyer JR Jr. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex-Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices. J Neurosci 2015;35:13511-24. [PMID: 26424895 DOI: 10.1523/JNEUROSCI.2329-15.2015] [Cited by in Crossref: 53] [Cited by in F6Publishing: 36] [Article Influence: 7.6] [Reference Citation Analysis]
6 Abe R, Okada S, Nakayama R, Ikegaya Y, Sasaki T. Social defeat stress causes selective attenuation of neuronal activity in the ventromedial prefrontal cortex. Sci Rep 2019;9:9447. [PMID: 31263153 DOI: 10.1038/s41598-019-45833-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
7 Aracri P, Amadeo A, Pasini ME, Fascio U, Becchetti A. Regulation of glutamate release by heteromeric nicotinic receptors in layer V of the secondary motor region (Fr2) in the dorsomedial shoulder of prefrontal cortex in mouse. Synapse 2013;67:338-57. [PMID: 23424068 DOI: 10.1002/syn.21655] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
8 Pompili M, Serafini G, Innamorati M, Venturini P, Fusar-Poli P, Sher L, Amore M, Girardi P. Agomelatine, a novel intriguing antidepressant option enhancing neuroplasticity: a critical review. World J Biol Psychiatry. 2013;14:412-431. [PMID: 23530731 DOI: 10.3109/15622975.2013.765593] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 4.4] [Reference Citation Analysis]
9 Ramkumar K, Srikumar BN, Venkatasubramanian D, Siva R, Shankaranarayana Rao BS, Raju TR. Reversal of stress-induced dendritic atrophy in the prefrontal cortex by intracranial self-stimulation. J Neural Transm (Vienna) 2012;119:533-43. [PMID: 22167578 DOI: 10.1007/s00702-011-0740-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
10 Rico AM, Mendoza AL, Durán DA, Torres Hde L, Mendoza GA, Gómez AB. The effects of chronic restraint on the morphology of ventral CA1 neurons in female Long Evans rats. Stress 2015;18:67-75. [PMID: 25287136 DOI: 10.3109/10253890.2014.974029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
11 Negrón-Oyarzo I, Pérez MÁ, Terreros G, Muñoz P, Dagnino-Subiabre A. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex. Behav Brain Res 2014;259:342-53. [PMID: 24216268 DOI: 10.1016/j.bbr.2013.11.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.7] [Reference Citation Analysis]
12 Moradi-Kor N, Ghanbari A, Rashidipour H, Bandegi AR, Yousefi B, Barati M, Kokhaei P, Rashidy-Pour A. Therapeutic Effects of Spirulina platensis Against Adolescent Stress-Induced Oxidative Stress, Brain-Derived Neurotrophic Factor Alterations and Morphological Remodeling in the Amygdala of Adult Female Rats. J Exp Pharmacol 2020;12:75-85. [PMID: 32256126 DOI: 10.2147/JEP.S237378] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Anderson RM, Glanz RM, Johnson SB, Miller MM, Romig-Martin SA, Radley JJ. Prolonged corticosterone exposure induces dendritic spine remodeling and attrition in the rat medial prefrontal cortex. J Comp Neurol 2016;524:3729-46. [PMID: 27113541 DOI: 10.1002/cne.24027] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
14 Naylor B, Hesam-Shariati N, McAuley JH, Boag S, Newton-John T, Rae CD, Gustin SM. Reduced Glutamate in the Medial Prefrontal Cortex Is Associated With Emotional and Cognitive Dysregulation in People With Chronic Pain. Front Neurol 2019;10:1110. [PMID: 31849800 DOI: 10.3389/fneur.2019.01110] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
15 Chaaya N, Wang J, Jacques A, Beecher K, Chaaya M, Battle AR, Johnson LR, Chehrehasa F, Belmer A, Bartlett SE. Contextual Fear Memory Maintenance Changes Expression of pMAPK, BDNF and IBA-1 in the Pre-limbic Cortex in a Layer-Specific Manner. Front Neural Circuits 2021;15:660199. [PMID: 34295224 DOI: 10.3389/fncir.2021.660199] [Reference Citation Analysis]
16 Giustino TF, Maren S. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear. Front Behav Neurosci 2015;9:298. [PMID: 26617500 DOI: 10.3389/fnbeh.2015.00298] [Cited by in Crossref: 227] [Cited by in F6Publishing: 223] [Article Influence: 32.4] [Reference Citation Analysis]
17 Cooper B, Fuchs E, Flügge G. Expression of the axonal membrane glycoprotein M6a is regulated by chronic stress. PLoS One 2009;4:e3659. [PMID: 19180239 DOI: 10.1371/journal.pone.0003659] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.5] [Reference Citation Analysis]
18 Ishikawa J, Nishimura R, Ishikawa A. Early-life stress induces anxiety-like behaviors and activity imbalances in the medial prefrontal cortex and amygdala in adult rats. Eur J Neurosci 2015;41:442-53. [DOI: 10.1111/ejn.12825] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
19 Kafetzopoulos V, Kokras N, Sotiropoulos I, Oliveira JF, Leite-Almeida H, Vasalou A, Sardinha VM, Papadopoulou-Daifoti Z, Almeida OFX, Antoniou K, Sousa N, Dalla C. The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Mol Psychiatry 2018;23:579-86. [PMID: 28397837 DOI: 10.1038/mp.2017.55] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
20 Soztutar E, Colak E, Ulupinar E. Gender- and anxiety level-dependent effects of perinatal stress exposure on medial prefrontal cortex. Exp Neurol 2016;275 Pt 2:274-84. [PMID: 26057948 DOI: 10.1016/j.expneurol.2015.06.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
21 Anderson RM, Birnie AK, Koblesky NK, Romig-Martin SA, Radley JJ. Adrenocortical status predicts the degree of age-related deficits in prefrontal structural plasticity and working memory. J Neurosci 2014;34:8387-97. [PMID: 24948795 DOI: 10.1523/JNEUROSCI.1385-14.2014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
22 Fuchs E, Flügge G. Adult neuroplasticity: more than 40 years of research. Neural Plast 2014;2014:541870. [PMID: 24883212 DOI: 10.1155/2014/541870] [Cited by in Crossref: 86] [Cited by in F6Publishing: 55] [Article Influence: 10.8] [Reference Citation Analysis]
23 Urban KR, Geng E, Bhatnagar S, Valentino RJ. Age- and sex-dependent impact of repeated social stress on morphology of rat prefrontal cortex pyramidal neurons. Neurobiol Stress 2019;10:100165. [PMID: 31193524 DOI: 10.1016/j.ynstr.2019.100165] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
24 Delgado y Palacios R, Verhoye M, Henningsen K, Wiborg O, Van der Linden A. Diffusion kurtosis imaging and high-resolution MRI demonstrate structural aberrations of caudate putamen and amygdala after chronic mild stress. PLoS One 2014;9:e95077. [PMID: 24740310 DOI: 10.1371/journal.pone.0095077] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 4.9] [Reference Citation Analysis]
25 Bennett M. The prefrontal–limbic network in depression: A core pathology of synapse regression. Progress in Neurobiology 2011;93:457-67. [DOI: 10.1016/j.pneurobio.2011.01.001] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
26 Kassem MS, Lagopoulos J, Stait-Gardner T, Price WS, Chohan TW, Arnold JC, Hatton SN, Bennett MR. Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses. Mol Neurobiol 2013;47:645-61. [PMID: 23138690 DOI: 10.1007/s12035-012-8365-7] [Cited by in Crossref: 117] [Cited by in F6Publishing: 99] [Article Influence: 11.7] [Reference Citation Analysis]
27 Czéh B, Vardya I, Varga Z, Febbraro F, Csabai D, Martis LS, Højgaard K, Henningsen K, Bouzinova EV, Miseta A, Jensen K, Wiborg O. Long-Term Stress Disrupts the Structural and Functional Integrity of GABAergic Neuronal Networks in the Medial Prefrontal Cortex of Rats. Front Cell Neurosci 2018;12:148. [PMID: 29973870 DOI: 10.3389/fncel.2018.00148] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 11.8] [Reference Citation Analysis]
28 Marcinkiewcz CA, Green MK, Devine DP, Duarte P, Vierck CJ, Yezierski RP. Social defeat stress potentiates thermal sensitivity in operant models of pain processing. Brain Res 2009;1251:112-20. [PMID: 19059227 DOI: 10.1016/j.brainres.2008.11.042] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 2.4] [Reference Citation Analysis]
29 Bock J, Poeschel J, Schindler J, Börner F, Shachar-Dadon A, Ferdman N, Gaisler-Salomon I, Leshem M, Braun K, Poeggel G. Transgenerational sex-specific impact of preconception stress on the development of dendritic spines and dendritic length in the medial prefrontal cortex. Brain Struct Funct 2016;221:855-63. [PMID: 25395153 DOI: 10.1007/s00429-014-0940-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
30 Everds NE, Snyder PW, Bailey KL, Bolon B, Creasy DM, Foley GL, Rosol TJ, Sellers T. Interpreting Stress Responses during Routine Toxicity Studies: A Review of the Biology, Impact, and Assessment. Toxicol Pathol 2013;41:560-614. [DOI: 10.1177/0192623312466452] [Cited by in Crossref: 165] [Cited by in F6Publishing: 125] [Article Influence: 18.3] [Reference Citation Analysis]
31 Csabai D, Wiborg O, Czéh B. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression. Front Cell Neurosci 2018;12:24. [PMID: 29440995 DOI: 10.3389/fncel.2018.00024] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 8.3] [Reference Citation Analysis]
32 Chae S, Hong J, Kang K, Shin A, Kim DG, Lee S, Kim MY, Jung I, Kim D. Molecular laterality encodes stress susceptibility in the medial prefrontal cortex. Mol Brain 2021;14:92. [PMID: 34127022 DOI: 10.1186/s13041-021-00802-w] [Reference Citation Analysis]
33 Sousa N, Almeida OF. Disconnection and reconnection: the morphological basis of (mal)adaptation to stress. Trends Neurosci 2012;35:742-51. [PMID: 23000140 DOI: 10.1016/j.tins.2012.08.006] [Cited by in Crossref: 93] [Cited by in F6Publishing: 78] [Article Influence: 9.3] [Reference Citation Analysis]
34 Bergstrom HC, Smith RF, Mollinedo NS, McDonald CG. Chronic nicotine exposure produces lateralized, age-dependent dendritic remodeling in the rodent basolateral amygdala. Synapse 2010;64:754-64. [PMID: 20336623 DOI: 10.1002/syn.20783] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 0.2] [Reference Citation Analysis]
35 Song C, Moyer JR Jr. Layer- and subregion-specific differences in the neurophysiological properties of rat medial prefrontal cortex pyramidal neurons. J Neurophysiol 2018;119:177-91. [PMID: 28978762 DOI: 10.1152/jn.00146.2017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
36 Laque A, L De Ness G, Wagner GE, Nedelescu H, Carroll A, Watry D, M Kerr T, Koya E, Hope BT, Weiss F, Elmer GI, Suto N. Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues. Nat Commun 2019;10:3934. [PMID: 31477694 DOI: 10.1038/s41467-019-11799-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
37 Czéh B, Perez-cruz C, Fuchs E, Flügge G. Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: Does hemisphere location matter? Behavioural Brain Research 2008;190:1-13. [DOI: 10.1016/j.bbr.2008.02.031] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 5.9] [Reference Citation Analysis]
38 Ocklenburg S, Korte SM, Peterburs J, Wolf OT, Güntürkün O. Stress and laterality – The comparative perspective. Physiology & Behavior 2016;164:321-9. [DOI: 10.1016/j.physbeh.2016.06.020] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
39 Hinojosa CA, Kaur N, Vanelzakker MB, Shin LM. Cingulate subregions in posttraumatic stress disorder, chronic stress, and treatment. Cingulate Cortex. Elsevier; 2019. pp. 355-70. [DOI: 10.1016/b978-0-444-64196-0.00020-0] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
40 Miller MM, Morrison JH, McEwen BS. Basal anxiety-like behavior predicts differences in dendritic morphology in the medial prefrontal cortex in two strains of rats. Behav Brain Res 2012;229:280-8. [PMID: 22285422 DOI: 10.1016/j.bbr.2012.01.029] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
41 Lee Y, Poirier P, Otani S, Goto Y. Dorsal-ventral distinction of chronic stress-induced electrophysiological alterations in the rat medial prefrontal cortex. Neuroscience 2011;183:108-20. [DOI: 10.1016/j.neuroscience.2011.03.039] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
42 Serafini G. Neuroplasticity and major depression, the role of modern antidepressant drugs. World J Psychiatr 2012; 2(3): 49-57 [PMID: 24175168 DOI: 10.5498/wjp.v2.i3.49] [Cited by in CrossRef: 55] [Cited by in F6Publishing: 41] [Article Influence: 5.5] [Reference Citation Analysis]
43 Luczynski P, Moquin L, Gratton A. Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex. Stress 2015;18:654-67. [DOI: 10.3109/10253890.2015.1073256] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
44 Garrett JE, Wellman CL. Chronic stress effects on dendritic morphology in medial prefrontal cortex: sex differences and estrogen dependence. Neuroscience 2009;162:195-207. [PMID: 19401219 DOI: 10.1016/j.neuroscience.2009.04.057] [Cited by in Crossref: 138] [Cited by in F6Publishing: 137] [Article Influence: 10.6] [Reference Citation Analysis]
45 Baker KD, Bisby MA, Richardson R. Impaired fear extinction in adolescent rodents: Behavioural and neural analyses. Neurosci Biobehav Rev 2016;70:59-73. [PMID: 27235077 DOI: 10.1016/j.neubiorev.2016.05.019] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
46 Musazzi L, Treccani G, Popoli M. Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress. Front Psychiatry 2015;6:60. [PMID: 25964763 DOI: 10.3389/fpsyt.2015.00060] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 5.1] [Reference Citation Analysis]
47 Kang D, McAuley JH, Kassem MS, Gatt JM, Gustin SM. What does the grey matter decrease in the medial prefrontal cortex reflect in people with chronic pain? Eur J Pain 2019;23:203-19. [PMID: 30101509 DOI: 10.1002/ejp.1304] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
48 Ali AE, Wilson YM, Murphy M. A single exposure to an enriched environment stimulates the activation of discrete neuronal populations in the brain of the fos-tau-lacZ mouse. Neurobiology of Learning and Memory 2009;92:381-90. [DOI: 10.1016/j.nlm.2009.05.004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 1.6] [Reference Citation Analysis]
49 Perez-Cruz C, Simon M, Czéh B, Flügge G, Fuchs E. Hemispheric differences in basilar dendrites and spines of pyramidal neurons in the rat prelimbic cortex: activity- and stress-induced changes. Eur J Neurosci. 2009;29:738-747. [PMID: 19200065 DOI: 10.1111/j.1460-9568.2009.06622.x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 2.5] [Reference Citation Analysis]
50 Leuner B, Shors T. Stress, anxiety, and dendritic spines: What are the connections? Neuroscience 2013;251:108-19. [DOI: 10.1016/j.neuroscience.2012.04.021] [Cited by in Crossref: 165] [Cited by in F6Publishing: 161] [Article Influence: 18.3] [Reference Citation Analysis]