BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90:559-605. [PMID: 20393194 DOI: 10.1152/physrev.00029.2009] [Cited by in Crossref: 537] [Cited by in F6Publishing: 513] [Article Influence: 44.8] [Reference Citation Analysis]
Number Citing Articles
1 Senatore A, Monteil A, van Minnen J, Smit AB, Spafford JD. NALCN ion channels have alternative selectivity filters resembling calcium channels or sodium channels. PLoS One 2013;8:e55088. [PMID: 23383067 DOI: 10.1371/journal.pone.0055088] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
2 Larsen EH, Hoffmann EK. Volume Regulation in Epithelia. In: Hamilton KL, Devor DC, editors. Basic Epithelial Ion Transport Principles and Function. Cham: Springer International Publishing; 2020. pp. 395-460. [DOI: 10.1007/978-3-030-52780-8_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Wright PD, Weir G, Cartland J, Tickle D, Kettleborough C, Cader MZ, Jerman J. Cloxyquin (5-chloroquinolin-8-ol) is an activator of the two-pore domain potassium channel TRESK. Biochemical and Biophysical Research Communications 2013;441:463-8. [DOI: 10.1016/j.bbrc.2013.10.090] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
4 Ruusuvuori E, Huebner AK, Kirilkin I, Yukin AY, Blaesse P, Helmy M, Kang HJ, El Muayed M, Hennings JC, Voipio J, Šestan N, Hübner CA, Kaila K. Neuronal carbonic anhydrase VII provides GABAergic excitatory drive to exacerbate febrile seizures. EMBO J 2013;32:2275-86. [PMID: 23881097 DOI: 10.1038/emboj.2013.160] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 5.7] [Reference Citation Analysis]
5 Paul ED, Johnson PL, Shekhar A, Lowry CA. The Deakin/Graeff hypothesis: focus on serotonergic inhibition of panic. Neurosci Biobehav Rev. 2014;46 Pt 3:379-396. [PMID: 24661986 DOI: 10.1016/j.neubiorev.2014.03.010] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 5.5] [Reference Citation Analysis]
6 Bachmann M, Rossa A, Antoniazzi G, Biasutto L, Carrer A, Campagnaro M, Leanza L, Gonczi M, Csernoch L, Paradisi C, Mattarei A, Zoratti M, Szabo I. Synthesis and cellular effects of a mitochondria-targeted inhibitor of the two-pore potassium channel TASK-3. Pharmacol Res 2021;164:105326. [PMID: 33338625 DOI: 10.1016/j.phrs.2020.105326] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
7 Nagy D, Gönczi M, Dienes B, Szöőr Á, Fodor J, Nagy Z, Tóth A, Fodor T, Bai P, Szücs G, Rusznák Z, Csernoch L. Silencing the KCNK9 potassium channel (TASK-3) gene disturbs mitochondrial function, causes mitochondrial depolarization, and induces apoptosis of human melanoma cells. Arch Dermatol Res 2014;306:885-902. [PMID: 25318378 DOI: 10.1007/s00403-014-1511-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
8 Fels B, Nielsen N, Schwab A. Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. Eur Biophys J 2016;45:657-70. [PMID: 27670661 DOI: 10.1007/s00249-016-1176-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
9 Staudacher K, Staudacher I, Ficker E, Seyler C, Gierten J, Kisselbach J, Rahm AK, Trappe K, Schweizer PA, Becker R, Katus HA, Thomas D. Carvedilol targets human K2P 3.1 (TASK1) K+ leak channels. Br J Pharmacol 2011;163:1099-110. [PMID: 21410455 DOI: 10.1111/j.1476-5381.2011.01319.x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.6] [Reference Citation Analysis]
10 Yeon JT, Kim KJ, Chun SW, Lee HI, Lim JY, Son YJ, Kim SH, Choi SW. KCNK1 inhibits osteoclastogenesis by blocking the Ca2+ oscillation and JNK-NFATc1 signaling axis. J Cell Sci 2015;128:3411-9. [PMID: 26208638 DOI: 10.1242/jcs.170738] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
11 Park SJ, Yu Y, Wagner B, Valinsky WC, Lomax AE, Beyak MJ. Increased TASK channel-mediated currents underlie high-fat diet induced vagal afferent dysfunction. Am J Physiol Gastrointest Liver Physiol 2018;315:G592-601. [PMID: 29746171 DOI: 10.1152/ajpgi.00335.2017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
12 Touska F, Turnquist B, Vlachova V, Reeh PW, Leffler A, Zimmermann K. Heat-resistant action potentials require TTX-resistant sodium channels NaV1.8 and NaV1.9. J Gen Physiol 2018;150:1125-44. [PMID: 29970412 DOI: 10.1085/jgp.201711786] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
13 Vijayan S, Ching S, Purdon PL, Brown EN, Kopell NJ. Biophysical Modeling of Alpha Rhythms During Halothane-Induced Unconsciousness. Int IEEE EMBS Conf Neural Eng 2013;:1104-7. [PMID: 25284633 DOI: 10.1109/NER.2013.6696130] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
14 [DOI: 10.1101/2020.10.29.360966] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Braun G, Nemcsics B, Enyedi P, Czirják G. TRESK background K(+) channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes. PLoS One 2011;6:e28119. [PMID: 22145024 DOI: 10.1371/journal.pone.0028119] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
16 Carraretto L, Formentin E, Teardo E, Checchetto V, Tomizioli M, Morosinotto T, Giacometti GM, Finazzi G, Szabó I. A Thylakoid-Located Two-Pore K + Channel Controls Photosynthetic Light Utilization in Plants. Science 2013;342:114-8. [DOI: 10.1126/science.1242113] [Cited by in Crossref: 104] [Cited by in F6Publishing: 94] [Article Influence: 11.6] [Reference Citation Analysis]
17 Numata T, Ogawa N, Takahashi N, Mori Y. TRP channels as sensors of oxygen availability. Pflugers Arch - Eur J Physiol 2013;465:1075-85. [DOI: 10.1007/s00424-013-1237-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
18 Bollag WB. Regulation of aldosterone synthesis and secretion. Compr Physiol 2014;4:1017-55. [PMID: 24944029 DOI: 10.1002/cphy.c130037] [Cited by in Crossref: 81] [Cited by in F6Publishing: 72] [Article Influence: 11.6] [Reference Citation Analysis]
19 Mathie A. Ion channels as novel therapeutic targets in the treatment of pain. J Pharm Pharmacol. 2010;62:1089-1095. [PMID: 20796186 DOI: 10.1111/j.2042-7158.2010.01131.x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.7] [Reference Citation Analysis]
20 Natale AM, Deal PE, Minor DL Jr. Structural Insights into the Mechanisms and Pharmacology of K2P Potassium Channels. J Mol Biol 2021;433:166995. [PMID: 33887333 DOI: 10.1016/j.jmb.2021.166995] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
21 Seyler C, Li J, Schweizer PA, Katus HA, Thomas D. Inhibition of cardiac two-pore-domain K+ (K2P) channels by the antiarrhythmic drug vernakalant--comparison with flecainide. Eur J Pharmacol 2014;724:51-7. [PMID: 24374008 DOI: 10.1016/j.ejphar.2013.12.030] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
22 Hover S, King B, Hall B, Loundras EA, Taqi H, Daly J, Dallas M, Peers C, Schnettler E, McKimmie C, Kohl A, Barr JN, Mankouri J. Modulation of Potassium Channels Inhibits Bunyavirus Infection. J Biol Chem 2016;291:3411-22. [PMID: 26677217 DOI: 10.1074/jbc.M115.692673] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
23 Lengyel M, Czirják G, Enyedi P. TRESK background potassium channel is not gated at the helix bundle crossing near the cytoplasmic end of the pore. PLoS One 2018;13:e0197622. [PMID: 29763475 DOI: 10.1371/journal.pone.0197622] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
24 Mathie A, Al-Moubarak E, Veale EL. Gating of two pore domain potassium channels. J Physiol 2010;588:3149-56. [PMID: 20566661 DOI: 10.1113/jphysiol.2010.192344] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 4.7] [Reference Citation Analysis]
25 Tsukamoto H, Higashi M, Motoki H, Watanabe H, Ganser C, Nakajo K, Kubo Y, Uchihashi T, Furutani Y. Structural properties determining low K+ affinity of the selectivity filter in the TWIK1 K+ channel. J Biol Chem 2018;293:6969-84. [PMID: 29545310 DOI: 10.1074/jbc.RA118.001817] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
26 Rood BD, Calizo LH, Piel D, Spangler ZP, Campbell K, Beck SG. Dorsal raphe serotonin neurons in mice: immature hyperexcitability transitions to adult state during first three postnatal weeks suggesting sensitive period for environmental perturbation. J Neurosci 2014;34:4809-21. [PMID: 24695701 DOI: 10.1523/JNEUROSCI.1498-13.2014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
27 Peña-Münzenmayer G, Niemeyer MI, Sepúlveda FV, Cid LP. Zebrafish and mouse TASK-2 K(+) channels are inhibited by increased CO2 and intracellular acidification. Pflugers Arch 2014;466:1317-27. [PMID: 24081451 DOI: 10.1007/s00424-013-1365-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
28 Gabriel L, Lvov A, Orthodoxou D, Rittenhouse AR, Kobertz WR, Melikian HE. The acid-sensitive, anesthetic-activated potassium leak channel, KCNK3, is regulated by 14-3-3β-dependent, protein kinase C (PKC)-mediated endocytic trafficking. J Biol Chem 2012;287:32354-66. [PMID: 22846993 DOI: 10.1074/jbc.M112.391458] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
29 García G, Martínez-Rojas VA, Murbartián J. TREK-1 potassium channels participate in acute and long-lasting nociceptive hypersensitivity induced by formalin in rats. Behav Brain Res 2021;413:113446. [PMID: 34224765 DOI: 10.1016/j.bbr.2021.113446] [Reference Citation Analysis]
30 Szabo I, Zoratti M. Mitochondrial channels: ion fluxes and more. Physiol Rev 2014;94:519-608. [PMID: 24692355 DOI: 10.1152/physrev.00021.2013] [Cited by in Crossref: 201] [Cited by in F6Publishing: 193] [Article Influence: 25.1] [Reference Citation Analysis]
31 Ma Y, Luo Q, Fu J, Che Y, Guo F, Mei L, Zhang Q, Li Y, Yang H. Discovery of an Inhibitor for the TREK-1 Channel Targeting an Intermediate Transition State of Channel Gating. J Med Chem 2020;63:10972-83. [DOI: 10.1021/acs.jmedchem.0c00842] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Woo J, Shin DH, Kim HJ, Yoo HY, Zhang YH, Nam JH, Kim WK, Kim SJ. Inhibition of TREK-2 K(+) channels by PI(4,5)P2: an intrinsic mode of regulation by intracellular ATP via phosphatidylinositol kinase. Pflugers Arch 2016;468:1389-402. [PMID: 27283411 DOI: 10.1007/s00424-016-1847-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
33 Nishizuka M, Hayashi T, Asano M, Osada S, Imagawa M. KCNK10, a tandem pore domain potassium channel, is a regulator of mitotic clonal expansion during the early stage of adipocyte differentiation. Int J Mol Sci 2014;15:22743-56. [PMID: 25501330 DOI: 10.3390/ijms151222743] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
34 Lucas SJ, Armstrong DL. Protein phosphatase modulation of somatostatin receptor signaling in the mouse hippocampus. Neuropharmacology 2015;99:232-41. [PMID: 26196943 DOI: 10.1016/j.neuropharm.2015.07.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
35 Techlo TR, Rasmussen AH, Møller PL, Bøttcher M, Winther S, Davidsson OB, Olofsson IA, Chalmer MA, Kogelman LJA, Nyegaard M, Olesen J, Hansen TF. Familial analysis reveals rare risk variants for migraine in regulatory regions. Neurogenetics 2020;21:149-57. [PMID: 32076896 DOI: 10.1007/s10048-020-00606-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
36 Del Mármol J, Rietmeijer RA, Brohawn SG. Studying Mechanosensitivity of Two-Pore Domain K+ Channels in Cellular and Reconstituted Proteoliposome Membranes. Methods Mol Biol 2018;1684:129-50. [PMID: 29058189 DOI: 10.1007/978-1-4939-7362-0_11] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
37 Veldkamp MW, Geuzebroek GSC, Baartscheer A, Verkerk AO, Schumacher CA, Suarez GG, Berger WR, Casini S, van Amersfoorth SCM, Scholman KT, Driessen AHG, Belterman CNW, van Ginneken ACG, de Groot JR, de Bakker JMT, Remme CA, Boukens BJ, Coronel R. Neurokinin-3 receptor activation selectively prolongs atrial refractoriness by inhibition of a background K+ channel. Nat Commun 2018;9:4357. [PMID: 30341287 DOI: 10.1038/s41467-018-06530-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
38 Zhou J, Lin W, Chen H, Fan Y, Yang C. TRESK contributes to pain threshold changes by mediating apoptosis via MAPK pathway in the spinal cord. Neuroscience 2016;339:622-33. [PMID: 27789381 DOI: 10.1016/j.neuroscience.2016.10.039] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
39 Hamilton KL, Devor DC. Basolateral membrane K+ channels in renal epithelial cells. Am J Physiol Renal Physiol 2012;302:F1069-81. [PMID: 22338089 DOI: 10.1152/ajprenal.00646.2011] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
40 Enyedi P, Braun G, Czirják G. TRESK: the lone ranger of two-pore domain potassium channels. Mol Cell Endocrinol 2012;353:75-81. [PMID: 22115960 DOI: 10.1016/j.mce.2011.11.009] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
41 Lamas JA, Fernández-Fernández D. Tandem pore TWIK-related potassium channels and neuroprotection. Neural Regen Res 2019;14:1293-308. [PMID: 30964046 DOI: 10.4103/1673-5374.253506] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
42 Soussia IB, Choveau FS, Blin S, Kim EJ, Feliciangeli S, Chatelain FC, Kang D, Bichet D, Lesage F. Antagonistic Effect of a Cytoplasmic Domain on the Basal Activity of Polymodal Potassium Channels. Front Mol Neurosci 2018;11:301. [PMID: 30233308 DOI: 10.3389/fnmol.2018.00301] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
43 Yan J, Dussor G. Ion channels and migraine. Headache 2014;54:619-39. [PMID: 24697223 DOI: 10.1111/head.12323] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
44 Le Ribeuz H, Capuano V, Girerd B, Humbert M, Montani D, Antigny F. Implication of Potassium Channels in the Pathophysiology of Pulmonary Arterial Hypertension. Biomolecules 2020;10:E1261. [PMID: 32882918 DOI: 10.3390/biom10091261] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
45 Yi L, Wu Q, Chen N, Song G, Wang C, Zou Q, Zhang Z. Valproate Plays a Protective Role against Migraine by Inhibiting Protein Kinase C Signalling in Nitroglycerin-treated Mice. Basic Clin Pharmacol Toxicol 2018;122:310-6. [PMID: 28990289 DOI: 10.1111/bcpt.12915] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
46 Rahm AK, Gierten J, Kisselbach J, Staudacher I, Staudacher K, Schweizer PA, Becker R, Katus HA, Thomas D. PKC-dependent activation of human K(2P) 18.1 K(+) channels. Br J Pharmacol 2012;166:764-73. [PMID: 22168364 DOI: 10.1111/j.1476-5381.2011.01813.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.4] [Reference Citation Analysis]
47 Turner D, Kang C, Mesirca P, Hong J, Mangoni ME, Glukhov AV, Sah R. Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Front Cardiovasc Med 2021;8:662410. [PMID: 34434970 DOI: 10.3389/fcvm.2021.662410] [Reference Citation Analysis]
48 Ye W, Chang RB, Bushman JD, Tu YH, Mulhall EM, Wilson CE, Cooper AJ, Chick WS, Hill-Eubanks DC, Nelson MT, Kinnamon SC, Liman ER. The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. Proc Natl Acad Sci U S A 2016;113:E229-38. [PMID: 26627720 DOI: 10.1073/pnas.1514282112] [Cited by in Crossref: 71] [Cited by in F6Publishing: 58] [Article Influence: 10.1] [Reference Citation Analysis]
49 Brohawn SG, del Mármol J, MacKinnon R. Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 2012;335:436-41. [PMID: 22282805 DOI: 10.1126/science.1213808] [Cited by in Crossref: 286] [Cited by in F6Publishing: 254] [Article Influence: 28.6] [Reference Citation Analysis]
50 Vu MT, Du G, Bayliss DA, Horner RL. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine. J Neurosci 2015;35:13555-67. [PMID: 26446210 DOI: 10.1523/JNEUROSCI.1445-15.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
51 González W, Zúñiga L, Cid LP, Arévalo B, Niemeyer MI, Sepúlveda FV. An extracellular ion pathway plays a central role in the cooperative gating of a K(2P) K+ channel by extracellular pH. J Biol Chem 2013;288:5984-91. [PMID: 23319597 DOI: 10.1074/jbc.M112.445528] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
52 Fischer RA, Roux AL, Wareham LK, Sappington RM. Pressure-dependent modulation of inward-rectifying K+ channels: implications for cation homeostasis and K+ dynamics in glaucoma. Am J Physiol Cell Physiol 2019;317:C375-89. [PMID: 31166711 DOI: 10.1152/ajpcell.00444.2018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
53 Vera J, Pereira U, Reynaert B, Bacigalupo J, Sanhueza M. Modulation of Frequency Preference in Heterogeneous Populations of Theta-resonant Neurons. Neuroscience 2020;426:13-32. [DOI: 10.1016/j.neuroscience.2019.10.054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Boulin T, Itani O, El Mouridi S, Leclercq-Blondel A, Gendrel M, Macnamara E, Soldatos A, Murphy JL, Gorman MP, Lindsey A, Shimada S, Turner D, Silverman GA, Baldridge D, Malicdan MC, Schedl T, Pak SC; Undiagnosed Diseases Network. Functional analysis of a de novo variant in the neurodevelopment and generalized epilepsy disease gene NBEA. Mol Genet Metab 2021;134:195-202. [PMID: 34412939 DOI: 10.1016/j.ymgme.2021.07.013] [Reference Citation Analysis]
55 Helmy MM, Ruusuvuori E, Watkins PV, Voipio J, Kanold PO, Kaila K. Acid extrusion via blood-brain barrier causes brain alkalosis and seizures after neonatal asphyxia. Brain 2012;135:3311-9. [PMID: 23125183 DOI: 10.1093/brain/aws257] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
56 Navarro-retamal C, Caballero J. Energetic differences between non-domain-swapped and domain-swapped chain connectivities in the K2P potassium channel TRAAK. RSC Adv 2018;8:26610-8. [DOI: 10.1039/c8ra04159h] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
57 Dagostin AA, Lovell PV, Hilscher MM, Mello CV, Leão RM. Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons. Front Cell Neurosci 2015;9:471. [PMID: 26696830 DOI: 10.3389/fncel.2015.00471] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
58 Serova OV, Gantsova EA, Deyev IE, Petrenko AG. The Value of pH Sensors in Maintaining Homeostasis of the Nervous System. Russ J Bioorg Chem 2020;46:506-19. [DOI: 10.1134/s1068162020040196] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
59 Pathan AR, Rusch NJ. Two-pore domain K⁺ channels: evidence for TWIK-2 in blood pressure regulation. Hypertension 2011;58:539-41. [PMID: 21876073 DOI: 10.1161/HYPERTENSIONAHA.111.179390] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
60 Schewe M, Nematian-Ardestani E, Sun H, Musinszki M, Cordeiro S, Bucci G, de Groot BL, Tucker SJ, Rapedius M, Baukrowitz T. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. Cell 2016;164:937-49. [PMID: 26919430 DOI: 10.1016/j.cell.2016.02.002] [Cited by in Crossref: 116] [Cited by in F6Publishing: 91] [Article Influence: 19.3] [Reference Citation Analysis]
61 Niemeyer MI, Cid LP, González W, Sepúlveda FV. Gating, Regulation, and Structure in K 2P K + Channels: In Varietate Concordia?. Mol Pharmacol 2016;90:309-17. [DOI: 10.1124/mol.116.103895] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
62 Feetham CH, O'Brien F, Barrett-Jolley R. Ion Channels in the Paraventricular Hypothalamic Nucleus (PVN); Emerging Diversity and Functional Roles. Front Physiol 2018;9:760. [PMID: 30034342 DOI: 10.3389/fphys.2018.00760] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
63 Zhuo RG, Peng P, Liu XY, Yan HT, Xu JP, Zheng JQ, Wei XL, Ma XY. Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Sci Rep 2016;6:21248. [PMID: 26879043 DOI: 10.1038/srep21248] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
64 Gottschling DC, Döring F, Lüersen K. Locomotion Behavior Is Affected by the GαS Pathway and the Two-Pore-Domain K+ Channel TWK-7 Interacting in GABAergic Motor Neurons in Caenorhabditis elegans. Genetics 2017;206:283-97. [PMID: 28341653 DOI: 10.1534/genetics.116.195669] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
65 Roan E, Waters CM, Teng B, Ghosh M, Schwingshackl A. The 2-pore domain potassium channel TREK-1 regulates stretch-induced detachment of alveolar epithelial cells. PLoS One 2014;9:e89429. [PMID: 24586773 DOI: 10.1371/journal.pone.0089429] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
66 Walsh Y, Leach M, Veale EL, Mathie A. Block of TREK and TRESK K2P channels by lamotrigine and two derivatives sipatrigine and CEN-092. Biochem Biophys Rep 2021;26:101021. [PMID: 34041373 DOI: 10.1016/j.bbrep.2021.101021] [Reference Citation Analysis]
67 Li B, Rietmeijer RA, Brohawn SG. Structural basis for pH gating of the two-pore domain K+ channel TASK2. Nature 2020;586:457-62. [DOI: 10.1038/s41586-020-2770-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
68 Norris AJ, Foeger NC, Nerbonne JM. Neuronal voltage-gated K+ (Kv) channels function in macromolecular complexes. Neurosci Lett 2010;486:73-7. [PMID: 20813163 DOI: 10.1016/j.neulet.2010.08.067] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
69 Pang JJ, Gao F, Wu SM. Generators of Pressure-Evoked Currents in Vertebrate Outer Retinal Neurons. Cells 2021;10:1288. [PMID: 34067375 DOI: 10.3390/cells10061288] [Reference Citation Analysis]
70 Fernández-Fernández D, Cadaveira-Mosquera A, Rueda-Ruzafa L, Herrera-Pérez S, Veale EL, Reboreda A, Mathie A, Lamas JA. Activation of TREK currents by riluzole in three subgroups of cultured mouse nodose ganglion neurons. PLoS One 2018;13:e0199282. [PMID: 29928032 DOI: 10.1371/journal.pone.0199282] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
71 Mi Hwang E, Kim E, Yarishkin O, Ho Woo D, Han K, Park N, Bae Y, Woo J, Kim D, Park M, Lee CJ, Park J. A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat Commun 2014;5. [DOI: 10.1038/ncomms4227] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 9.3] [Reference Citation Analysis]
72 Romanenko S, Begley R, Harvey AR, Hool L, Wallace VP. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. J R Soc Interface 2017;14:20170585. [PMID: 29212756 DOI: 10.1098/rsif.2017.0585] [Cited by in Crossref: 43] [Cited by in F6Publishing: 17] [Article Influence: 10.8] [Reference Citation Analysis]
73 Mant A, Williams S, Roncoroni L, Lowry E, Johnson D, O'Kelly I. N-glycosylation-dependent control of functional expression of background potassium channels K2P3.1 and K2P9.1. J Biol Chem 2013;288:3251-64. [PMID: 23250752 DOI: 10.1074/jbc.M112.405167] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
74 Ranade SS, Syeda R, Patapoutian A. Mechanically Activated Ion Channels. Neuron 2015;87:1162-79. [PMID: 26402601 DOI: 10.1016/j.neuron.2015.08.032] [Cited by in Crossref: 297] [Cited by in F6Publishing: 244] [Article Influence: 42.4] [Reference Citation Analysis]
75 Le Ribeuz H, Dumont F, Ruellou G, Lambert M, Balliau T, Quatredeniers M, Girerd B, Cohen-Kaminsky S, Mercier O, Yen-Nicolaÿ S, Humbert M, Montani D, Capuano V, Antigny F. Proteomic Analysis of KCNK3 Loss of Expression Identified Dysregulated Pathways in Pulmonary Vascular Cells. Int J Mol Sci 2020;21:E7400. [PMID: 33036472 DOI: 10.3390/ijms21197400] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Feliciangeli S, Chatelain FC, Bichet D, Lesage F. The family of K2P channels: salient structural and functional properties. J Physiol 2015;593:2587-603. [PMID: 25530075 DOI: 10.1113/jphysiol.2014.287268] [Cited by in Crossref: 112] [Cited by in F6Publishing: 101] [Article Influence: 16.0] [Reference Citation Analysis]
77 Wells GD, Tang QY, Heler R, Tompkins-MacDonald GJ, Pritchard EN, Leys SP, Logothetis DE, Boland LM. A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K₂P) from a marine sponge. J Exp Biol 2012;215:2435-44. [PMID: 22723483 DOI: 10.1242/jeb.066233] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
78 Brohawn SG. How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 2015;1352:20-32. [PMID: 26332952 DOI: 10.1111/nyas.12874] [Cited by in Crossref: 53] [Cited by in F6Publishing: 41] [Article Influence: 7.6] [Reference Citation Analysis]
79 Endo K, Kurokawa N, Kito H, Nakakura S, Fujii M, Ohya S. Molecular identification of the dominant-negative, splicing isoform of the two-pore domain K(+) channel K(2P)5.1 in lymphoid cells and enhancement of its expression by splicing inhibition. Biochem Pharmacol 2015;98:440-52. [PMID: 26475531 DOI: 10.1016/j.bcp.2015.10.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
80 Lindner M, Leitner MG, Halaszovich CR, Hammond GR, Oliver D. Probing the regulation of TASK potassium channels by PI4,5P₂ with switchable phosphoinositide phosphatases. J Physiol 2011;589:3149-62. [PMID: 21540350 DOI: 10.1113/jphysiol.2011.208983] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 3.5] [Reference Citation Analysis]
81 Staudacher I, Illg C, Gierten J, Seehausen S, Schweizer PA, Katus HA, Thomas D. Identification and functional characterization of zebrafish K 2P 17.1 (TASK-4, TALK-2) two-pore-domain K + channels. European Journal of Pharmacology 2018;831:94-102. [DOI: 10.1016/j.ejphar.2018.05.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
82 Blin S, Chatelain FC, Feliciangeli S, Kang D, Lesage F, Bichet D. Tandem pore domain halothane-inhibited K+ channel subunits THIK1 and THIK2 assemble and form active channels. J Biol Chem 2014;289:28202-12. [PMID: 25148687 DOI: 10.1074/jbc.M114.600437] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
83 Lee HY, Jan LY. Fragile X syndrome: mechanistic insights and therapeutic avenues regarding the role of potassium channels. Curr Opin Neurobiol 2012;22:887-94. [PMID: 22483378 DOI: 10.1016/j.conb.2012.03.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
84 Di A, Xiong S, Ye Z, Malireddi RKS, Kometani S, Zhong M, Mittal M, Hong Z, Kanneganti TD, Rehman J, Malik AB. The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity 2018;49:56-65.e4. [PMID: 29958799 DOI: 10.1016/j.immuni.2018.04.032] [Cited by in Crossref: 89] [Cited by in F6Publishing: 86] [Article Influence: 22.3] [Reference Citation Analysis]
85 Nadim F, Bucher D. Neuromodulation of neurons and synapses. Curr Opin Neurobiol 2014;29:48-56. [PMID: 24907657 DOI: 10.1016/j.conb.2014.05.003] [Cited by in Crossref: 110] [Cited by in F6Publishing: 95] [Article Influence: 13.8] [Reference Citation Analysis]
86 Cabanos C, Wang M, Han X, Hansen SB. A Soluble Fluorescent Binding Assay Reveals PIP2 Antagonism of TREK-1 Channels. Cell Rep 2017;20:1287-94. [PMID: 28793254 DOI: 10.1016/j.celrep.2017.07.034] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
87 Yue X, Zhao J, Li X, Fan Y, Duan D, Zhang X, Zou W, Sheng Y, Zhang T, Yang Q, Luo J, Duan S, Xiao R, Kang L. TMC Proteins Modulate Egg Laying and Membrane Excitability through a Background Leak Conductance in C. elegans. Neuron 2018;97:571-585.e5. [PMID: 29395910 DOI: 10.1016/j.neuron.2017.12.041] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
88 Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K2P Background Potassium Channels. Int J Mol Sci 2021;22:9062. [PMID: 34445768 DOI: 10.3390/ijms22169062] [Reference Citation Analysis]
89 Bewick GS, Banks RW. Mechanotransduction channels in proprioceptive sensory nerve terminals: still an open question? Current Opinion in Physiology 2021;20:90-104. [DOI: 10.1016/j.cophys.2020.11.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Dong YY, Pike AC, Mackenzie A, McClenaghan C, Aryal P, Dong L, Quigley A, Grieben M, Goubin S, Mukhopadhyay S, Ruda GF, Clausen MV, Cao L, Brennan PE, Burgess-Brown NA, Sansom MS, Tucker SJ, Carpenter EP. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 2015;347:1256-9. [PMID: 25766236 DOI: 10.1126/science.1261512] [Cited by in Crossref: 188] [Cited by in F6Publishing: 157] [Article Influence: 26.9] [Reference Citation Analysis]
91 Imbrici P, Nematian-Ardestani E, Hasan S, Pessia M, Tucker SJ, D'Adamo MC. Altered functional properties of a missense variant in the TRESK K+ channel (KCNK18) associated with migraine and intellectual disability. Pflugers Arch 2020;472:923-30. [PMID: 32394190 DOI: 10.1007/s00424-020-02382-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
92 Brohawn SG, Campbell EB, MacKinnon R. Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 2014;516:126-30. [PMID: 25471887 DOI: 10.1038/nature14013] [Cited by in Crossref: 179] [Cited by in F6Publishing: 147] [Article Influence: 25.6] [Reference Citation Analysis]
93 Bouhadfane M, Kaszás A, Rózsa B, Harris-Warrick RM, Vinay L, Brocard F. Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin. Elife 2015;4:e06195. [PMID: 25781633 DOI: 10.7554/eLife.06195] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
94 Ehling P, Bittner S, Meuth SG, Budde T. TASK, TREK & Co.: a mutable potassium channel family for diverse tasks in the brain. e-Neuroforum 2015;6:29-37. [DOI: 10.1007/s13295-015-0007-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
95 Brand T, Simrick SL, Poon KL, Schindler RF. The cAMP-binding Popdc proteins have a redundant function in the heart. Biochem Soc Trans 2014;42:295-301. [PMID: 24646234 DOI: 10.1042/BST20130264] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
96 Harris-warrick RM, Ramirez J. Neural Networks for the Generation of Rhythmic Motor Behaviors. In: Hooper SL, Büschges A, editors. Neurobiology of Motor Control. Hoboken: John Wiley & Sons, Inc.; 2017. pp. 225-62. [DOI: 10.1002/9781118873397.ch8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
97 Pimentel D, Donlea JM, Talbot CB, Song SM, Thurston AJF, Miesenböck G. Operation of a homeostatic sleep switch. Nature 2016;536:333-7. [PMID: 27487216 DOI: 10.1038/nature19055] [Cited by in Crossref: 146] [Cited by in F6Publishing: 109] [Article Influence: 24.3] [Reference Citation Analysis]
98 Li C, Wei L, Jiang H, Shan L, Li X, Lu N, Wang G, Li D. Stable Cell Line of Human SH-SY5Y Uniformly Expressing TWIK-Related Acid-Sensitive Potassium Channel and eGFP Fusion. Appl Biochem Biotechnol 2014;172:3253-62. [DOI: 10.1007/s12010-014-0768-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
99 Hernández-Araiza I, Morales-Lázaro SL, Canul-Sánchez JA, Islas LD, Rosenbaum T. Role of lysophosphatidic acid in ion channel function and disease. J Neurophysiol 2018;120:1198-211. [PMID: 29947596 DOI: 10.1152/jn.00226.2018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
100 Bobak N, Feliciangeli S, Chen CC, Ben Soussia I, Bittner S, Pagnotta S, Ruck T, Biel M, Wahl-Schott C, Grimm C, Meuth SG, Lesage F. Recombinant tandem of pore-domains in a Weakly Inward rectifying K+ channel 2 (TWIK2) forms active lysosomal channels. Sci Rep 2017;7:649. [PMID: 28381826 DOI: 10.1038/s41598-017-00640-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
101 Braun G, Lengyel M, Enyedi P, Czirják G. Differential sensitivity of TREK-1, TREK-2 and TRAAK background potassium channels to the polycationic dye ruthenium red. Br J Pharmacol 2015;172:1728-38. [PMID: 25409575 DOI: 10.1111/bph.13019] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
102 Miller SJ, Zhang P, Glatzer J, Rothstein JD. Astroglial transcriptome dysregulation in early disease of an ALS mutant SOD1 mouse model. Journal of Neurogenetics 2017;31:37-48. [DOI: 10.1080/01677063.2016.1260128] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
103 Lv J, Liang Y, Zhang S, Lan Q, Xu Z, Wu X, Kang L, Ren J, Cao Y, Wu T, Lin KL, Yung KKL, Cao X, Pang J, Zhou P. DCPIB, an Inhibitor of Volume-Regulated Anion Channels, Distinctly Modulates K2P Channels. ACS Chem Neurosci 2019;10:2786-93. [DOI: 10.1021/acschemneuro.9b00010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
104 Christensen AH, Chatelain FC, Huttner IG, Olesen MS, Soka M, Feliciangeli S, Horvat C, Santiago CF, Vandenberg JI, Schmitt N, Olesen SP, Lesage F, Fatkin D. The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size. J Mol Cell Cardiol 2016;97:24-35. [PMID: 27103460 DOI: 10.1016/j.yjmcc.2016.04.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
105 Bagriantsev SN, Peyronnet R, Clark KA, Honoré E, Minor DL Jr. Multiple modalities converge on a common gate to control K2P channel function. EMBO J 2011;30:3594-606. [PMID: 21765396 DOI: 10.1038/emboj.2011.230] [Cited by in Crossref: 99] [Cited by in F6Publishing: 88] [Article Influence: 9.0] [Reference Citation Analysis]
106 Huang DT, Chi N, Chen SC, Lee TY, Hsu K. Background K(2P) channels KCNK3/9/15 limit the budding of cell membrane-derived vesicles. Cell Biochem Biophys 2011;61:585-94. [PMID: 21761257 DOI: 10.1007/s12013-011-9241-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
107 Zúñiga R, Valenzuela C, Concha G, Brown N, Zúñiga L. TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines. Int J Mol Sci 2018;19:E1033. [PMID: 29596383 DOI: 10.3390/ijms19041033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
108 Lengyel M, Czirják G, Jacobson DA, Enyedi P. TRESK and TREK-2 two-pore-domain potassium channel subunits form functional heterodimers in primary somatosensory neurons. J Biol Chem 2020;295:12408-25. [PMID: 32641496 DOI: 10.1074/jbc.RA120.014125] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
109 Gu C, Barry J. Function and mechanism of axonal targeting of voltage-sensitive potassium channels. Prog Neurobiol 2011;94:115-32. [PMID: 21530607 DOI: 10.1016/j.pneurobio.2011.04.009] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 3.5] [Reference Citation Analysis]
110 Ashmole I, Bradding P. Ion channels regulating mast cell biology. Clin Exp Allergy 2013;43:491-502. [PMID: 23600539 DOI: 10.1111/cea.12043] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
111 Hao X, Li X, Li X. 17β-estradiol downregulated the expression of TASK-1 channels in mouse neuroblastoma N2A cells. J Membr Biol 2014;247:273-9. [PMID: 24435466 DOI: 10.1007/s00232-014-9632-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
112 Roy Choudhury A, Großhans J, Kong D. Ion Channels in Epithelial Dynamics and Morphogenesis. Cells 2021;10:2280. [PMID: 34571929 DOI: 10.3390/cells10092280] [Reference Citation Analysis]
113 Lin X, Wu JF, Wang DM, Zhang J, Zhang WJ, Xue G. The correlation and role analysis of KCNK2/4/5/15 in Human Papillary Thyroid Carcinoma microenvironment. J Cancer 2020;11:5162-76. [PMID: 32742463 DOI: 10.7150/jca.45604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
114 Pereira V, Busserolles J, Christin M, Devilliers M, Poupon L, Legha W, Alloui A, Aissouni Y, Bourinet E, Lesage F, Eschalier A, Lazdunski M, Noël J. Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain 2014;155:2534-44. [DOI: 10.1016/j.pain.2014.09.013] [Cited by in Crossref: 83] [Cited by in F6Publishing: 74] [Article Influence: 10.4] [Reference Citation Analysis]
115 Comes N, Gasull X, Callejo G. Proton Sensing on the Ocular Surface: Implications in Eye Pain. Front Pharmacol 2021;12:773871. [PMID: 34899333 DOI: 10.3389/fphar.2021.773871] [Reference Citation Analysis]
116 Ávalos Prado P, Landra-Willm A, Verkest C, Ribera A, Chassot AA, Baron A, Sandoz G. TREK channel activation suppresses migraine pain phenotype. iScience 2021;24:102961. [PMID: 34458705 DOI: 10.1016/j.isci.2021.102961] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
117 Rivas-Ramírez P, Cadaveira-Mosquera A, Lamas JA, Reboreda A. Muscarinic modulation of TREK currents in mouse sympathetic superior cervical ganglion neurons. Eur J Neurosci 2015;42:1797-807. [PMID: 25899939 DOI: 10.1111/ejn.12930] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
118 Lamas JA, Rueda-Ruzafa L, Herrera-Pérez S. Ion Channels and Thermosensitivity: TRP, TREK, or Both? Int J Mol Sci 2019;20:E2371. [PMID: 31091651 DOI: 10.3390/ijms20102371] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
119 Penton D, Bandulik S, Schweda F, Haubs S, Tauber P, Reichold M, Cong LD, El Wakil A, Budde T, Lesage F, Lalli E, Zennaro M, Warth R, Barhanin J. Task3 Potassium Channel Gene Invalidation Causes Low Renin and Salt-Sensitive Arterial Hypertension. Endocrinology 2012;153:4740-8. [DOI: 10.1210/en.2012-1527] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 4.7] [Reference Citation Analysis]
120 Yeung-Yam-Wah V, Lee AK, Tse A. Arachidonic acid mobilizes Ca2+ from the endoplasmic reticulum and an acidic store in rat pancreatic β cells. Cell Calcium 2012;51:140-8. [PMID: 22197025 DOI: 10.1016/j.ceca.2011.11.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
121 Bayley JS, Overgaard J, Pedersen TH. Quantitative model analysis of the resting membrane potential in insect skeletal muscle: Implications for low temperature tolerance. Comp Biochem Physiol A Mol Integr Physiol 2021;257:110970. [PMID: 33932565 DOI: 10.1016/j.cbpa.2021.110970] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 MacKenzie G, Franks NP, Brickley SG. Two-pore domain potassium channels enable action potential generation in the absence of voltage-gated potassium channels. Pflugers Arch 2015;467:989-99. [PMID: 25482670 DOI: 10.1007/s00424-014-1660-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
123 Grace KP, Hughes SW, Horner RL. Identification of a pharmacological target for genioglossus reactivation throughout sleep. Sleep 2014;37:41-50. [PMID: 24470694 DOI: 10.5665/sleep.3304] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
124 Mant A, Williams S, O'Kelly I. Acid sensitive background potassium channels K2P3.1 and K2P9.1 undergo rapid dynamin-dependent endocytosis. Channels (Austin) 2013;7:288-302. [PMID: 23807092 DOI: 10.4161/chan.25120] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
125 Kajma A, Szewczyk A. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus. Biochim Biophys Acta 2012;1817:1867-78. [PMID: 22406520 DOI: 10.1016/j.bbabio.2012.02.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
126 de la Cruz IP, Ma L, Horvitz HR. The Caenorhabditis elegans iodotyrosine deiodinase ortholog SUP-18 functions through a conserved channel SC-box to regulate the muscle two-pore domain potassium channel SUP-9. PLoS Genet 2014;10:e1004175. [PMID: 24586202 DOI: 10.1371/journal.pgen.1004175] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
127 Kim GT, Siregar AS, Kim EJ, Lee ES, Nyiramana MM, Woo MS, Hah YS, Han J, Kang D. Upregulation of TRESK Channels Contributes to Motor and Sensory Recovery after Spinal Cord Injury. Int J Mol Sci 2020;21:E8997. [PMID: 33256222 DOI: 10.3390/ijms21238997] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Singh S, Agarwal P, Ravichandiran V. Two-Pore Domain Potassium Channel in Neurological Disorders. J Membr Biol 2021;254:367-80. [PMID: 34169340 DOI: 10.1007/s00232-021-00189-8] [Reference Citation Analysis]
129 Noël J, Sandoz G, Lesage F. Molecular regulations governing TREK and TRAAK channel functions. Channels (Austin) 2011;5:402-9. [PMID: 21829087 DOI: 10.4161/chan.5.5.16469] [Cited by in Crossref: 102] [Cited by in F6Publishing: 95] [Article Influence: 9.3] [Reference Citation Analysis]
130 Sun H. Different sensitivity of action potential generation to the rate of depolarization in vagal afferent A-fiber versus C-fiber neurons. J Neurophysiol 2021;125:2000-12. [PMID: 33881911 DOI: 10.1152/jn.00722.2020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
131 Kraft M, Büscher A, Wiedmann F, L'hoste Y, Haefeli WE, Frey N, Katus HA, Schmidt C. Current Drug Treatment Strategies for Atrial Fibrillation and TASK-1 Inhibition as an Emerging Novel Therapy Option. Front Pharmacol 2021;12:638445. [PMID: 33897427 DOI: 10.3389/fphar.2021.638445] [Reference Citation Analysis]
132 El Hachmane MF, Rees KA, Veale EL, Sumbayev VV, Mathie A. Enhancement of TWIK-related acid-sensitive potassium channel 3 (TASK3) two-pore domain potassium channel activity by tumor necrosis factor α. J Biol Chem 2014;289:1388-401. [PMID: 24307172 DOI: 10.1074/jbc.M113.500033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
133 Hughes S, Foster RG, Peirson SN, Hankins MW. Expression and localisation of two-pore domain (K2P) background leak potassium ion channels in the mouse retina. Sci Rep 2017;7:46085. [PMID: 28443635 DOI: 10.1038/srep46085] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
134 Soattin L, Fiore M, Gavazzo P, Viti F, Facci P, Raiteri R, Difato F, Pusch M, Vassalli M. The biophysics of piezo1 and piezo2 mechanosensitive channels. Biophysical Chemistry 2016;208:26-33. [DOI: 10.1016/j.bpc.2015.06.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
135 Huang W, Ke Y, Zhu J, Liu S, Cong J, Ye H, Guo Y, Wang K, Zhang Z, Meng W, Gao TM, Luhmann HJ, Kilb W, Chen R. TRESK channel contributes to depolarization-induced shunting inhibition and modulates epileptic seizures. Cell Rep 2021;36:109404. [PMID: 34289346 DOI: 10.1016/j.celrep.2021.109404] [Reference Citation Analysis]
136 Vastagh C, Solymosi N, Farkas I, Liposits Z. Proestrus Differentially Regulates Expression of Ion Channel and Calcium Homeostasis Genes in GnRH Neurons of Mice. Front Mol Neurosci 2019;12:137. [PMID: 31213979 DOI: 10.3389/fnmol.2019.00137] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
137 Kanda H, Ling J, Tonomura S, Noguchi K, Matalon S, Gu JG. TREK-1 and TRAAK Are Principal K+ Channels at the Nodes of Ranvier for Rapid Action Potential Conduction on Mammalian Myelinated Afferent Nerves. Neuron 2019;104:960-971.e7. [PMID: 31630908 DOI: 10.1016/j.neuron.2019.08.042] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 14.3] [Reference Citation Analysis]
138 Hayoz S, Cubano L, Maldonado H, Bychkov R. Protein kinase A and C regulate leak potassium currents in freshly isolated vascular myocytes from the aorta. PLoS One 2013;8:e75077. [PMID: 24086441 DOI: 10.1371/journal.pone.0075077] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
139 Anishkin A, Loukin SH, Teng J, Kung C. Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A 2014;111:7898-905. [PMID: 24850861 DOI: 10.1073/pnas.1313364111] [Cited by in Crossref: 171] [Cited by in F6Publishing: 150] [Article Influence: 21.4] [Reference Citation Analysis]
140 Zheng X, Yang J, Zhu Z, Fang Y, Tian Y, Xie M, Wang W, Liu Y. The Two-Pore Domain Potassium Channel TREK-1 Promotes Blood-Brain Barrier Breakdown and Exacerbates Neuronal Death After Focal Cerebral Ischemia in Mice. Mol Neurobiol 2022. [PMID: 35067892 DOI: 10.1007/s12035-021-02702-5] [Reference Citation Analysis]
141 Herbrechter R, Beltrán LR, Ziemba PM, Titt S, Lashuk K, Gottemeyer A, Levermann J, Hoffmann KM, Beltrán M, Hatt H, Störtkuhl KF, Werner M, Gisselmann G. Effect of 158 herbal remedies on human TRPV1 and the two-pore domain potassium channels KCNK2, 3 and 9. J Tradit Complement Med 2020;10:446-53. [PMID: 32953560 DOI: 10.1016/j.jtcme.2020.04.005] [Reference Citation Analysis]
142 Inoue M, Matsuoka H, Harada K, Mugishima G, Kameyama M. TASK channels: channelopathies, trafficking, and receptor-mediated inhibition. Pflugers Arch - Eur J Physiol 2020;472:911-22. [DOI: 10.1007/s00424-020-02403-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
143 Du G, Chen X, Todorovic MS, Shu S, Kapur J, Bayliss DA. TASK Channel Deletion Reduces Sensitivity to Local Anesthetic-induced Seizures. Anesthesiology 2011;115:1003-11. [PMID: 21946151 DOI: 10.1097/ALN.0b013e3182343660] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
144 Smith AJ, Daut J, Schwappach B. Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport. Physiology (Bethesda) 2011;26:181-91. [PMID: 21670164 DOI: 10.1152/physiol.00042.2010] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 3.6] [Reference Citation Analysis]
145 Yarishkin O, Phuong TTT, Križaj D. Trabecular Meshwork TREK-1 Channels Function as Polymodal Integrators of Pressure and pH. Invest Ophthalmol Vis Sci 2019;60:2294-303. [PMID: 31117121 DOI: 10.1167/iovs.19-26851] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
146 Hamilton ES, Schlegel AM, Haswell ES. United in diversity: mechanosensitive ion channels in plants. Annu Rev Plant Biol 2015;66:113-37. [PMID: 25494462 DOI: 10.1146/annurev-arplant-043014-114700] [Cited by in Crossref: 107] [Cited by in F6Publishing: 90] [Article Influence: 13.4] [Reference Citation Analysis]
147 Choi SW, Woo J, Park KS, Ko J, Jeon YK, Choi SW, Yoo HY, Kho I, Kim TJ, Kim SJ. Higher expression of KCNK10 (TREK-2) K+ channels and their functional upregulation by lipopolysaccharide treatment in mouse peritoneal B1a cells. Pflugers Arch 2021;473:659-71. [PMID: 33586023 DOI: 10.1007/s00424-021-02526-1] [Reference Citation Analysis]
148 Andres-Enguix I, Shang L, Stansfeld PJ, Morahan JM, Sansom MS, Lafrenière RG, Roy B, Griffiths LR, Rouleau GA, Ebers GC, Cader ZM, Tucker SJ. Functional analysis of missense variants in the TRESK (KCNK18) K channel. Sci Rep 2012;2:237. [PMID: 22355750 DOI: 10.1038/srep00237] [Cited by in Crossref: 66] [Cited by in F6Publishing: 57] [Article Influence: 6.6] [Reference Citation Analysis]
149 Spanoghe J, Larsen LE, Craey E, Manzella S, Van Dycke A, Boon P, Raedt R. The Signaling Pathways Involved in the Anticonvulsive Effects of the Adenosine A1 Receptor. Int J Mol Sci 2020;22:E320. [PMID: 33396826 DOI: 10.3390/ijms22010320] [Reference Citation Analysis]
150 Aryal P, Sansom MS, Tucker SJ. Hydrophobic gating in ion channels. J Mol Biol 2015;427:121-30. [PMID: 25106689 DOI: 10.1016/j.jmb.2014.07.030] [Cited by in Crossref: 161] [Cited by in F6Publishing: 126] [Article Influence: 20.1] [Reference Citation Analysis]
151 Hancox JC, James AF, Marrion NV, Zhang H, Thomas D. Novel ion channel targets in atrial fibrillation. Expert Opinion on Therapeutic Targets 2016;20:947-58. [DOI: 10.1517/14728222.2016.1159300] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
152 Bruner JK, Zou B, Zhang H, Zhang Y, Schmidt K, Li M. Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel. Eur J Pharmacol 2014;740:603-10. [PMID: 24972239 DOI: 10.1016/j.ejphar.2014.06.021] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
153 Fernández-Fernández D, Lamas JA. Metabotropic Modulation of Potassium Channels During Synaptic Plasticity. Neuroscience 2021;456:4-16. [PMID: 32114098 DOI: 10.1016/j.neuroscience.2020.02.025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
154 Bagriantsev SN, Ang KH, Gallardo-Godoy A, Clark KA, Arkin MR, Renslo AR, Minor DL Jr. A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. ACS Chem Biol 2013;8:1841-51. [PMID: 23738709 DOI: 10.1021/cb400289x] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 7.1] [Reference Citation Analysis]
155 Tulleuda A, Cokic B, Callejo G, Saiani B, Serra J, Gasull X. TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury. Mol Pain 2011;7:30. [PMID: 21527011 DOI: 10.1186/1744-8069-7-30] [Cited by in Crossref: 91] [Cited by in F6Publishing: 87] [Article Influence: 8.3] [Reference Citation Analysis]
156 Plant LD. A Role for K2P Channels in the Operation of Somatosensory Nociceptors. Front Mol Neurosci 2012;5:21. [PMID: 22403526 DOI: 10.3389/fnmol.2012.00021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
157 Silberstein SD. Emerging target-based paradigms to prevent and treat migraine. Clin Pharmacol Ther 2013;93:78-85. [PMID: 23212108 DOI: 10.1038/clpt.2012.198] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 4.8] [Reference Citation Analysis]
158 Acharya AR, Larsen LE, Van Lysebettens W, Wadman WJ, Delbeke J, Vonck K, Meurs A, Boon P, Raedt R. Attenuation of Hippocampal Evoked Potentials in vivo by Activation of GtACR2, an Optogenetic Chloride Channel. Front Neurosci 2021;15:653844. [PMID: 33854415 DOI: 10.3389/fnins.2021.653844] [Reference Citation Analysis]
159 Enyeart JJ, Enyeart JA. Ca2+ and K+ channels of normal human adrenal zona fasciculata cells: properties and modulation by ACTH and AngII. J Gen Physiol 2013;142:137-55. [PMID: 23858003 DOI: 10.1085/jgp.201310964] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
160 Verkhratsky A, Parpura V, Vardjan N, Zorec R. Physiology of Astroglia. Adv Exp Med Biol 2019;1175:45-91. [PMID: 31583584 DOI: 10.1007/978-981-13-9913-8_3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
161 Olschewski A, Veale EL, Nagy BM, Nagaraj C, Kwapiszewska G, Antigny F, Lambert M, Humbert M, Czirják G, Enyedi P, Mathie A. TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. Eur Respir J 2017;50:1700754. [PMID: 29122916 DOI: 10.1183/13993003.00754-2017] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 7.4] [Reference Citation Analysis]
162 Lugenbiel P, Wenz F, Syren P, Geschwill P, Govorov K, Seyler C, Frank D, Schweizer PA, Franke J, Weis T, Bruehl C, Schmack B, Ruhparwar A, Karck M, Frey N, Katus HA, Thomas D. TREK-1 (K2P2.1) K+ channels are suppressed in patients with atrial fibrillation and heart failure and provide therapeutic targets for rhythm control. Basic Res Cardiol 2017;112. [DOI: 10.1007/s00395-016-0597-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
163 Kawasaki K, Suzuki Y, Yamamura H, Imaizumi Y. Development of a Novel Cell-Based Assay System for High-Throughput Screening of Compounds Acting on Background Two-Pore Domain K+ Channels. SLAS Discov 2019;24:641-52. [PMID: 30802418 DOI: 10.1177/2472555219829745] [Reference Citation Analysis]
164 Zhuo R, Peng P, Zheng J, Zhang Y, Wen L, Wei X, Ma X. The glycine hinge of transmembrane segment 2 modulates the subcellular localization and gating properties in TREK channels. Biochemical and Biophysical Research Communications 2017;490:1125-31. [DOI: 10.1016/j.bbrc.2017.06.200] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
165 Herrera-Pérez S, Campos-Ríos A, Rueda-Ruzafa L, Lamas JA. Contribution of K2P Potassium Channels to Cardiac Physiology and Pathophysiology. Int J Mol Sci 2021;22:6635. [PMID: 34205717 DOI: 10.3390/ijms22126635] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
166 Pietrobon D. Ion channels in migraine disorders. Current Opinion in Physiology 2018;2:98-108. [DOI: 10.1016/j.cophys.2018.02.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
167 Riegelhaupt PM, Tibbs GR, Goldstein PA. HCN and K2P Channels in Anesthetic Mechanisms Research. Methods Enzymol 2018;602:391-416. [PMID: 29588040 DOI: 10.1016/bs.mie.2018.01.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
168 You C, Savarese A, Vandegrift BJ, He D, Pandey SC, Lasek AW, Brodie MS. Ethanol acts on KCNK13 potassium channels in the ventral tegmental area to increase firing rate and modulate binge-like drinking. Neuropharmacology 2019;144:29-36. [PMID: 30332606 DOI: 10.1016/j.neuropharm.2018.10.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
169 Joseph A, Thuy TTT, Thanh LT, Okada M. Antidepressive and anxiolytic effects of ostruthin, a TREK-1 channel activator. PLoS One 2018;13:e0201092. [PMID: 30110354 DOI: 10.1371/journal.pone.0201092] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
170 Bista P, Cerina M, Ehling P, Leist M, Pape HC, Meuth SG, Budde T. The role of two-pore-domain background K⁺ (K₂p) channels in the thalamus. Pflugers Arch 2015;467:895-905. [PMID: 25346156 DOI: 10.1007/s00424-014-1632-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
171 Schwarz JR. Function of K2P channels in the mammalian node of Ranvier. J Physiol 2021;599:4427-39. [PMID: 34425634 DOI: 10.1113/JP281723] [Reference Citation Analysis]
172 Harrigan MP, McKiernan KA, Shanmugasundaram V, Denny RA, Pande VS. Markov modeling reveals novel intracellular modulation of the human TREK-2 selectivity filter. Sci Rep 2017;7:632. [PMID: 28377596 DOI: 10.1038/s41598-017-00256-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
173 Dookeran KA, Zhang W, Stayner L, Argos M. Associations of two-pore domain potassium channels and triple negative breast cancer subtype in The Cancer Genome Atlas: systematic evaluation of gene expression and methylation. BMC Res Notes 2017;10:475. [PMID: 28899398 DOI: 10.1186/s13104-017-2777-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
174 Geng M, Lin A, Nguyen TP. Revisiting Antiarrhythmic Drug Therapy for Atrial Fibrillation: Reviewing Lessons Learned and Redefining Therapeutic Paradigms. Front Pharmacol 2020;11:581837. [PMID: 33240090 DOI: 10.3389/fphar.2020.581837] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
175 Ranchoux B, Harvey LD, Ayon RJ, Babicheva A, Bonnet S, Chan SY, Yuan JX, Perez VJ. Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover Conference Series). Pulm Circ 2018;8:2045893217752912. [PMID: 29283043 DOI: 10.1177/2045893217752912] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 10.6] [Reference Citation Analysis]
176 Lolicato M, Riegelhaupt PM, Arrigoni C, Clark KA, Minor DL Jr. Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K(2P) channels. Neuron 2014;84:1198-212. [PMID: 25500157 DOI: 10.1016/j.neuron.2014.11.017] [Cited by in Crossref: 81] [Cited by in F6Publishing: 71] [Article Influence: 10.1] [Reference Citation Analysis]
177 Kanda H, Tonomura S, Gu JG. Effects of Cooling Temperatures via Thermal K2P Channels on Regeneration of High-Frequency Action Potentials at Nodes of Ranvier of Rat Aβ-Afferent Nerves. eNeuro 2021;8:ENEURO. [PMID: 34462308 DOI: 10.1523/ENEURO.0308-21.2021] [Reference Citation Analysis]
178 Kubota K, Ohtake N, Ohbuchi K, Mase A, Imamura S, Sudo Y, Miyano K, Yamamoto M, Kono T, Uezono Y. Hydroxy-α sanshool induces colonic motor activity in rat proximal colon: a possible involvement of KCNK9. Am J Physiol Gastrointest Liver Physiol 2015;308:G579-90. [PMID: 25634809 DOI: 10.1152/ajpgi.00114.2014] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 3.9] [Reference Citation Analysis]
179 Bittner S, Budde T, Wiendl H, Meuth SG. From the background to the spotlight: TASK channels in pathological conditions. Brain Pathol 2010;20:999-1009. [PMID: 20529081 DOI: 10.1111/j.1750-3639.2010.00407.x] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 5.1] [Reference Citation Analysis]
180 Wang F, Chen ZH, Shabala S. Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors. Plant Cell Physiol 2017;58:1126-42. [PMID: 28838128 DOI: 10.1093/pcp/pcx079] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
181 Bittner S, Bobak N, Hofmann MS, Schuhmann MK, Ruck T, Göbel K, Brück W, Wiendl H, Meuth SG. Murine K2P5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K2P3.1- and KV1.3-Dependent Mechanisms. Int J Mol Sci 2015;16:16880-96. [PMID: 26213925 DOI: 10.3390/ijms160816880] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
182 Czirják G, Enyedi P. The LQLP calcineurin docking site is a major determinant of the calcium-dependent activation of human TRESK background K+ channel. J Biol Chem 2014;289:29506-18. [PMID: 25202008 DOI: 10.1074/jbc.M114.577684] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
183 Bayliss DA, Barhanin J, Gestreau C, Guyenet PG. The role of pH-sensitive TASK channels in central respiratory chemoreception. Pflugers Arch 2015;467:917-29. [PMID: 25346157 DOI: 10.1007/s00424-014-1633-9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
184 Lamas JA. Mechanosensitive K2P channels, TREKking through the autonomic nervous system. In: Kamkin A, Lozinsky I, editors. Mechanically Gated Channels and their Regulation. Dordrecht: Springer Netherlands; 2012. pp. 35-68. [DOI: 10.1007/978-94-007-5073-9_2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
185 Ruusuvuori E, Kirilkin I, Pandya N, Kaila K. Spontaneous network events driven by depolarizing GABA action in neonatal hippocampal slices are not attributable to deficient mitochondrial energy metabolism. J Neurosci 2010;30:15638-42. [PMID: 21084619 DOI: 10.1523/JNEUROSCI.3355-10.2010] [Cited by in Crossref: 52] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
186 Toyoda H. Involvement of leak K+ channels in neurological disorders. World J Neurol 2015; 5(1): 52-56 [DOI: 10.5316/wjn.v5.i1.52] [Reference Citation Analysis]
187 Hwang HY, Zhang E, Park S, Chung W, Lee S, Kim DW, Ko Y, Lee W. TWIK-Related Spinal Cord K⁺ Channel Expression Is Increased in the Spinal Dorsal Horn after Spinal Nerve Ligation. Yonsei Med J 2015;56:1307-15. [PMID: 26256973 DOI: 10.3349/ymj.2015.56.5.1307] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
188 Liu J, Ganeshbabu N, Shalaby N, Chen L, Guo T, Feng B. Targeting Two-Pore-Domain Potassium Channels by Mechanical Stretch Instantaneously Modulates Action Potential Transmission in Mouse Sciatic Nerves. ACS Chem Neurosci 2021;12:3558-66. [PMID: 34423641 DOI: 10.1021/acschemneuro.1c00052] [Reference Citation Analysis]
189 Sharif-Naeini R. TRESK is a modality-specific brake on nociceptor excitability. J Physiol 2020;598:1423-4. [PMID: 32061100 DOI: 10.1113/JP279548] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
190 Liu P, Xiao Z, Ren F, Guo Z, Chen Z, Zhao H, Cao YQ. Functional analysis of a migraine-associated TRESK K+ channel mutation. J Neurosci 2013;33:12810-24. [PMID: 23904616 DOI: 10.1523/JNEUROSCI.1237-13.2013] [Cited by in Crossref: 55] [Cited by in F6Publishing: 32] [Article Influence: 6.1] [Reference Citation Analysis]
191 Bohnen MS, Roman-Campos D, Terrenoire C, Jnani J, Sampson KJ, Chung WK, Kass RS. The Impact of Heterozygous KCNK3 Mutations Associated With Pulmonary Arterial Hypertension on Channel Function and Pharmacological Recovery. J Am Heart Assoc 2017;6:e006465. [PMID: 28889099 DOI: 10.1161/JAHA.117.006465] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
192 Li X, Dong X, Zheng S, Xiao J. Expression and localization of TASK-1, -2 and -3 channels in MG63 human osteoblast-like cells. Oncol Lett 2013;5:865-9. [PMID: 23425722 DOI: 10.3892/ol.2012.1088] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
193 Cho PS, Lee HK, Lee SH, Im JZ, Jung SJ. DAMGO modulates two-pore domain K(+) channels in the substantia gelatinosa neurons of rat spinal cord. Korean J Physiol Pharmacol 2016;20:525-31. [PMID: 27610039 DOI: 10.4196/kjpp.2016.20.5.525] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
194 Viatchenko-Karpinski V, Ling J, Gu JG. Characterization of temperature-sensitive leak K+ currents and expression of TRAAK, TREK-1, and TREK2 channels in dorsal root ganglion neurons of rats. Mol Brain 2018;11:40. [PMID: 29980241 DOI: 10.1186/s13041-018-0384-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
195 Renigunta V, Schlichthörl G, Daut J. Much more than a leak: structure and function of K₂p-channels. Pflugers Arch 2015;467:867-94. [PMID: 25791628 DOI: 10.1007/s00424-015-1703-7] [Cited by in Crossref: 70] [Cited by in F6Publishing: 55] [Article Influence: 10.0] [Reference Citation Analysis]
196 Matsuoka H, Harada K, Mashima K, Inoue M. Muscarinic receptor stimulation induces TASK1 channel endocytosis through a PKC-Pyk2-Src pathway in PC12 cells. Cellular Signalling 2020;65:109434. [DOI: 10.1016/j.cellsig.2019.109434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
197 Afzali AM, Ruck T, Herrmann AM, Iking J, Sommer C, Kleinschnitz C, Preuβe C, Stenzel W, Budde T, Wiendl H, Bittner S, Meuth SG. The potassium channels TASK2 and TREK1 regulate functional differentiation of murine skeletal muscle cells. Am J Physiol Cell Physiol 2016;311:C583-95. [PMID: 27488672 DOI: 10.1152/ajpcell.00363.2015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
198 Flegel C, Schöbel N, Altmüller J, Becker C, Tannapfel A, Hatt H, Gisselmann G. RNA-Seq Analysis of Human Trigeminal and Dorsal Root Ganglia with a Focus on Chemoreceptors. PLoS One 2015;10:e0128951. [PMID: 26070209 DOI: 10.1371/journal.pone.0128951] [Cited by in Crossref: 108] [Cited by in F6Publishing: 101] [Article Influence: 15.4] [Reference Citation Analysis]
199 Zhuo RG, Peng P, Liu XY, Yan HT, Xu JP, Zheng JQ, Wei XL, Ma XY. Intersubunit Concerted Cooperative and cis-Type Mechanisms Modulate Allosteric Gating in Two-Pore-Domain Potassium Channel TREK-2. Front Cell Neurosci 2016;10:127. [PMID: 27242438 DOI: 10.3389/fncel.2016.00127] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
200 Boon CM, Ng MH, Choo YM, Mok SL. Super, red palm and palm oleins improve the blood pressure, heart size, aortic media thickness and lipid profile in spontaneously hypertensive rats. PLoS One 2013;8:e55908. [PMID: 23409085 DOI: 10.1371/journal.pone.0055908] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
201 Masetti M, Berti C, Ocello R, Di Martino GP, Recanatini M, Fiegna C, Cavalli A. Multiscale Simulations of a Two-Pore Potassium Channel. J Chem Theory Comput 2016;12:5681-7. [DOI: 10.1021/acs.jctc.6b00972] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
202 Goldstein SA. K2P potassium channels, mysterious and paradoxically exciting. Sci Signal 2011;4:pe35. [PMID: 21868351 DOI: 10.1126/scisignal.2002225] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
203 Checchetto V, Azzolini M, Peruzzo R, Capitanio P, Leanza L. Mitochondrial potassium channels in cell death. Biochemical and Biophysical Research Communications 2018;500:51-8. [DOI: 10.1016/j.bbrc.2017.06.095] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
204 Mant A, Elliott D, Eyers PA, O'Kelly IM. Protein kinase A is central for forward transport of two-pore domain potassium channels K2P3.1 and K2P9.1. J Biol Chem 2011;286:14110-9. [PMID: 21357689 DOI: 10.1074/jbc.M110.190702] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
205 Lee AK, Tse FW, Tse A. Arginine Vasopressin Potentiates the Stimulatory Action of CRH on Pituitary Corticotropes via a Protein Kinase C-Dependent Reduction of the Background TREK-1 Current. Endocrinology 2015;156:3661-72. [PMID: 26248219 DOI: 10.1210/en.2015-1293] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
206 Moha Ou Maati H, Borsotto M, Chatelain F, Widmann C, Lazdunski M, Heurteaux C. Activation of ATP-sensitive potassium channels as an element of the neuroprotective effects of the Traditional Chinese Medicine MLC901 against oxygen glucose deprivation. Neuropharmacology 2012;63:692-700. [PMID: 22659084 DOI: 10.1016/j.neuropharm.2012.05.035] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
207 Dickerson MT, Vierra NC, Milian SC, Dadi PK, Jacobson DA. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells. PLoS One 2017;12:e0175069. [PMID: 28403169 DOI: 10.1371/journal.pone.0175069] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
208 Blankenship ML, Coyle DE, Baccei ML. Transcriptional expression of voltage-gated Na⁺ and voltage-independent K⁺ channels in the developing rat superficial dorsal horn. Neuroscience 2013;231:305-14. [PMID: 23219908 DOI: 10.1016/j.neuroscience.2012.11.053] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
209 Kwon O, Yang H, Kim SC, Kim J, Sim J, Lee J, Hwang EM, Shim S, Park JY. TWIK-1 BAC-GFP Transgenic Mice, an Animal Model for TWIK-1 Expression. Cells 2021;10:2751. [PMID: 34685731 DOI: 10.3390/cells10102751] [Reference Citation Analysis]
210 Toczyłowska-Mamińska R, Dołowy K. Ion transporting proteins of human bronchial epithelium. J Cell Biochem 2012;113:426-32. [PMID: 21975871 DOI: 10.1002/jcb.23393] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
211 Cazals Y, Bévengut M, Zanella S, Brocard F, Barhanin J, Gestreau C. KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing. Nat Commun 2015;6:8780. [PMID: 26549439 DOI: 10.1038/ncomms9780] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
212 Bista P, Pawlowski M, Cerina M, Ehling P, Leist M, Meuth P, Aissaoui A, Borsotto M, Heurteaux C, Decher N, Pape HC, Oliver D, Meuth SG, Budde T. Differential phospholipase C-dependent modulation of TASK and TREK two-pore domain K+ channels in rat thalamocortical relay neurons. J Physiol 2015;593:127-44. [PMID: 25556792 DOI: 10.1113/jphysiol.2014.276527] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
213 Ramirez JM, Doi A, Garcia AJ 3rd, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2012;2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Cited by in Crossref: 15] [Cited by in F6Publishing: 31] [Article Influence: 1.7] [Reference Citation Analysis]
214 Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci 2015;72:3677-93. [PMID: 26070303 DOI: 10.1007/s00018-015-1948-5] [Cited by in Crossref: 105] [Cited by in F6Publishing: 85] [Article Influence: 15.0] [Reference Citation Analysis]
215 Okamoto K, Emura N, Sato H, Fukatsu Y, Saito M, Tanaka C, Morita Y, Nishimura K, Kuramoto E, Xu Yin D, Furutani K, Okazawa M, Kurachi Y, Kaneko T, Maeda Y, Yamashiro T, Takada K, Toyoda H, Kang Y. The Possible Role of TASK Channels in Rank-Ordered Recruitment of Motoneurons in the Dorsolateral Part of the Trigeminal Motor Nucleus. eNeuro 2016;3:ENEURO. [PMID: 27482536 DOI: 10.1523/ENEURO.0138-16.2016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
216 Staudacher I, Seehausen S, Gierten J, Illg C, Schweizer PA, Katus HA, Thomas D. Cloning and characterization of zebrafish K2P13.1 (THIK-1) two-pore-domain K+ channels. Journal of Molecular and Cellular Cardiology 2019;126:96-104. [DOI: 10.1016/j.yjmcc.2018.11.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
217 Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019;122:760-87. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
218 Weiger TM, Hermann A. Cell proliferation, potassium channels, polyamines and their interactions: a mini review. Amino Acids 2014;46:681-8. [PMID: 23820618 DOI: 10.1007/s00726-013-1536-7] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
219 Matsuoka H, Harada K, Nakamura J, Inoue M. Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K+ 1 channels in adrenal medullary cells and PC12 cells. Pflugers Arch - Eur J Physiol 2013;465:1051-64. [DOI: 10.1007/s00424-013-1222-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
220 Vyas VK, Parikh P, Ramani J, Ghate M. Medicinal Chemistry of Potassium Channel Modulators: An Update of Recent Progress (2011-2017). Curr Med Chem 2019;26:2062-84. [PMID: 29714134 DOI: 10.2174/0929867325666180430152023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
221 Chen H, Zuo D, Zhang J, Zhou M, Ma L. Classification of 2-pore domain potassium channels based on rectification under quasi-physiological ionic conditions. Channels (Austin) 2014;8:503-8. [PMID: 25616686 DOI: 10.4161/19336950.2014.973779] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
222 Castellanos A, Andres A, Bernal L, Callejo G, Comes N, Gual A, Giblin JP, Roza C, Gasull X. Pyrethroids inhibit K2P channels and activate sensory neurons: basis of insecticide-induced paraesthesias. Pain 2018;159:92-105. [PMID: 28937579 DOI: 10.1097/j.pain.0000000000001068] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
223 Köroğlu Ç, Seven M, Tolun A. Recessive truncating NALCN mutation in infantile neuroaxonal dystrophy with facial dysmorphism. J Med Genet 2013;50:515-20. [PMID: 23749988 DOI: 10.1136/jmedgenet-2013-101634] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 5.0] [Reference Citation Analysis]
224 Beltrán LR, Dawid C, Beltrán M, Levermann J, Titt S, Thomas S, Pürschel V, Satalik M, Gisselmann G, Hofmann T, Hatt H. The Effect of Pungent and Tingling Compounds from Piper nigrum L. on Background K+ Currents. Front Pharmacol 2017;8:408. [PMID: 28694780 DOI: 10.3389/fphar.2017.00408] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
225 Bista P, Meuth SG, Kanyshkova T, Cerina M, Pawlowski M, Ehling P, Landgraf P, Borsotto M, Heurteaux C, Pape HC, Baukrowitz T, Budde T. Identification of the muscarinic pathway underlying cessation of sleep-related burst activity in rat thalamocortical relay neurons. Pflugers Arch 2012;463:89-102. [PMID: 22083644 DOI: 10.1007/s00424-011-1056-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
226 Chen H, Chatelain FC, Lesage F. Altered and dynamic ion selectivity of K+ channels in cell development and excitability. Trends Pharmacol Sci 2014;35:461-9. [PMID: 25023607 DOI: 10.1016/j.tips.2014.06.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
227 Senatore A, Spafford JD. A uniquely adaptable pore is consistent with NALCN being an ion sensor. Channels (Austin) 2013;7:60-8. [PMID: 23442378 DOI: 10.4161/chan.23981] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
228 Stuart S, Cox HC, Lea RA, Griffiths LR. The Role of the MTHFR Gene in Migraine. Headache: The Journal of Head and Face Pain 2012;52:515-20. [DOI: 10.1111/j.1526-4610.2012.02106.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
229 Huang H, Li H, Shi K, Wang L, Zhang X, Zhu X. TREK‑TRAAK two‑pore domain potassium channels protect human retinal pigment epithelium cells from oxidative stress. Int J Mol Med 2018;42:2584-94. [PMID: 30106090 DOI: 10.3892/ijmm.2018.3813] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.3] [Reference Citation Analysis]
230 Pang JJ. Roles of the ocular pressure, pressure-sensitive ion channel, and elasticity in pressure-induced retinal diseases. Neural Regen Res 2021;16:68-72. [PMID: 32788449 DOI: 10.4103/1673-5374.286953] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
231 Zhou M, Du Y, Aten S, Terman D. On the electrical passivity of astrocyte potassium conductance. J Neurophysiol 2021;126:1403-19. [PMID: 34525325 DOI: 10.1152/jn.00330.2021] [Reference Citation Analysis]
232 Rafieemehr H, Samimi A, Maleki Behzad M, Ghanavat M, Shahrabi S. Altered expression and functional role of ion channels in leukemia: bench to bedside. Clin Transl Oncol 2020;22:283-93. [PMID: 31280433 DOI: 10.1007/s12094-019-02147-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
233 Berrier C, Pozza A, de Lacroix de Lavalette A, Chardonnet S, Mesneau A, Jaxel C, le Maire M, Ghazi A. The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J Biol Chem 2013;288:27307-14. [PMID: 23897808 DOI: 10.1074/jbc.M113.478321] [Cited by in Crossref: 55] [Cited by in F6Publishing: 34] [Article Influence: 6.1] [Reference Citation Analysis]
234 Schmidt C, Wiedmann F, Schweizer PA, Katus HA, Thomas D. Inhibition of cardiac two-pore-domain K+ (K2P) channels – an emerging antiarrhythmic concept. European Journal of Pharmacology 2014;738:250-5. [DOI: 10.1016/j.ejphar.2014.05.056] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
235 Poupon L, Lamoine S, Pereira V, Barriere DA, Lolignier S, Giraudet F, Aissouni Y, Meleine M, Prival L, Richard D, Kerckhove N, Authier N, Balayssac D, Eschalier A, Lazdunski M, Busserolles J. Targeting the TREK-1 potassium channel via riluzole to eliminate the neuropathic and depressive-like effects of oxaliplatin. Neuropharmacology 2018;140:43-61. [PMID: 30056126 DOI: 10.1016/j.neuropharm.2018.07.026] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
236 Lambert M, Boet A, Rucker-martin C, Mendes-ferreira P, Capuano V, Hatem S, Adão R, Brás-silva C, Hautefort A, Michel J, Dorfmuller P, Fadel E, Kotsimbos T, Price L, Jourdon P, Montani D, Humbert M, Perros F, Antigny F. Loss of KCNK3 is a hallmark of RV hypertrophy/dysfunction associated with pulmonary hypertension. Cardiovascular Research 2018;114:880-93. [DOI: 10.1093/cvr/cvy016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 7.8] [Reference Citation Analysis]
237 Wang S, Song M, Guo J, Huang Y, Zhang F, Xu C, Xiao Y, Zhang L. The potassium channel FaTPK1 plays a critical role in fruit quality formation in strawberry (Fragaria × ananassa). Plant Biotechnol J 2018;16:737-48. [PMID: 28851008 DOI: 10.1111/pbi.12824] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
238 Steinberg EA, Wafford KA, Brickley SG, Franks NP, Wisden W. The role of K₂p channels in anaesthesia and sleep. Pflugers Arch 2015;467:907-16. [PMID: 25482669 DOI: 10.1007/s00424-014-1654-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
239 Tarasov MV, Kotova PD, Bystrova MF, Kabanova NV, Sysoeva VY, Kolesnikov SS. Arachidonic acid hyperpolarizes mesenchymal stromal cells from the human adipose tissue by stimulating TREK1 K+ channels. Channels (Austin) 2019;13:36-47. [PMID: 30661462 DOI: 10.1080/19336950.2019.1565251] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
240 Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018;98:239-389. [PMID: 29351512 DOI: 10.1152/physrev.00042.2016] [Cited by in Crossref: 440] [Cited by in F6Publishing: 414] [Article Influence: 110.0] [Reference Citation Analysis]
241 Leist M, Rinné S, Datunashvili M, Aissaoui A, Pape HC, Decher N, Meuth SG, Budde T. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway. J Physiol 2017;595:5875-93. [PMID: 28714121 DOI: 10.1113/JP274527] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
242 Kushiyama Y, Honjo H, Niwa R, Takanari H, Yamazaki M, Takemoto Y, Sakuma I, Kodama I, Kamiya K. Partial IK1 blockade destabilizes spiral wave rotation center without inducing wave breakup and facilitates termination of reentrant arrhythmias in ventricles. Am J Physiol Heart Circ Physiol 2016;311:H750-8. [PMID: 27422985 DOI: 10.1152/ajpheart.00228.2016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
243 Wang W, Ye SD, Zhou KQ, Wu LM, Huang YN. High doses of salicylate and aspirin are inhibitory on acid-sensing ion channels and protective against acidosis-induced neuronal injury in the rat cortical neuron. J Neurosci Res 2012;90:267-77. [PMID: 21969311 DOI: 10.1002/jnr.22742] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
244 Williams S, Bateman A, O'Kelly I. Altered expression of two-pore domain potassium (K2P) channels in cancer. PLoS One 2013;8:e74589. [PMID: 24116006 DOI: 10.1371/journal.pone.0074589] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 4.7] [Reference Citation Analysis]
245 Huntemann N, Bittner S, Bock S, Meuth SG, Ruck T. Mini-Review: Two Brothers in Crime - The Interplay of TRESK and TREK in Human Diseases. Neurosci Lett 2021;769:136376. [PMID: 34852287 DOI: 10.1016/j.neulet.2021.136376] [Reference Citation Analysis]
246 Kitagawa MG, Reynolds JO, Durgan D, Rodney G, Karmouty-Quintana H, Bryan R, Pandit LM. Twik-2-/- mouse demonstrates pulmonary vascular heterogeneity in intracellular pathways for vasocontractility. Physiol Rep 2019;7:e13950. [PMID: 30632293 DOI: 10.14814/phy2.13950] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
247 Shin HW, Soh JS, Kim HZ, Hong J, Woo DH, Heo JY, Hwang EM, Park J, Lee CJ. The inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on K2P (two-pore domain potassium) channel TREK-1. J Anesth 2014;28:81-6. [DOI: 10.1007/s00540-013-1661-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
248 Huang CL, Wu L, Jeevaratnam K, Lei M. Update on antiarrhythmic drug pharmacology. J Cardiovasc Electrophysiol 2020;31:579-92. [PMID: 31930579 DOI: 10.1111/jce.14347] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
249 Gada K, Plant LD. Two-pore domain potassium channels: emerging targets for novel analgesic drugs: IUPHAR Review 26. Br J Pharmacol 2019;176:256-66. [PMID: 30325008 DOI: 10.1111/bph.14518] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
250 Dong N, Feng ZP. Inverse Relationship between Basal Pacemaker Neuron Activity and Aversive Long-Term Memory Formation in Lymnaea stagnalis. Front Cell Neurosci 2016;10:297. [PMID: 28101006 DOI: 10.3389/fncel.2016.00297] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
251 Enyeart JJ, Enyeart JA. Human adrenal glomerulosa cells express K2P and GIRK potassium channels that are inhibited by ANG II and ACTH. Am J Physiol Cell Physiol 2021;321:C158-75. [PMID: 34038243 DOI: 10.1152/ajpcell.00118.2021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
252 Burg S, Attali B. Targeting of Potassium Channels in Cardiac Arrhythmias. Trends Pharmacol Sci 2021;42:491-506. [PMID: 33858691 DOI: 10.1016/j.tips.2021.03.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
253 Zúñiga R, Concha G, Cayo A, Cikutović-Molina R, Arevalo B, González W, Catalán MA, Zúñiga L. Withaferin A suppresses breast cancer cell proliferation by inhibition of the two-pore domain potassium (K2P9) channel TASK-3. Biomed Pharmacother 2020;129:110383. [PMID: 32563149 DOI: 10.1016/j.biopha.2020.110383] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
254 McCoull D, Ococks E, Large JM, Tickle DC, Mathie A, Jerman J, Wright PD. A "Target Class" Screen to Identify Activators of Two-Pore Domain Potassium (K2P) Channels. SLAS Discov 2021;26:428-38. [PMID: 33375888 DOI: 10.1177/2472555220976126] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
255 Perathoner S, Daane JM, Henrion U, Seebohm G, Higdon CW, Johnson SL, Nüsslein-Volhard C, Harris MP. Bioelectric signaling regulates size in zebrafish fins. PLoS Genet 2014;10:e1004080. [PMID: 24453984 DOI: 10.1371/journal.pgen.1004080] [Cited by in Crossref: 104] [Cited by in F6Publishing: 90] [Article Influence: 13.0] [Reference Citation Analysis]
256 Gertner DM, Desai S, Lnenicka GA. Synaptic excitation is regulated by the postsynaptic dSK channel at the Drosophila larval NMJ. J Neurophysiol 2014;111:2533-43. [PMID: 24671529 DOI: 10.1152/jn.00903.2013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
257 Svechtarova MI, Buzzacchera I, Toebes BJ, Lauko J, Anton N, Wilson CJ. Sensor Devices Inspired by the Five Senses: A Review. Electroanalysis 2016;28:1201-41. [DOI: 10.1002/elan.201600047] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
258 Guérineau NC, Monteil A, Lory P. Sodium background currents in endocrine/neuroendocrine cells: Towards unraveling channel identity and contribution in hormone secretion. Front Neuroendocrinol 2021;63:100947. [PMID: 34592201 DOI: 10.1016/j.yfrne.2021.100947] [Reference Citation Analysis]
259 Borsotto M, Veyssiere J, Moha Ou Maati H, Devader C, Mazella J, Heurteaux C. Targeting two-pore domain K(+) channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept. Br J Pharmacol 2015;172:771-84. [PMID: 25263033 DOI: 10.1111/bph.12953] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
260 Chang YT, Ling J, Gu JG. Effects of GABAB receptor activation on excitability of IB4-positive maxillary trigeminal ganglion neurons: Possible involvement of TREK2 activation. Mol Pain 2021;17:17448069211042963. [PMID: 34461754 DOI: 10.1177/17448069211042963] [Reference Citation Analysis]
261 Ładno W, Gawlak M, Szulczyk P, Nurowska E. Kinetic properties and adrenergic control of TREK-2-like channels in rat medial prefrontal cortex (mPFC) pyramidal neurons. Brain Res 2017;1665:95-104. [PMID: 28438532 DOI: 10.1016/j.brainres.2017.04.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
262 Callejo G, Giblin JP, Gasull X. Modulation of TRESK background K+ channel by membrane stretch. PLoS One 2013;8:e64471. [PMID: 23691227 DOI: 10.1371/journal.pone.0064471] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
263 Cader MZ. The genetics of migraine and the path to precision medicine. Update on Emerging Treatments for Migraine. Elsevier; 2020. pp. 403-18. [DOI: 10.1016/bs.pbr.2020.06.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
264 Giblin JP, Etayo I, Castellanos A, Andres-Bilbe A, Gasull X. Anionic Phospholipids Bind to and Modulate the Activity of Human TRESK Background K+ Channel. Mol Neurobiol 2019;56:2524-41. [PMID: 30039335 DOI: 10.1007/s12035-018-1244-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
265 Gao F, Yang Z, Jacoby RA, Wu SM, Pang JJ. The expression and function of TRPV4 channels in primate retinal ganglion cells and bipolar cells. Cell Death Dis 2019;10:364. [PMID: 31064977 DOI: 10.1038/s41419-019-1576-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
266 Kanjhan R, Pow DV, Noakes PG, Bellingham MC. The two-pore domain K+ channel TASK-1 is closely associated with brain barriers and meninges. J Mol Histol 2010;41:315-23. [PMID: 20835844 DOI: 10.1007/s10735-010-9293-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
267 Schiekel J, Lindner M, Hetzel A, Wemhöner K, Renigunta V, Schlichthörl G, Decher N, Oliver D, Daut J. The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C. Cardiovascular Research 2013;97:97-105. [DOI: 10.1093/cvr/cvs285] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
268 Niemeyer MI, Cid LP, Paulais M, Teulon J, Sepúlveda FV. Phosphatidylinositol (4,5)-bisphosphate dynamically regulates the K2P background K+ channel TASK-2. Sci Rep 2017;7:45407. [PMID: 28358046 DOI: 10.1038/srep45407] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
269 Ryoo K, Park JY. Two-pore Domain Potassium Channels in Astrocytes. Exp Neurobiol 2016;25:222-32. [PMID: 27790056 DOI: 10.5607/en.2016.25.5.222] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
270 Gao S, Sandstrom DJ, Smith HE, High B, Marsh JW, Nash HA. Drosophila ryanodine receptors mediate general anesthesia by halothane. Anesthesiology 2013;118:587-601. [PMID: 23254148 DOI: 10.1097/ALN.0b013e31827e52c6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
271 Shetty MS, Ris L, Schindler RFR, Mizuno K, Fedele L, Giese KP, Brand T, Abel T. Mice Lacking the cAMP Effector Protein POPDC1 Show Enhanced Hippocampal Synaptic Plasticity. Cereb Cortex 2021:bhab426. [PMID: 34937090 DOI: 10.1093/cercor/bhab426] [Reference Citation Analysis]
272 Djouhri L. Aδ-fiber low threshold mechanoreceptors innervating mammalian hairy skin: A review of their receptive, electrophysiological and cytochemical properties in relation to Aδ-fiber high threshold mechanoreceptors. Neuroscience & Biobehavioral Reviews 2016;61:225-38. [DOI: 10.1016/j.neubiorev.2015.12.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
273 Tagishi K, Shimizu A, Endo K, Kito H, Niwa S, Fujii M, Ohya S. Defective splicing of the background K+ channel K2P5.1 by the pre-mRNA splicing inhibitor, pladienolide B in lectin-activated mouse splenic CD4+ T cells. Journal of Pharmacological Sciences 2016;132:205-9. [DOI: 10.1016/j.jphs.2016.10.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
274 Kamuene JM, Xu Y, Plant LD. The Pharmacology of Two-Pore Domain Potassium Channels. Handb Exp Pharmacol 2021. [PMID: 33880623 DOI: 10.1007/164_2021_462] [Reference Citation Analysis]
275 Duan W, Hicks J, Makara MA, Ilkayeva O, Abraham DM. TASK-1 and TASK-3 channels modulate pressure overload-induced cardiac remodeling and dysfunction. Am J Physiol Heart Circ Physiol 2020;318:H566-80. [PMID: 31977249 DOI: 10.1152/ajpheart.00739.2018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
276 Marsh B, Acosta C, Djouhri L, Lawson SN. Leak K⁺ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol Cell Neurosci 2012;49:375-86. [PMID: 22273507 DOI: 10.1016/j.mcn.2012.01.002] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 7.8] [Reference Citation Analysis]
277 Mavrantoni A, Thallmair V, Leitner MG, Schreiber DN, Oliver D, Halaszovich CR. A method to control phosphoinositides and to analyze PTEN function in living cells using voltage sensitive phosphatases. Front Pharmacol 2015;6:68. [PMID: 25873899 DOI: 10.3389/fphar.2015.00068] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
278 Li XY, Toyoda H. Role of leak potassium channels in pain signaling. Brain Res Bull 2015;119:73-9. [PMID: 26321392 DOI: 10.1016/j.brainresbull.2015.08.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
279 Daane JM, Lanni J, Rothenberg I, Seebohm G, Higdon CW, Johnson SL, Harris MP. Bioelectric-calcineurin signaling module regulates allometric growth and size of the zebrafish fin. Sci Rep 2018;8:10391. [PMID: 29991812 DOI: 10.1038/s41598-018-28450-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
280 Prole DL, Taylor CW. Identification and analysis of putative homologues of mechanosensitive channels in pathogenic protozoa. PLoS One 2013;8:e66068. [PMID: 23785469 DOI: 10.1371/journal.pone.0066068] [Cited by in Crossref: 49] [Cited by in F6Publishing: 37] [Article Influence: 5.4] [Reference Citation Analysis]
281 Wague A, Joseph TT, Woll KA, Bu W, Vaidya KA, Bhanu NV, Garcia BA, Nimigean CM, Eckenhoff RG, Riegelhaupt PM. Mechanistic insights into volatile anesthetic modulation of K2P channels. Elife 2020;9:e59839. [PMID: 33345771 DOI: 10.7554/eLife.59839] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
282 Schwingshackl A, Teng B, Makena P, Ghosh M, Sinclair SE, Luellen C, Balasz L, Rovnaghi C, Bryan RM, Lloyd EE, Fitzpatrick E, Saravia JS, Cormier SA, Waters CM. Deficiency of the two-pore-domain potassium channel TREK-1 promotes hyperoxia-induced lung injury. Crit Care Med 2014;42:e692-701. [PMID: 25126877 DOI: 10.1097/CCM.0000000000000603] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
283 Parra A, Baker CA, Bolton MM. Regional Specialization of Pyramidal Neuron Morphology and Physiology in the Tree Shrew Neocortex. Cereb Cortex 2019;29:4488-505. [PMID: 30715235 DOI: 10.1093/cercor/bhy326] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
284 Mazzone GL, Nistri A. Delayed neuroprotection by riluzole against excitotoxic damage evoked by kainate on rat organotypic spinal cord cultures. Neuroscience. 2011;190:318-327. [PMID: 21689734 DOI: 10.1016/j.neuroscience.2011.06.013] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 2.9] [Reference Citation Analysis]
285 Wilke BU, Lindner M, Greifenberg L, Albus A, Kronimus Y, Bünemann M, Leitner MG, Oliver D. Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors. Nat Commun 2014;5:5540. [PMID: 25420509 DOI: 10.1038/ncomms6540] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 6.4] [Reference Citation Analysis]
286 Blin S, Ben Soussia I, Kim EJ, Brau F, Kang D, Lesage F, Bichet D. Mixing and matching TREK/TRAAK subunits generate heterodimeric K2P channels with unique properties. Proc Natl Acad Sci U S A 2016;113:4200-5. [PMID: 27035965 DOI: 10.1073/pnas.1522748113] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 6.7] [Reference Citation Analysis]
287 Pope L, Lolicato M, Minor DL Jr. Polynuclear Ruthenium Amines Inhibit K2P Channels via a "Finger in the Dam" Mechanism. Cell Chem Biol 2020;27:511-524.e4. [PMID: 32059793 DOI: 10.1016/j.chembiol.2020.01.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
288 Szabò I, Leanza L. The Roles of Mitochondrial Cation Channels Under Physiological Conditions and in Cancer. Handb Exp Pharmacol 2017;240:47-69. [PMID: 27995386 DOI: 10.1007/164_2016_92] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
289 Hood JL, Emeson RB. Editing of neurotransmitter receptor and ion channel RNAs in the nervous system. Curr Top Microbiol Immunol 2012;353:61-90. [PMID: 21796513 DOI: 10.1007/82_2011_157] [Cited by in Crossref: 12] [Cited by in F6Publishing: 38] [Article Influence: 1.2] [Reference Citation Analysis]
290 Rahm A, Wiedmann F, Gierten J, Schmidt C, Schweizer PA, Becker R, Katus HA, Thomas D. Functional characterization of zebrafish K2P18.1 (TRESK) two-pore-domain K+ channels. Naunyn-Schmiedeberg's Arch Pharmacol 2014;387:291-300. [DOI: 10.1007/s00210-013-0945-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
291 Al-Moubarak E, Veale EL, Mathie A. Pharmacologically reversible, loss of function mutations in the TM2 and TM4 inner pore helices of TREK-1 K2P channels. Sci Rep 2019;9:12394. [PMID: 31455781 DOI: 10.1038/s41598-019-48855-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
292 Jukkola P, Gu C. Regulation of neurovascular coupling in autoimmunity to water and ion channels. Autoimmun Rev 2015;14:258-67. [PMID: 25462580 DOI: 10.1016/j.autrev.2014.11.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
293 Riedelsberger J, Obando PA, Gonzalez W. Yeast strain Saccharomyces cerevisiae BYT45 lacking the cation extrusion systems ENA1-5 and NHA1 is suitable for the characterization of TASK-3 potassium channel antagonists. FEMS Yeast Res 2019;19:foz044. [PMID: 31247642 DOI: 10.1093/femsyr/foz044] [Reference Citation Analysis]
294 Lüersen K, Gottschling DC, Döring F. Complex Locomotion Behavior Changes Are Induced in Caenorhabditis elegans by the Lack of the Regulatory Leak K+ Channel TWK-7. Genetics 2016;204:683-701. [PMID: 27535928 DOI: 10.1534/genetics.116.188896] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
295 Cikutović-Molina R, Herrada AA, González W, Brown N, Zúñiga L. TASK-3 Gene Knockdown Dampens Invasion and Migration and Promotes Apoptosis in KATO III and MKN-45 Human Gastric Adenocarcinoma Cell Lines. Int J Mol Sci 2019;20:E6077. [PMID: 31810225 DOI: 10.3390/ijms20236077] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
296 Lengyel M, Czirják G, Enyedi P. Formation of Functional Heterodimers by TREK-1 and TREK-2 Two-pore Domain Potassium Channel Subunits. J Biol Chem 2016;291:13649-61. [PMID: 27129242 DOI: 10.1074/jbc.M116.719039] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
297 Wright PD, Veale EL, Mccoull D, Tickle DC, Large JM, Ococks E, Gothard G, Kettleborough C, Mathie A, Jerman J. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochemical and Biophysical Research Communications 2017;493:444-50. [DOI: 10.1016/j.bbrc.2017.09.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
298 Weller J, Steinhäuser C, Seifert G. pH-Sensitive K+ Currents and Properties of K2P Channels in Murine Hippocampal Astrocytes. Ion Channels as Therapeutic Targets, Part A. Elsevier; 2016. pp. 263-94. [DOI: 10.1016/bs.apcsb.2015.10.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
299 da Silva MP, Magalhães KS, de Souza DP, Moraes DJA. Chronic intermittent hypoxia increases excitability and synaptic excitation of protrudor and retractor hypoglossal motoneurones. J Physiol 2021;599:1917-32. [PMID: 33507557 DOI: 10.1113/JP280788] [Reference Citation Analysis]
300 Syeda F, Holmes AP, Yu TY, Tull S, Kuhlmann SM, Pavlovic D, Betney D, Riley G, Kucera JP, Jousset F, de Groot JR, Rohr S, Brown NA, Fabritz L, Kirchhof P. PITX2 Modulates Atrial Membrane Potential and the Antiarrhythmic Effects of Sodium-Channel Blockers. J Am Coll Cardiol 2016;68:1881-94. [PMID: 27765191 DOI: 10.1016/j.jacc.2016.07.766] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 9.6] [Reference Citation Analysis]
301 Ramírez D, Concha G, Arévalo B, Prent-Peñaloza L, Zúñiga L, Kiper AK, Rinné S, Reyes-Parada M, Decher N, González W, Caballero J. Discovery of Novel TASK-3 Channel Blockers Using a Pharmacophore-Based Virtual Screening. Int J Mol Sci 2019;20:E4014. [PMID: 31426491 DOI: 10.3390/ijms20164014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
302 Lee H, Lolicato M, Arrigoni C, Minor DL Jr. Production of K2P2.1 (TREK-1) for structural studies. Methods Enzymol 2021;653:151-88. [PMID: 34099170 DOI: 10.1016/bs.mie.2021.02.013] [Reference Citation Analysis]
303 Cifra A, Nani F, Nistri A. Respiratory motoneurons and pathological conditions: lessons from hypoglossal motoneurons challenged by excitotoxic or oxidative stress. Respir Physiol Neurobiol 2011;179:89-96. [PMID: 21443969 DOI: 10.1016/j.resp.2011.03.017] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
304 Ghatak S, Banerjee A, Sikdar SK. Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain. J Physiol 2016;594:59-81. [PMID: 26445100 DOI: 10.1113/JP270706] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
305 Beltrán L, Beltrán M, Aguado A, Gisselmann G, Hatt H. 2-Aminoethoxydiphenyl borate activates the mechanically gated human KCNK channels KCNK 2 (TREK-1), KCNK 4 (TRAAK), and KCNK 10 (TREK-2). Front Pharmacol 2013;4:63. [PMID: 23720627 DOI: 10.3389/fphar.2013.00063] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
306 Petersen EN, Pavel MA, Wang H, Hansen SB. Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels. Biochim Biophys Acta Biomembr 2020;1862:183091. [PMID: 31672538 DOI: 10.1016/j.bbamem.2019.183091] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
307 Zúñiga L, Zúñiga R. Understanding the Cap Structure in K2P Channels. Front Physiol 2016;7:228. [PMID: 27378938 DOI: 10.3389/fphys.2016.00228] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
308 Choi JH, Yarishkin O, Kim E, Bae Y, Kim A, Kim SC, Ryoo K, Cho CH, Hwang EM, Park JY. TWIK-1/TASK-3 heterodimeric channels contribute to the neurotensin-mediated excitation of hippocampal dentate gyrus granule cells. Exp Mol Med 2018;50:1-13. [PMID: 30416196 DOI: 10.1038/s12276-018-0172-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
309 Wang W, Kiyoshi CM, Du Y, Taylor AT, Sheehan ER, Wu X, Zhou M. TREK-1 Null Impairs Neuronal Excitability, Synaptic Plasticity, and Cognitive Function. Mol Neurobiol 2020;57:1332-46. [PMID: 31728930 DOI: 10.1007/s12035-019-01828-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
310 Chung HW, Petersen EN, Cabanos C, Murphy KR, Pavel MA, Hansen AS, Ja WW, Hansen SB. A Molecular Target for an Alcohol Chain-Length Cutoff. J Mol Biol 2019;431:196-209. [PMID: 30529033 DOI: 10.1016/j.jmb.2018.11.028] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
311 Vijayan S, Ching S, Purdon PL, Brown EN, Kopell NJ. Thalamocortical mechanisms for the anteriorization of α rhythms during propofol-induced unconsciousness. J Neurosci 2013;33:11070-5. [PMID: 23825412 DOI: 10.1523/JNEUROSCI.5670-12.2013] [Cited by in Crossref: 94] [Cited by in F6Publishing: 55] [Article Influence: 10.4] [Reference Citation Analysis]
312 Lafrenière RG, Rouleau GA. Migraine: Role of the TRESK two-pore potassium channel. The International Journal of Biochemistry & Cell Biology 2011;43:1533-6. [DOI: 10.1016/j.biocel.2011.08.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
313 Şterbuleac D. Molecular determinants of chemical modulation of two-pore domain potassium channels. Chem Biol Drug Des 2019;94:1596-614. [PMID: 31124599 DOI: 10.1111/cbdd.13571] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
314 Staudacher I, Illg C, Chai S, Deschenes I, Seehausen S, Gramlich D, Müller ME, Wieder T, Rahm AK, Mayer C, Schweizer PA, Katus HA, Thomas D. Cardiovascular pharmacology of K2P17.1 (TASK-4, TALK-2) two-pore-domain K+ channels. Naunyn Schmiedebergs Arch Pharmacol 2018;391:1119-31. [PMID: 30008082 DOI: 10.1007/s00210-018-1535-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
315 Inoue M, Harada K, Matsuoka H, Nakamura J, Warashina A. Mechanisms and roles of muscarinic activation in guinea-pig adrenal medullary cells. Am J Physiol Cell Physiol 2012;303:C635-44. [PMID: 22744007 DOI: 10.1152/ajpcell.00147.2012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
316 Lengyel M, Erdélyi F, Pergel E, Bálint-polonka Á, Dobolyi A, Bozsaki P, Dux M, Király K, Hegedűs T, Czirják G, Mátyus P, Enyedi P. Chemically Modified Derivatives of the Activator Compound Cloxyquin Exert Inhibitory Effect on TRESK (K 2P 18.1) Background Potassium Channel. Mol Pharmacol 2019;95:652-60. [DOI: 10.1124/mol.118.115626] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
317 Sun H, Luo L, Lal B, Ma X, Chen L, Hann CL, Fulton AM, Leahy DJ, Laterra J, Li M. A monoclonal antibody against KCNK9 K(+) channel extracellular domain inhibits tumour growth and metastasis. Nat Commun 2016;7:10339. [PMID: 26842342 DOI: 10.1038/ncomms10339] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
318 Prole DL, Taylor CW. Identification and analysis of cation channel homologues in human pathogenic fungi. PLoS One 2012;7:e42404. [PMID: 22876320 DOI: 10.1371/journal.pone.0042404] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
319 Kasap M, Dwyer DS. Clozapine, nimodipine and endosulfan differentially suppress behavioral defects caused by gain-of-function mutations in a two-pore domain K+ channel (UNC-58). Neurosci Res 2021;170:41-9. [PMID: 32681854 DOI: 10.1016/j.neures.2020.07.006] [Reference Citation Analysis]
320 Lolicato M, Natale AM, Abderemane-Ali F, Crottès D, Capponi S, Duman R, Wagner A, Rosenberg JM, Grabe M, Minor DL Jr. K2P channel C-type gating involves asymmetric selectivity filter order-disorder transitions. Sci Adv 2020;6:eabc9174. [PMID: 33127683 DOI: 10.1126/sciadv.abc9174] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
321 Ru F, Banovcin P Jr, Kollarik M. Acid sensitivity of the spinal dorsal root ganglia C-fiber nociceptors innervating the guinea pig esophagus. Neurogastroenterol Motil 2015;27:865-74. [PMID: 25846134 DOI: 10.1111/nmo.12561] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
322 Schattling B, Eggert B, Friese MA. Acquired channelopathies as contributors to development and progression of multiple sclerosis. Exp Neurol 2014;262 Pt A:28-36. [PMID: 24656770 DOI: 10.1016/j.expneurol.2013.12.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
323 Kilisch M, Lytovchenko O, Schwappach B, Renigunta V, Daut J. The role of protein-protein interactions in the intracellular traffic of the potassium channels TASK-1 and TASK-3. Pflugers Arch 2015;467:1105-20. [PMID: 25559843 DOI: 10.1007/s00424-014-1672-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
324 Schwingshackl A, Teng B, Ghosh M, Lim KG, Tigyi G, Narayanan D, Jaggar JH, Waters CM. Regulation of interleukin-6 secretion by the two-pore-domain potassium channel Trek-1 in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2013;304:L276-86. [PMID: 23275623 DOI: 10.1152/ajplung.00299.2012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
325 Matsuoka H, Pokorski M, Harada K, Yoshimura R, Inoue M. Expression of p11 and Heteromeric TASK Channels in Rat Carotid Body Glomus Cells and Nerve Growth Factor-differentiated PC12 Cells. J Histochem Cytochem 2020;68:679-90. [PMID: 32886017 DOI: 10.1369/0022155420955246] [Reference Citation Analysis]
326 Es-Salah-Lamoureux Z, Steele DF, Fedida D. Research into the therapeutic roles of two-pore-domain potassium channels. Trends Pharmacol Sci 2010;31:587-95. [PMID: 20951446 DOI: 10.1016/j.tips.2010.09.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 2.9] [Reference Citation Analysis]
327 Zhang R, Kang R, Klionsky DJ, Tang D. Ion Channels and Transporters in Autophagy. Autophagy 2021;:1-20. [PMID: 33657975 DOI: 10.1080/15548627.2021.1885147] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
328 Wu YY, Singer CA, Buxton IL. Variants of stretch-activated two-pore potassium channel TREK-1 associated with preterm labor in humans. Biol Reprod 2012;87:96. [PMID: 22811574 DOI: 10.1095/biolreprod.112.099499] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
329 Viatchenko-Karpinski V, Gu JG. Effects of cooling temperatures and low pH on membrane properties and voltage-dependent currents of rat nociceptive-like trigeminal ganglion neurons. Mol Pain 2018;14:1744806918814350. [PMID: 30380987 DOI: 10.1177/1744806918814350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
330 Liu S, Wang S, Zou L, Li J, Song C, Chen J, Hu Q, Liu L, Huang P, Xiong W. TMC1 is an essential component of a leak channel that modulates tonotopy and excitability of auditory hair cells in mice. Elife 2019;8:e47441. [PMID: 31661074 DOI: 10.7554/eLife.47441] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
331 Pattison LA, Callejo G, St John Smith E. Evolution of acid nociception: ion channels and receptors for detecting acid. Philos Trans R Soc Lond B Biol Sci 2019;374:20190291. [PMID: 31544616 DOI: 10.1098/rstb.2019.0291] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
332 You C, Vandegrift BJ, Brodie MS. KCNK13 potassium channels in the ventral tegmental area of rats are important for excitation of ventral tegmental area neurons by ethanol. Alcohol Clin Exp Res 2021;45:1348-58. [PMID: 33960499 DOI: 10.1111/acer.14630] [Reference Citation Analysis]
333 Buckler KJ. TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch 2015;467:1013-25. [PMID: 25623783 DOI: 10.1007/s00424-015-1689-1] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
334 Haenisch S, von Rüden EL, Wahmkow H, Rettenbeck ML, Michler C, Russmann V, Bruckmueller H, Waetzig V, Cascorbi I, Potschka H. miRNA-187-3p-Mediated Regulation of the KCNK10/TREK-2 Potassium Channel in a Rat Epilepsy Model. ACS Chem Neurosci 2016;7:1585-94. [PMID: 27609046 DOI: 10.1021/acschemneuro.6b00222] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
335 Miller AN, Long SB. Crystal Structure of the Human Two-Pore Domain Potassium Channel K2P1. Science 2012;335:432-6. [DOI: 10.1126/science.1213274] [Cited by in Crossref: 214] [Cited by in F6Publishing: 194] [Article Influence: 21.4] [Reference Citation Analysis]
336 Wiedmann F, Beyersdorf C, Zhou XB, Kraft M, Paasche A, Jávorszky N, Rinné S, Sutanto H, Büscher A, Foerster KI, Blank A, El-Battrawy I, Li X, Lang S, Tochtermann U, Kremer J, Arif R, Karck M, Decher N, van Loon G, Akin I, Borggrefe M, Kallenberger S, Heijman J, Haefeli WE, Katus HA, Schmidt C. Treatment of atrial fibrillation with doxapram: TASK-1 potassium channel inhibition as a novel pharmacological strategy. Cardiovasc Res 2021:cvab177. [PMID: 34028533 DOI: 10.1093/cvr/cvab177] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
337 Kann O, Taubenberger N, Huchzermeyer C, Papageorgiou IE, Benninger F, Heinemann U, Kovács R. Muscarinic receptor activation determines the effects of store-operated Ca2+-entry on excitability and energy metabolism in pyramidal neurons. Cell Calcium 2012;51:40-50. [DOI: 10.1016/j.ceca.2011.10.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
338 Busserolles J, Lolignier S, Kerckhove N, Bertin C, Authier N, Eschalier A. Replacement of current opioid drugs focusing on MOR-related strategies. Pharmacol Ther 2020;210:107519. [PMID: 32165137 DOI: 10.1016/j.pharmthera.2020.107519] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
339 Silberstein SD, Dodick DW. Migraine Genetics: Part II. Headache: The Journal of Head and Face Pain 2013;53:1218-29. [DOI: 10.1111/head.12169] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
340 Veale EL, Mathie A. Aristolochic acid, a plant extract used in the treatment of pain and linked to Balkan endemic nephropathy, is a regulator of K2P channels. Br J Pharmacol 2016;173:1639-52. [PMID: 26914156 DOI: 10.1111/bph.13465] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
341 Issa ZF, Miller JM, Zipes DP. Cardiac Ion Channels. Clinical Arrhythmology and Electrophysiology: A Companion to Braunwald's Heart Disease. Elsevier; 2012. pp. 10-35. [DOI: 10.1016/b978-1-4557-1274-8.00002-6] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
342 Brennecke JT, de Groot BL. Mechanism of Mechanosensitive Gating of the TREK-2 Potassium Channel. Biophys J 2018;114:1336-43. [PMID: 29590591 DOI: 10.1016/j.bpj.2018.01.030] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 8.3] [Reference Citation Analysis]
343 Decher N, Kiper AK, Rinné S. Stretch-activated potassium currents in the heart: Focus on TREK-1 and arrhythmias. Prog Biophys Mol Biol 2017;130:223-32. [PMID: 28526352 DOI: 10.1016/j.pbiomolbio.2017.05.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
344 Du Y, Kiyoshi CM, Wang Q, Wang W, Ma B, Alford CC, Zhong S, Wan Q, Chen H, Lloyd EE, Bryan RM Jr, Zhou M. Genetic Deletion of TREK-1 or TWIK-1/TREK-1 Potassium Channels does not Alter the Basic Electrophysiological Properties of Mature Hippocampal Astrocytes In Situ. Front Cell Neurosci 2016;10:13. [PMID: 26869883 DOI: 10.3389/fncel.2016.00013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
345 Nematian-Ardestani E, Jarerattanachat V, Aryal P, Sansom MSP, Tucker SJ. The effects of stretch activation on ionic selectivity of the TREK-2 K2P K+ channel. Channels (Austin) 2017;11:482-6. [PMID: 28723241 DOI: 10.1080/19336950.2017.1356955] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
346 Atia J, McCloskey C, Shmygol AS, Rand DA, van den Berg HA, Blanks AM. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells. PLoS Comput Biol 2016;12:e1004828. [PMID: 27105427 DOI: 10.1371/journal.pcbi.1004828] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
347 Brohawn SG, Campbell EB, MacKinnon R. Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel. Proc Natl Acad Sci U S A 2013;110:2129-34. [PMID: 23341632 DOI: 10.1073/pnas.1218950110] [Cited by in Crossref: 86] [Cited by in F6Publishing: 80] [Article Influence: 9.6] [Reference Citation Analysis]
348 Ben Soussia I, El Mouridi S, Kang D, Leclercq-Blondel A, Khoubza L, Tardy P, Zariohi N, Gendrel M, Lesage F, Kim EJ, Bichet D, Andrini O, Boulin T. Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels. Nat Commun 2019;10:787. [PMID: 30770809 DOI: 10.1038/s41467-019-08710-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
349 Bond RC, Choisy SC, Bryant SM, Hancox JC, James AF. Inhibition of a TREK-like K+ channel current by noradrenaline requires both β1- and β2-adrenoceptors in rat atrial myocytes. Cardiovasc Res 2014;104:206-15. [PMID: 25205295 DOI: 10.1093/cvr/cvu192] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
350 McClenaghan C, Schewe M, Aryal P, Carpenter EP, Baukrowitz T, Tucker SJ. Polymodal activation of the TREK-2 K2P channel produces structurally distinct open states. J Gen Physiol 2016;147:497-505. [PMID: 27241700 DOI: 10.1085/jgp.201611601] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 9.2] [Reference Citation Analysis]
351 Zhou J, Chen H, Yang C, Zhong J, He W, Xiong Q. Reversal of TRESK Downregulation Alleviates Neuropathic Pain by Inhibiting Activation of Gliocytes in the Spinal Cord. Neurochem Res 2017;42:1288-98. [PMID: 28160200 DOI: 10.1007/s11064-016-2170-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
352 Bohnen MS, Ma L, Zhu N, Qi H, McClenaghan C, Gonzaga-Jauregui C, Dewey FE, Overton JD, Reid JG, Shuldiner AR, Baras A, Sampson KJ, Bleda M, Hadinnapola C, Haimel M, Bogaard HJ, Church C, Coghlan G, Corris PA, Eyries M, Gibbs JSR, Girerd B, Houweling AC, Humbert M, Guignabert C, Kiely DG, Lawrie A, MacKenzie Ross RV, Martin JM, Montani D, Peacock AJ, Pepke-Zaba J, Soubrier F, Suntharalingam J, Toshner M, Treacy CM, Trembath RC, Vonk Noordegraaf A, Wharton J, Wilkins MR, Wort SJ, Yates K, Gräf S, Morrell NW, Krishnan U, Rosenzweig EB, Shen Y, Nichols CG, Kass RS, Chung WK. Loss-of-Function ABCC8 Mutations in Pulmonary Arterial Hypertension. Circ Genom Precis Med 2018;11:e002087. [PMID: 30354297 DOI: 10.1161/CIRCGEN.118.002087] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 7.7] [Reference Citation Analysis]
353 Proks P, Schewe M, Conrad LJ, Rao S, Rathje K, Rödström KEJ, Carpenter EP, Baukrowitz T, Tucker SJ. Norfluoxetine inhibits TREK-2 K2P channels by multiple mechanisms including state-independent effects on the selectivity filter gate. J Gen Physiol 2021;153:e202012812. [PMID: 34032848 DOI: 10.1085/jgp.202012812] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
354 Klassen MP, Peters CJ, Zhou S, Williams HH, Jan LY, Jan YN. Age-dependent diastolic heart failure in an in vivo Drosophila model. Elife 2017;6:e20851. [PMID: 28328397 DOI: 10.7554/eLife.20851] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
355 Lengyel M, Dobolyi A, Czirják G, Enyedi P. Selective and state-dependent activation of TRESK (K2P 18.1) background potassium channel by cloxyquin. Br J Pharmacol 2017;174:2102-13. [PMID: 28419410 DOI: 10.1111/bph.13821] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
356 Choveau FS, Ben Soussia I, Bichet D, Franck CC, Feliciangeli S, Lesage F. Convergence of Multiple Stimuli to a Single Gate in TREK1 and TRAAK Potassium Channels. Front Pharmacol 2021;12:755826. [PMID: 34658895 DOI: 10.3389/fphar.2021.755826] [Reference Citation Analysis]
357 Gierten J, Hassel D, Schweizer PA, Becker R, Katus HA, Thomas D. Identification and functional characterization of zebrafish K2P10.1 (TREK2) two-pore-domain K+ channels. Biochimica et Biophysica Acta (BBA) - Biomembranes 2012;1818:33-41. [DOI: 10.1016/j.bbamem.2011.09.015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
358 Marinc C, Preisig-Müller R, Prüss H, Derst C, Veh RW. Immunocytochemical localization of TASK-3 (K(2P)9.1) channels in monoaminergic and cholinergic neurons. Cell Mol Neurobiol 2011;31:323-35. [PMID: 21082237 DOI: 10.1007/s10571-010-9625-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
359 Huda R, McCrimmon DR, Martina M. pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract. J Neurophysiol 2013;110:368-77. [PMID: 23615553 DOI: 10.1152/jn.01074.2012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
360 Wiedmann F, Frey N, Schmidt C. Two-Pore-Domain Potassium (K2P-) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes. Cells 2021;10:2914. [PMID: 34831137 DOI: 10.3390/cells10112914] [Reference Citation Analysis]
361 Rohacs T. Phosphoinositide signaling in somatosensory neurons. Adv Biol Regul 2016;61:2-16. [PMID: 26724974 DOI: 10.1016/j.jbior.2015.11.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
362 Zavala WD, Foscolo MR, Kunda PE, Cavicchia JC, Acosta CG. Changes in the expression of the potassium channels TASK1, TASK3 and TRESK in a rat model of oral squamous cell carcinoma and their relation to malignancy. Arch Oral Biol 2019;100:75-85. [PMID: 30818127 DOI: 10.1016/j.archoralbio.2019.02.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
363 Hansen SB. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels. Biochim Biophys Acta 2015;1851:620-8. [PMID: 25633344 DOI: 10.1016/j.bbalip.2015.01.011] [Cited by in Crossref: 84] [Cited by in F6Publishing: 74] [Article Influence: 12.0] [Reference Citation Analysis]
364 Viswanath ANI, Jung SY, Hwang EM, Park KD, Lim SM, Min S, Cho YS, Pae AN. Identification of the first in silico -designed TREK1 antagonists that block channel currents dose dependently. Chem Biol Drug Des 2016;88:807-19. [DOI: 10.1111/cbdd.12810] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
365 Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021;15:685703. [PMID: 34276310 DOI: 10.3389/fncel.2021.685703] [Reference Citation Analysis]
366 Kim SE, Kim MH, Woo J, Kim SJ. Dual regulatory effects of PI(4,5)P2 on TREK-2 K+ channel through antagonizing interaction between the alkaline residues (K330 and R355-357) in the cytosolic C-terminal helix. Korean J Physiol Pharmacol 2020;24:555-61. [PMID: 33093276 DOI: 10.4196/kjpp.2020.24.6.555] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
367 Kadiri N, Rodeau JL, Schlichter R, Hugel S. Neurotensin inhibits background K+ channels and facilitates glutamatergic transmission in rat spinal cord dorsal horn. Eur J Neurosci 2011;34:1230-40. [PMID: 21936876 DOI: 10.1111/j.1460-9568.2011.07846.x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
368 Plant LD, Zuniga L, Araki D, Marks JD, Goldstein SA. SUMOylation silences heterodimeric TASK potassium channels containing K2P1 subunits in cerebellar granule neurons. Sci Signal 2012;5:ra84. [PMID: 23169818 DOI: 10.1126/scisignal.2003431] [Cited by in Crossref: 54] [Cited by in F6Publishing: 53] [Article Influence: 5.4] [Reference Citation Analysis]
369 Benesova J, Rusnakova V, Honsa P, Pivonkova H, Dzamba D, Kubista M, Anderova M. Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice. PLoS One 2012;7:e29725. [PMID: 22253765 DOI: 10.1371/journal.pone.0029725] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 3.8] [Reference Citation Analysis]
370 Enyedi P, Veres I, Braun G, Czirják G. Tubulin binds to the cytoplasmic loop of TRESK background K⁺ channel in vitro. PLoS One 2014;9:e97854. [PMID: 24830385 DOI: 10.1371/journal.pone.0097854] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
371 Ma L, Zhang X, Zhou M, Chen H. Acid-sensitive TWIK and TASK two-pore domain potassium channels change ion selectivity and become permeable to sodium in extracellular acidification. J Biol Chem 2012;287:37145-53. [PMID: 22948150 DOI: 10.1074/jbc.M112.398164] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
372 Grabauskas G, Wu X, Zhou S, Li J, Gao J, Owyang C. High-fat diet-induced vagal afferent dysfunction via upregulation of 2-pore domain potassium TRESK channel. JCI Insight 2019;4:130402. [PMID: 31484832 DOI: 10.1172/jci.insight.130402] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
373 Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther 2014;144:349-68. [PMID: 25108211 DOI: 10.1016/j.pharmthera.2014.08.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
374 Lazniewska J, Weiss N. The “Sweet” Side of Ion Channels. In: Nilius B, Gudermann T, Jahn R, Lill R, Offermanns S, Petersen OH, editors. Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167. Cham: Springer International Publishing; 2014. pp. 67-114. [DOI: 10.1007/112_2014_20] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
375 Peyronnet R, Ravens U. Atria-selective antiarrhythmic drugs in need of alliance partners. Pharmacol Res 2019;145:104262. [PMID: 31059791 DOI: 10.1016/j.phrs.2019.104262] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
376 Guo Z, Cao YQ. Over-expression of TRESK K(+) channels reduces the excitability of trigeminal ganglion nociceptors. PLoS One 2014;9:e87029. [PMID: 24466320 DOI: 10.1371/journal.pone.0087029] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 4.3] [Reference Citation Analysis]
377 Zhuo RG, Liu XY, Zhang SZ, Wei XL, Zheng JQ, Xu JP, Ma XY. Insights into the stimulatory mechanism of 2-aminoethoxydiphenyl borate on TREK-2 potassium channel. Neuroscience. 2015;300:85-93. [PMID: 25982558 DOI: 10.1016/j.neuroscience.2015.05.012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
378 Lewis KJ. Osteocyte calcium signaling - A potential translator of mechanical load to mechanobiology. Bone 2021;153:116136. [PMID: 34339908 DOI: 10.1016/j.bone.2021.116136] [Reference Citation Analysis]
379 Wallace JL, Gow IF, Warnock M. The life and death of breast cancer cells: proposing a role for the effects of phytoestrogens on potassium channels. J Membr Biol 2011;242:53-67. [PMID: 21728044 DOI: 10.1007/s00232-011-9376-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
380 Buijs TJ, McNaughton PA. The Role of Cold-Sensitive Ion Channels in Peripheral Thermosensation. Front Cell Neurosci 2020;14:262. [PMID: 32973456 DOI: 10.3389/fncel.2020.00262] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
381 Luo Q, Chen L, Cheng X, Ma Y, Li X, Zhang B, Li L, Zhang S, Guo F, Li Y, Yang H. An allosteric ligand-binding site in the extracellular cap of K2P channels. Nat Commun 2017;8:378. [PMID: 28851868 DOI: 10.1038/s41467-017-00499-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
382 Yang C, Zhang X, Guo Y, Meng F, Sachs F, Guo J. Mechanical dynamics in live cells and fluorescence-based force/tension sensors. Biochim Biophys Acta 2015;1853:1889-904. [PMID: 25958335 DOI: 10.1016/j.bbamcr.2015.05.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 4.4] [Reference Citation Analysis]
383 Grace KP, Hughes SW, Shahabi S, Horner RL. K+ channel modulation causes genioglossus inhibition in REM sleep and is a strategy for reactivation. Respir Physiol Neurobiol. 2013;188:277-288. [PMID: 23872455 DOI: 10.1016/j.resp.2013.07.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
384 Ceballos CC, Roque AC, Leão RM. The role of negative conductances in neuronal subthreshold properties and synaptic integration. Biophys Rev 2017;9:827-34. [PMID: 28808978 DOI: 10.1007/s12551-017-0300-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
385 Yu L, Zhang XY, Cao SL, Peng SY, Ji DY, Zhu JN, Wang JJ. Na(+) -Ca(2+) Exchanger, Leak K(+) Channel and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Comediate the Histamine-Induced Excitation on Rat Inferior Vestibular Nucleus Neurons. CNS Neurosci Ther 2016;22:184-93. [PMID: 26387685 DOI: 10.1111/cns.12451] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
386 Pope L, Arrigoni C, Lou H, Bryant C, Gallardo-Godoy A, Renslo AR, Minor DL Jr. Protein and Chemical Determinants of BL-1249 Action and Selectivity for K2P Channels. ACS Chem Neurosci 2018;9:3153-65. [PMID: 30089357 DOI: 10.1021/acschemneuro.8b00337] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
387 Mirkovic K, Wickman K. Identification and characterization of alternative splice variants of the mouse Trek2/Kcnk10 gene. Neuroscience 2011;194:11-8. [PMID: 21821104 DOI: 10.1016/j.neuroscience.2011.07.064] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
388 Książek A, Ladno W, Szulczyk B, Grzelka K, Szulczyk P. Properties of BK-type Ca(+) (+)-dependent K(+) channel currents in medial prefrontal cortex pyramidal neurons in rats of different ages. Front Cell Neurosci 2013;7:185. [PMID: 24312002 DOI: 10.3389/fncel.2013.00185] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
389 Cho CH, Hwang EM, Park JY. Emerging Roles of TWIK-1 Heterodimerization in the Brain. Int J Mol Sci 2017;19:E51. [PMID: 29295556 DOI: 10.3390/ijms19010051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
390 Warren EA, Payne CK. Cellular binding of nanoparticles disrupts the membrane potential. RSC Adv 2015;5:13660-6. [PMID: 25685328 DOI: 10.1039/C4RA15727C] [Cited by in Crossref: 50] [Cited by in F6Publishing: 12] [Article Influence: 7.1] [Reference Citation Analysis]
391 Maltby CJ, Schofield JPR, Houghton SD, O'Kelly I, Vargas-Caballero M, Deinhardt K, Coldwell MJ. A 5' UTR GGN repeat controls localisation and translation of a potassium leak channel mRNA through G-quadruplex formation. Nucleic Acids Res 2020;48:9822-39. [PMID: 32870280 DOI: 10.1093/nar/gkaa699] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
392 Hur C, Kim E, Cho S, Cho Y, Yoon S, Tak H, Kim C, Choe C, Han J, Kang D. K+ efflux through two-pore domain K+ channels is required for mouse embryonic development. REPRODUCTION 2012;143:625-36. [DOI: 10.1530/rep-11-0225] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
393 Wiedmann F, Schmidt C, Lugenbiel P, Staudacher I, Rahm AK, Seyler C, Schweizer PA, Katus HA, Thomas D. Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system. Clin Sci (Lond) 2016;130:643-50. [PMID: 26993052 DOI: 10.1042/CS20150533] [Cited by in Crossref: 35] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
394 Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol Rev 2015;95:179-217. [PMID: 25540142 DOI: 10.1152/physrev.00016.2014] [Cited by in Crossref: 66] [Cited by in F6Publishing: 65] [Article Influence: 9.4] [Reference Citation Analysis]
395 Weir GA, Pettingill P, Wu Y, Duggal G, Ilie AS, Akerman CJ, Cader MZ. The Role of TRESK in Discrete Sensory Neuron Populations and Somatosensory Processing. Front Mol Neurosci 2019;12:170. [PMID: 31379497 DOI: 10.3389/fnmol.2019.00170] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
396 Veale EL, Hassan M, Walsh Y, Al-Moubarak E, Mathie A. Recovery of current through mutated TASK3 potassium channels underlying Birk Barel syndrome. Mol Pharmacol 2014;85:397-407. [PMID: 24342771 DOI: 10.1124/mol.113.090530] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
397 Wang X, Guan R, Zhao X, Zhu D, Song N, Shen L. TASK1 and TASK3 Are Coexpressed With ASIC1 in the Ventrolateral Medulla and Contribute to Central Chemoreception in Rats. Front Cell Neurosci 2018;12:285. [PMID: 30210304 DOI: 10.3389/fncel.2018.00285] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
398 Brohawn SG, Wang W, Handler A, Campbell EB, Schwarz JR, MacKinnon R. The mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier. Elife 2019;8:e50403. [PMID: 31674909 DOI: 10.7554/eLife.50403] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
399 Rotermund N, Winandy S, Fischer T, Schulz K, Fregin T, Alstedt N, Buchta M, Bartels J, Carlström M, Lohr C, Hirnet D. Adenosine A1 receptor activates background potassium channels and modulates information processing in olfactory bulb mitral cells. J Physiol 2018;596:717-33. [PMID: 29274133 DOI: 10.1113/JP275503] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
400 Yarishkin O, Phuong TTT, Bretz CA, Olsen KW, Baumann JM, Lakk M, Crandall A, Heurteaux C, Hartnett ME, Križaj D. TREK-1 channels regulate pressure sensitivity and calcium signaling in trabecular meshwork cells. J Gen Physiol 2018;150:1660-75. [PMID: 30446509 DOI: 10.1085/jgp.201812179] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
401 Koudrina N, Perry SF, Gilmour KM. The role of TASK-2 channels in CO2 sensing in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 2020;319:R329-42. [PMID: 32697653 DOI: 10.1152/ajpregu.00132.2020] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
402 Lukewich MK, Lomax AE. Toll-like receptor 4 activation reduces adrenal chromaffin cell excitability through a nuclear factor-κB-dependent pathway. Endocrinology 2013;154:351-62. [PMID: 23125310 DOI: 10.1210/en.2012-1534] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
403 Skoglund G, Lainé J, Darabi R, Fournier E, Perlingeiro R, Tabti N. Physiological and ultrastructural features of human induced pluripotent and embryonic stem cell-derived skeletal myocytes in vitro. Proc Natl Acad Sci U S A 2014;111:8275-80. [PMID: 24843168 DOI: 10.1073/pnas.1322258111] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
404 Mariani P, Zhurakivska K, Santoro R, Laino G, Russo D, Laino L. Hereditary gingival fibromatosis associated with the missense mutation of the KCNK4 gene. Oral Surg Oral Med Oral Pathol Oral Radiol 2021;131:e175-82. [PMID: 32981868 DOI: 10.1016/j.oooo.2020.08.006] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
405 López-Cayuqueo KI, Peña-Münzenmayer G, Niemeyer MI, Sepúlveda FV, Cid LP. TASK-2 K₂p K⁺ channel: thoughts about gating and its fitness to physiological function. Pflugers Arch 2015;467:1043-53. [PMID: 25315981 DOI: 10.1007/s00424-014-1627-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
406 Cid LP, Roa-Rojas HA, Niemeyer MI, González W, Araki M, Araki K, Sepúlveda FV. TASK-2: a K2P K(+) channel with complex regulation and diverse physiological functions. Front Physiol 2013;4:198. [PMID: 23908634 DOI: 10.3389/fphys.2013.00198] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
407 Aryal P, Abd-Wahab F, Bucci G, Sansom MS, Tucker SJ. A hydrophobic barrier deep within the inner pore of the TWIK-1 K2P potassium channel. Nat Commun 2014;5:4377. [PMID: 25001086 DOI: 10.1038/ncomms5377] [Cited by in Crossref: 88] [Cited by in F6Publishing: 76] [Article Influence: 11.0] [Reference Citation Analysis]
408 Weir GA, Cader MZ. New directions in migraine. BMC Med 2011;9:116. [PMID: 22027350 DOI: 10.1186/1741-7015-9-116] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
409 Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016;160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
410 Shiozaki A, Marunaka Y, Otsuji E. Roles of Ion and Water Channels in the Cell Death and Survival of Upper Gastrointestinal Tract Cancers. Front Cell Dev Biol 2021;9:616933. [PMID: 33777930 DOI: 10.3389/fcell.2021.616933] [Reference Citation Analysis]
411 González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2012;2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Cited by in Crossref: 36] [Cited by in F6Publishing: 60] [Article Influence: 4.0] [Reference Citation Analysis]
412 O'Kelly I. Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K₂p) channels. Pflugers Arch 2015;467:1133-42. [PMID: 25413469 DOI: 10.1007/s00424-014-1641-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
413 Kim S, Lee Y, Tak HM, Park HJ, Sohn YS, Hwang S, Han J, Kang D, Lee KW. Identification of blocker binding site in mouse TRESK by molecular modeling and mutational studies. Biochim Biophys Acta 2013;1828:1131-42. [PMID: 23200789 DOI: 10.1016/j.bbamem.2012.11.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
414 Ocello R, Furini S, Lugli F, Recanatini M, Domene C, Masetti M. Conduction and Gating Properties of the TRAAK Channel from Molecular Dynamics Simulations with Different Force Fields. J Chem Inf Model 2020;60:6532-43. [PMID: 33295174 DOI: 10.1021/acs.jcim.0c01179] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
415 Tse A, Lee AK, Tse FW. Ca2+ signaling and exocytosis in pituitary corticotropes. Cell Calcium 2012;51:253-9. [PMID: 22225940 DOI: 10.1016/j.ceca.2011.12.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
416 González-castillo C, Muñoz-ortiz E, Guzmán-brambila C, Rojas-mayorquín AE, Beltran-parrazal L, Ortuño-sahagún D, Morgado-valle C. Differential Expression of Ion Channels in Adult and Neonatal Rat Ventral Respiratory Column. J Mol Neurosci 2018;64:51-61. [DOI: 10.1007/s12031-017-1001-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
417 Matsuoka H, Inoue M. Molecular mechanism for muscarinic M1 receptor-mediated endocytosis of TWIK-related acid-sensitive K+ 1 channels in rat adrenal medullary cells. J Physiol 2017;595:6851-67. [PMID: 28944482 DOI: 10.1113/JP275039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.6] [Reference Citation Analysis]
418 Mackie TD, Brodsky JL. Investigating Potassium Channels in Budding Yeast: A Genetic Sandbox. Genetics 2018;209:637-50. [PMID: 29967058 DOI: 10.1534/genetics.118.301026] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
419 Leibold N, van den Hove D, Esquivel G, De Cort K, Goossens L, Strackx E, Buchanan G, Steinbusch H, Lesch K, Schruers K. The brain acid–base homeostasis and serotonin: A perspective on the use of carbon dioxide as human and rodent experimental model of panic. Progress in Neurobiology 2015;129:58-78. [DOI: 10.1016/j.pneurobio.2015.04.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
420 Watson SN, Lee JR, Risling TE, Hermann PM, Wildering WC. Diminishing glutathione availability and age-associated decline in neuronal excitability. Neurobiol Aging 2014;35:1074-85. [PMID: 24331753 DOI: 10.1016/j.neurobiolaging.2013.11.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
421 Kondo R, Deguchi A, Kawata N, Suzuki Y, Yamamura H. Involvement of TREK1 channels in the proliferation of human hepatic stellate LX-2 cells. Journal of Pharmacological Sciences 2022;148:286-94. [DOI: 10.1016/j.jphs.2022.01.003] [Reference Citation Analysis]
422 Mirkovic K, Palmersheim J, Lesage F, Wickman K. Behavioral characterization of mice lacking Trek channels. Front Behav Neurosci 2012;6:60. [PMID: 22973213 DOI: 10.3389/fnbeh.2012.00060] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
423 Rapedius M, Schmidt MR, Sharma C, Stansfeld PJ, Sansom MS, Baukrowitz T, Tucker SJ. State-independent intracellular access of quaternary ammonium blockers to the pore of TREK-1. Channels (Austin) 2012;6:473-8. [PMID: 22991046 DOI: 10.4161/chan.22153] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
424 Ciccone L, Cerri C, Nencetti S, Orlandini E. Carbonic Anhydrase Inhibitors and Epilepsy: State of the Art and Future Perspectives. Molecules 2021;26:6380. [PMID: 34770789 DOI: 10.3390/molecules26216380] [Reference Citation Analysis]
425 Noriega-Navarro R, Lopez-Charcas O, Hernández-Enríquez B, Reyes-Gutiérrez PE, Martínez R, Landa A, Morán J, Gomora JC, Garcia-Valdes J. Novel TASK channels inhibitors derived from dihydropyrrolo[2,1-a]isoquinoline. Neuropharmacology 2014;79:28-36. [PMID: 24212057 DOI: 10.1016/j.neuropharm.2013.10.028] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
426 Penny CJ, Rahman T, Sula A, Miles AJ, Wallace BA, Patel S. Isolated pores dissected from human two-pore channel 2 are functional. Sci Rep 2016;6:38426. [PMID: 27941820 DOI: 10.1038/srep38426] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
427 Okada Y, Miyazaki T, Fujiyama R, Toda K. Carbenoxolone-sensitive and cesium-permeable potassium channel in the rod cells of frog taste discs. Biochem Biophys Rep 2015;4:175-9. [PMID: 29124202 DOI: 10.1016/j.bbrep.2015.09.010] [Reference Citation Analysis]
428 Kim HJ, Woo J, Nam Y, Nam JH, Kim WK. Differential modulation of TWIK-related K+ channel (TREK) and TWIK-related acid-sensitive K+ channel 2 (TASK2) activity by pyrazole compounds. European Journal of Pharmacology 2016;791:686-95. [DOI: 10.1016/j.ejphar.2016.08.030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
429 Geraldes V, Laranjo S, Rocha I. Hypothalamic Ion Channels in Hypertension. Curr Hypertens Rep 2018;20:14. [PMID: 29480403 DOI: 10.1007/s11906-018-0814-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
430 Brown DA. Regulation of neural ion channels by muscarinic receptors. Neuropharmacology 2018;136:383-400. [PMID: 29154951 DOI: 10.1016/j.neuropharm.2017.11.024] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
431 Coburn CA, Luo Y, Cui M, Wang J, Soll R, Dong J, Hu B, Lyon MA, Santarelli VP, Kraus RL, Gregan Y, Wang Y, Fox SV, Binns J, Doran SM, Reiss DR, Tannenbaum PL, Gotter AL, Meinke PT, Renger JJ. Discovery of a Pharmacologically Active Antagonist of the Two-Pore-Domain Potassium Channel K2P9.1 (TASK-3). ChemMedChem 2012;7:123-33. [DOI: 10.1002/cmdc.201100351] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
432 Khoubza L, Chatelain FC, Feliciangeli S, Lesage F, Bichet D. Physiological roles of heteromerization: focus on the two-pore domain potassium channels. J Physiol 2021;599:1041-55. [PMID: 33347640 DOI: 10.1113/JP279870] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
433 Beltrán LR, Dawid C, Beltrán M, Gisselmann G, Degenhardt K, Mathie K, Hofmann T, Hatt H. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK. Front Pharmacol 2013;4:141. [PMID: 24302912 DOI: 10.3389/fphar.2013.00141] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
434 Marx SJ. Uncoupling of secretion from growth in some hormone secretory tissues. J Clin Endocrinol Metab 2014;99:4051-9. [PMID: 25004249 DOI: 10.1210/jc.2014-2113] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
435 Hennel M, Brozmanova M, Kollarik M. Cough reflex sensitization from esophagus and nose. Pulm Pharmacol Ther 2015;35:117-21. [PMID: 26498387 DOI: 10.1016/j.pupt.2015.10.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
436 Schneider ER, Anderson EO, Gracheva EO, Bagriantsev SN. Temperature sensitivity of two-pore (K2P) potassium channels. Curr Top Membr 2014;74:113-33. [PMID: 25366235 DOI: 10.1016/B978-0-12-800181-3.00005-1] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
437 Heyman NS, Cowles CL, Barnett SD, Wu YY, Cullison C, Singer CA, Leblanc N, Buxton IL. TREK-1 currents in smooth muscle cells from pregnant human myometrium. Am J Physiol Cell Physiol 2013;305:C632-42. [PMID: 23804201 DOI: 10.1152/ajpcell.00324.2012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
438 Pergel E, Lengyel M, Enyedi P, Czirják G. TRESK (K2P18.1) Background Potassium Channel Is Activated by Novel-Type Protein Kinase C via Dephosphorylation. Mol Pharmacol 2019;95:661-72. [DOI: 10.1124/mol.119.116269] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
439 Tihanyi BT, Ferentzi E, Beissner F, Köteles F. The neuropsychophysiology of tingling. Conscious Cogn 2018;58:97-110. [PMID: 29096941 DOI: 10.1016/j.concog.2017.10.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
440 Rietmeijer RA, Sorum B, Li B, Brohawn SG. Physical basis for distinct basal and mechanically gated activity of the human K+ channel TRAAK. Neuron 2021:S0896-6273(21)00519-5. [PMID: 34390650 DOI: 10.1016/j.neuron.2021.07.009] [Reference Citation Analysis]
441 Wiedmann F, Schlund D, Voigt N, Ratte A, Kraft M, Katus HA, Schmidt C. N-glycosylation-dependent regulation of hK2P17.1 currents. Mol Biol Cell 2019;30:1425-36. [PMID: 30969900 DOI: 10.1091/mbc.E18-10-0687] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
442 Xu Z, Chen ZM, Wu X, Zhang L, Cao Y, Zhou P. Distinct Molecular Mechanisms Underlying Potassium Efflux for NLRP3 Inflammasome Activation. Front Immunol 2020;11:609441. [PMID: 33424864 DOI: 10.3389/fimmu.2020.609441] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
443 Luo Y, Huang L, Liao P, Jiang R. Contribution of Neuronal and Glial Two-Pore-Domain Potassium Channels in Health and Neurological Disorders. Neural Plast 2021;2021:8643129. [PMID: 34434230 DOI: 10.1155/2021/8643129] [Reference Citation Analysis]
444 Woo J, Jun YK, Zhang YH, Nam JH, Shin DH, Kim SJ. Identification of critical amino acids in the proximal C-terminal of TREK-2 K+ channel for activation by acidic pHi and ATP-dependent inhibition. Pflugers Arch 2018;470:327-37. [PMID: 28988317 DOI: 10.1007/s00424-017-2072-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
445 Cunningham KP, Holden RG, Escribano-Subias PM, Cogolludo A, Veale EL, Mathie A. Characterization and regulation of wild-type and mutant TASK-1 two pore domain potassium channels indicated in pulmonary arterial hypertension. J Physiol 2019;597:1087-101. [PMID: 30365877 DOI: 10.1113/JP277275] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
446 Enyeart JJ, Liu H, Enyeart JA. Calcium-dependent inhibition of adrenal TREK-1 channels by angiotensin II and ionomycin. Am J Physiol Cell Physiol 2011;301:C619-29. [PMID: 21613605 DOI: 10.1152/ajpcell.00117.2011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
447 Lübbert M, Kyereme J, Schöbel N, Beltrán L, Wetzel CH, Hatt H. Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons. PLoS One 2013;8:e77998. [PMID: 24205061 DOI: 10.1371/journal.pone.0077998] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
448 Sorum B, Rietmeijer RA, Gopakumar K, Adesnik H, Brohawn SG. Ultrasound activates mechanosensitive TRAAK K+ channels through the lipid membrane. Proc Natl Acad Sci U S A 2021;118:e2006980118. [PMID: 33542098 DOI: 10.1073/pnas.2006980118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
449 Wu WW, Adelman JP, Maylie J. Ovarian hormone deficiency reduces intrinsic excitability and abolishes acute estrogen sensitivity in hippocampal CA1 pyramidal neurons. J Neurosci 2011;31:2638-48. [PMID: 21325532 DOI: 10.1523/JNEUROSCI.6081-10.2011] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
450 Bagriantsev SN, Clark KA, Minor DL Jr. Metabolic and thermal stimuli control K(2P)2.1 (TREK-1) through modular sensory and gating domains. EMBO J 2012;31:3297-308. [PMID: 22728824 DOI: 10.1038/emboj.2012.171] [Cited by in Crossref: 70] [Cited by in F6Publishing: 67] [Article Influence: 7.0] [Reference Citation Analysis]
451 Cyert MS, Philpott CC. Regulation of cation balance in Saccharomyces cerevisiae. Genetics 2013;193:677-713. [PMID: 23463800 DOI: 10.1534/genetics.112.147207] [Cited by in Crossref: 161] [Cited by in F6Publishing: 142] [Article Influence: 17.9] [Reference Citation Analysis]
452 Aryal P, Abd-Wahab F, Bucci G, Sansom MS, Tucker SJ. Influence of lipids on the hydrophobic barrier within the pore of the TWIK-1 K2P channel. Channels (Austin) 2015;9:44-9. [PMID: 25487004 DOI: 10.4161/19336950.2014.981987] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
453 Haskins W, Benitez S, Mercado JM, Acosta CG. Cutaneous inflammation regulates THIK1 expression in small C-like nociceptor dorsal root ganglion neurons. Molecular and Cellular Neuroscience 2017;83:13-26. [DOI: 10.1016/j.mcn.2017.06.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
454 Woo J, Jeon YK, Zhang YH, Nam JH, Shin DH, Kim SJ. Triple arginine residues in the proximal C-terminus of TREK K+ channels are critical for biphasic regulation by phosphatidylinositol 4,5-bisphosphate. Am J Physiol Cell Physiol 2019;316:C312-24. [PMID: 30576235 DOI: 10.1152/ajpcell.00417.2018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
455 Liu P, Chen B, Wang ZW. SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans. Nat Commun 2014;5:5155. [PMID: 25300429 DOI: 10.1038/ncomms6155] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
456 Tien J, Young DM, Jan YN, Jan LY. Molecular Properties of Ion Channels. From Molecules to Networks. Elsevier; 2014. pp. 323-48. [DOI: 10.1016/b978-0-12-397179-1.00011-7] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
457 Wiedmann F, Schulte JS, Gomes B, Zafeiriou M, Ratte A, Rathjens F, Fehrmann E, Scholz B, Voigt N, Müller FU, Thomas D, Katus HA, Schmidt C. Atrial fibrillation and heart failure-associated remodeling of two-pore-domain potassium (K2P) channels in murine disease models: focus on TASK-1. Basic Res Cardiol 2018;113. [DOI: 10.1007/s00395-018-0687-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
458 Domene C, Ocello R, Masetti M, Furini S. Ion Conduction Mechanism as a Fingerprint of Potassium Channels. J Am Chem Soc 2021;143:12181-93. [PMID: 34323472 DOI: 10.1021/jacs.1c04802] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
459 de la Peña E, Mälkiä A, Vara H, Caires R, Ballesta JJ, Belmonte C, Viana F. The influence of cold temperature on cellular excitability of hippocampal networks. PLoS One 2012;7:e52475. [PMID: 23300680 DOI: 10.1371/journal.pone.0052475] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
460 Zhuo RG, Peng P, Liu XY, Zhang SZ, Xu JP, Zheng JQ, Wei XL, Ma XY. The isoforms generated by alternative translation initiation adopt similar conformation in the selectivity filter in TREK-2. J Physiol Biochem 2015;71:601-10. [PMID: 26271386 DOI: 10.1007/s13105-015-0422-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
461 Mathie A, Veale EL. Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. Pflugers Arch - Eur J Physiol 2015;467:931-43. [DOI: 10.1007/s00424-014-1655-3] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 7.8] [Reference Citation Analysis]
462 Chatelain FC, Bichet D, Feliciangeli S, Larroque MM, Braud VM, Douguet D, Lesage F. Silencing of the tandem pore domain halothane-inhibited K+ channel 2 (THIK2) relies on combined intracellular retention and low intrinsic activity at the plasma membrane. J Biol Chem 2013;288:35081-92. [PMID: 24163367 DOI: 10.1074/jbc.M113.503318] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
463 Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Biol 2015;1266:29-53. [PMID: 25560066 DOI: 10.1007/978-1-4939-2272-7_3] [Cited by in Crossref: 272] [Cited by in F6Publishing: 230] [Article Influence: 38.9] [Reference Citation Analysis]
464 Oiki S. 6.3 Gating Dynamics of the Potassium Channel Pore. Comprehensive Biophysics. Elsevier; 2012. pp. 31-67. [DOI: 10.1016/b978-0-12-374920-8.00614-7] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
465 Staudacher I, Seehausen S, Illg C, Lugenbiel P, Schweizer PA, Katus HA, Thomas D. Cardiac K2P13.1 (THIK-1) two-pore-domain K+ channels: Pharmacological regulation and remodeling in atrial fibrillation. Progress in Biophysics and Molecular Biology 2019;144:128-38. [DOI: 10.1016/j.pbiomolbio.2018.06.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
466 Oakes V, Furini S, Pryde D, Domene C. Exploring the Dynamics of the TWIK-1 Channel. Biophys J 2016;111:775-84. [PMID: 27558721 DOI: 10.1016/j.bpj.2016.07.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
467 Li WC, Xiong ZY, Huang PZ, Liao YJ, Li QX, Yao ZC, Liao YD, Xu SL, Zhou H, Wang QL, Huang H, Zhang P, Lin JZ, Liu B, Ren J, Hu KP. KCNK levels are prognostic and diagnostic markers for hepatocellular carcinoma. Aging (Albany NY) 2019;11:8169-82. [PMID: 31581133 DOI: 10.18632/aging.102311] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
468 Castellanos A, Pujol-Coma A, Andres-Bilbe A, Negm A, Callejo G, Soto D, Noël J, Comes N, Gasull X. TRESK background K+ channel deletion selectively uncovers enhanced mechanical and cold sensitivity. J Physiol 2020;598:1017-38. [PMID: 31919847 DOI: 10.1113/JP279203] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
469 Scholz N, Monk KR, Kittel RJ, Langenhan T. Adhesion GPCRs as a Putative Class of Metabotropic Mechanosensors. Handb Exp Pharmacol 2016;234:221-47. [PMID: 27832490 DOI: 10.1007/978-3-319-41523-9_10] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 6.4] [Reference Citation Analysis]
470 Currò D. The Modulation of Potassium Channels in the Smooth Muscle as a Therapeutic Strategy for Disorders of the Gastrointestinal Tract. Adv Protein Chem Struct Biol 2016;104:263-305. [PMID: 27038377 DOI: 10.1016/bs.apcsb.2015.12.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
471 Wiedmann F, Schlund D, Faustino F, Kraft M, Ratte A, Thomas D, Katus HA, Schmidt C. N-Glycosylation of TREK-1/hK2P2.1 Two-Pore-Domain Potassium (K2P) Channels. Int J Mol Sci 2019;20:E5193. [PMID: 31635148 DOI: 10.3390/ijms20205193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
472 Raheja R, Gupta H, Pandey U, Deshpande SB. Lignocaine augments the in-vitro uterine contractions involving NO-guanylyl cyclase dependent mechanisms. Life Sci 2017;190:52-7. [PMID: 28966136 DOI: 10.1016/j.lfs.2017.09.042] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
473 Schmidt C, Wiedmann F, Kallenberger SM, Ratte A, Schulte JS, Scholz B, Müller FU, Voigt N, Zafeiriou MP, Ehrlich JR, Tochtermann U, Veres G, Ruhparwar A, Karck M, Katus HA, Thomas D. Stretch-activated two-pore-domain (K2P) potassium channels in the heart: Focus on atrial fibrillation and heart failure. Prog Biophys Mol Biol 2017;130:233-43. [PMID: 28526353 DOI: 10.1016/j.pbiomolbio.2017.05.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
474 Aryal P, Jarerattanachat V, Clausen MV, Schewe M, McClenaghan C, Argent L, Conrad LJ, Dong YY, Pike ACW, Carpenter EP, Baukrowitz T, Sansom MSP, Tucker SJ. Bilayer-Mediated Structural Transitions Control Mechanosensitivity of the TREK-2 K2P Channel. Structure 2017;25:708-718.e2. [PMID: 28392258 DOI: 10.1016/j.str.2017.03.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 8.4] [Reference Citation Analysis]
475 Inoue M, Harada K, Matsuoka H. Mechanisms for pituitary adenylate cyclase-activating polypeptide-induced increase in excitability in guinea-pig and mouse adrenal medullary cells. European Journal of Pharmacology 2020;872:172956. [DOI: 10.1016/j.ejphar.2020.172956] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
476 Mubagwa K. Signalling between G-protein-coupled receptors and TASK1 channels. Cardiovasc Res 2013;97:10-2. [PMID: 23172710 DOI: 10.1093/cvr/cvs343] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
477 Wu XY, Lv JY, Zhang SQ, Yi X, Xu ZW, Zhi YX, Zhao BX, Pang JX, Yung KKL, Liu SW, Zhou PZ. ML365 inhibits TWIK2 channel to block ATP-induced NLRP3 inflammasome. Acta Pharmacol Sin 2021. [PMID: 34341510 DOI: 10.1038/s41401-021-00739-9] [Reference Citation Analysis]
478 Lafrenière RG, Cader MZ, Poulin JF, Andres-Enguix I, Simoneau M, Gupta N, Boisvert K, Lafrenière F, McLaughlan S, Dubé MP, Marcinkiewicz MM, Ramagopalan S, Ansorge O, Brais B, Sequeiros J, Pereira-Monteiro JM, Griffiths LR, Tucker SJ, Ebers G, Rouleau GA. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med 2010;16:1157-60. [PMID: 20871611 DOI: 10.1038/nm.2216] [Cited by in Crossref: 246] [Cited by in F6Publishing: 212] [Article Influence: 20.5] [Reference Citation Analysis]
479 Smith PA. K+ Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020;14:566418. [PMID: 33093824 DOI: 10.3389/fncel.2020.566418] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
480 Amodeo DA, Lai CY, Hassan O, Mukamel EA, Behrens MM, Powell SB. Maternal immune activation impairs cognitive flexibility and alters transcription in frontal cortex. Neurobiol Dis 2019;125:211-8. [PMID: 30716470 DOI: 10.1016/j.nbd.2019.01.025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
481 Kukkonen JP. Orexin/Hypocretin Signaling. Curr Top Behav Neurosci 2017;33:17-50. [PMID: 27909990 DOI: 10.1007/7854_2016_49] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
482 Renigunta V, Zou X, Kling S, Schlichthörl G, Daut J. Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2. Pflugers Arch - Eur J Physiol 2014;466:1735-45. [DOI: 10.1007/s00424-013-1404-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
483 Schindler RF, Brand T. The Popeye domain containing protein family--A novel class of cAMP effectors with important functions in multiple tissues. Prog Biophys Mol Biol 2016;120:28-36. [PMID: 26772438 DOI: 10.1016/j.pbiomolbio.2016.01.001] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 8.3] [Reference Citation Analysis]
484 Moldovan M, Alvarez S, Romer Rosberg M, Krarup C. Axonal voltage-gated ion channels as pharmacological targets for pain. Eur J Pharmacol 2013;708:105-12. [PMID: 23500193 DOI: 10.1016/j.ejphar.2013.03.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
485 Nematian-Ardestani E, Abd-Wahab F, Chatelain FC, Sun H, Schewe M, Baukrowitz T, Tucker SJ. Selectivity filter instability dominates the low intrinsic activity of the TWIK-1 K2P K+ channel. J Biol Chem 2020;295:610-8. [PMID: 31806709 DOI: 10.1074/jbc.RA119.010612] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
486 Kanda H, Gu JG. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold sensing. J Neurochem 2017;141:532-43. [PMID: 26709732 DOI: 10.1111/jnc.13511] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
487 Boillat A, Alijevic O, Kellenberger S. Calcium entry via TRPV1 but not ASICs induces neuropeptide release from sensory neurons. Molecular and Cellular Neuroscience 2014;61:13-22. [DOI: 10.1016/j.mcn.2014.04.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
488 Yue X, Sheng Y, Kang L, Xiao R. Distinct functions of TMC channels: a comparative overview. Cell Mol Life Sci 2019;76:4221-32. [PMID: 31584127 DOI: 10.1007/s00018-019-03214-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
489 Ceballos CC, Roque AC, Leão RM. A Negative Slope Conductance of the Persistent Sodium Current Prolongs Subthreshold Depolarizations. Biophys J 2017;113:2207-17. [PMID: 28732557 DOI: 10.1016/j.bpj.2017.06.047] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
490 Kito H, Ohya S. Role of K+ and Ca2+-Permeable Channels in Osteoblast Functions. Int J Mol Sci 2021;22:10459. [PMID: 34638799 DOI: 10.3390/ijms221910459] [Reference Citation Analysis]
491 Loucif AJC, Saintot PP, Liu J, Antonio BM, Zellmer SG, Yoger K, Veale EL, Wilbrey A, Omoto K, Cao L, Gutteridge A, Castle NA, Stevens EB, Mathie A. GI-530159, a novel, selective, mechanosensitive two-pore-domain potassium (K2P ) channel opener, reduces rat dorsal root ganglion neuron excitability. Br J Pharmacol 2018;175:2272-83. [PMID: 29150838 DOI: 10.1111/bph.14098] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 6.2] [Reference Citation Analysis]
492 [DOI: 10.1101/2020.03.20.000893] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
493 Quelhas P, Baltazar G, Cairrao E. The Neurovascular Unit: Focus on the Regulation of Arterial Smooth Muscle Cells. Curr Neurovasc Res 2019;16:502-15. [PMID: 31738142 DOI: 10.2174/1567202616666191026122642] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
494 Bichet D, Blin S, Feliciangeli S, Chatelain FC, Bobak N, Lesage F. Silent but not dumb: how cellular trafficking and pore gating modulate expression of TWIK1 and THIK2. Pflugers Arch 2015;467:1121-31. [PMID: 25339226 DOI: 10.1007/s00424-014-1631-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
495 Kon T, Omori Y, Fukuta K, Wada H, Watanabe M, Chen Z, Iwasaki M, Mishina T, Matsuzaki SS, Yoshihara D, Arakawa J, Kawakami K, Toyoda A, Burgess SM, Noguchi H, Furukawa T. The Genetic Basis of Morphological Diversity in Domesticated Goldfish. Curr Biol 2020;30:2260-2274.e6. [PMID: 32392470 DOI: 10.1016/j.cub.2020.04.034] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
496 Lei M, Wu L, Terrar DA, Huang CL. Modernized Classification of Cardiac Antiarrhythmic Drugs. Circulation. 2018;138:1879-1896. [PMID: 30354657 DOI: 10.1161/circulationaha.118.035455] [Cited by in Crossref: 70] [Cited by in F6Publishing: 25] [Article Influence: 23.3] [Reference Citation Analysis]
497 Ford KJ, Arroyo DA, Kay JN, Lloyd EE, Bryan RM Jr, Sanes JR, Feller MB. A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells. J Neurophysiol 2013;109:2250-9. [PMID: 23390312 DOI: 10.1152/jn.01085.2012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
498 Stys PK. The axo-myelinic synapse. Trends Neurosci 2011;34:393-400. [PMID: 21741098 DOI: 10.1016/j.tins.2011.06.004] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
499 Suzuki Y, Tsutsumi K, Miyamoto T, Yamamura H, Imaizumi Y. Heterodimerization of two pore domain K+ channel TASK1 and TALK2 in living heterologous expression systems. PLoS One 2017;12:e0186252. [PMID: 29016681 DOI: 10.1371/journal.pone.0186252] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
500 González W, Valdebenito B, Caballero J, Riadi G, Riedelsberger J, Martínez G, Ramírez D, Zúñiga L, Sepúlveda FV, Dreyer I, Janta M, Becker D. K₂p channels in plants and animals. Pflugers Arch 2015;467:1091-104. [PMID: 25369776 DOI: 10.1007/s00424-014-1638-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
501 Li WY, Wang A, Jin H, Zou Y, Wang Z, Wang W, Kang J. Transient upregulation of TASK-1 expression in the hypoglossal nucleus during chronic intermittent hypoxia is reduced by serotonin 2A receptor antagonist. J Cell Physiol 2019;234:17886-95. [PMID: 30864194 DOI: 10.1002/jcp.28419] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
502 Dobrovinskaya O, Delgado-Enciso I, Quintero-Castro LJ, Best-Aguilera C, Rojas-Sotelo RM, Pottosin I. Placing ion channels into a signaling network of T cells: from maturing thymocytes to healthy T lymphocytes or leukemic T lymphoblasts. Biomed Res Int 2015;2015:750203. [PMID: 25866806 DOI: 10.1155/2015/750203] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
503 Lee AK, Smart JL, Rubinstein M, Low MJ, Tse A. Reciprocal regulation of TREK-1 channels by arachidonic acid and CRH in mouse corticotropes. Endocrinology 2011;152:1901-10. [PMID: 21343252 DOI: 10.1210/en.2010-1066] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
504 Harleton E, Besana A, Comas GM, Danilo P Jr, Rosen TS, Argenziano M, Rosen MR, Robinson RB, Feinmark SJ. Ability to induce atrial fibrillation in the peri-operative period is associated with phosphorylation-dependent inhibition of TWIK protein-related acid-sensitive potassium channel 1 (TASK-1). J Biol Chem 2013;288:2829-38. [PMID: 23229553 DOI: 10.1074/jbc.M112.404095] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
505 Kubota K, Mase A, Matsushima H, Fujitsuka N, Yamamoto M, Morine Y, Taketomi A, Kono T, Shimada M. Daikenchuto, a traditional Japanese herbal medicine, promotes colonic transit by inducing a propulsive movement pattern. Neurogastroenterol Motil 2019;31:e13689. [PMID: 31374154 DOI: 10.1111/nmo.13689] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
506 Herrmann AM, Cerina M, Bittner S, Meuth SG, Budde T. Intracellular fluoride influences TASK mediated currents in human T cells. J Immunol Methods 2020;487:112875. [PMID: 33031794 DOI: 10.1016/j.jim.2020.112875] [Reference Citation Analysis]
507 Li L, Hasan R, Zhang X. The basal thermal sensitivity of the TRPV1 ion channel is determined by PKCβII. J Neurosci 2014;34:8246-58. [PMID: 24920628 DOI: 10.1523/JNEUROSCI.0278-14.2014] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
508 Yarishkin O, Lee DY, Kim E, Cho CH, Choi JH, Lee CJ, Hwang EM, Park JY. TWIK-1 contributes to the intrinsic excitability of dentate granule cells in mouse hippocampus. Mol Brain 2014;7:80. [PMID: 25406588 DOI: 10.1186/s13041-014-0080-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
509 Salzer I, Ray S, Schicker K, Boehm S. Nociceptor Signalling through ion Channel Regulation via GPCRs. Int J Mol Sci 2019;20:E2488. [PMID: 31137507 DOI: 10.3390/ijms20102488] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
510 Zhang XT, Xu Z, Shi KP, Guo DL, Li H, Wang L, Zhu XB. Elevated expression of TREK-TRAAK K2P channels in the retina of adult rd1 mice. Int J Ophthalmol 2019;12:924-9. [PMID: 31236347 DOI: 10.18240/ijo.2019.06.07] [Reference Citation Analysis]
511 Añazco C, Peña-Münzenmayer G, Araya C, Cid LP, Sepúlveda FV, Niemeyer MI. G protein modulation of K2P potassium channel TASK-2 : a role of basic residues in the C terminus domain. Pflugers Arch 2013;465:1715-26. [PMID: 23812165 DOI: 10.1007/s00424-013-1314-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
512 Andres-Bilbe A, Castellanos A, Pujol-Coma A, Callejo G, Comes N, Gasull X. The Background K+ Channel TRESK in Sensory Physiology and Pain. Int J Mol Sci 2020;21:E5206. [PMID: 32717813 DOI: 10.3390/ijms21155206] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
513 Veale EL, Al-moubarak E, Bajaria N, Omoto K, Cao L, Tucker SJ, Stevens EB, Mathie A. Influence of the N Terminus on the Biophysical Properties and Pharmacology of TREK1 Potassium Channels. Mol Pharmacol 2014;85:671-81. [DOI: 10.1124/mol.113.091199] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 5.3] [Reference Citation Analysis]
514 Nakakura S, Matsui M, Sato A, Ishii M, Endo K, Muragishi S, Murase M, Kito H, Niguma H, Kurokawa N, Fujii M, Araki M, Araki K, Ohya S. Pathophysiological significance of the two-pore domain K(+) channel K2P5.1 in splenic CD4(+)CD25(-) T cell subset from a chemically-induced murine inflammatory bowel disease model. Front Physiol 2015;6:299. [PMID: 26578971 DOI: 10.3389/fphys.2015.00299] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
515 Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Ehrlich G, Andres-Enguix I, Fritzenschaft H, Decher N, Sansom MS, Tucker SJ, Baukrowitz T. The pore structure and gating mechanism of K2P channels. EMBO J 2011;30:3607-19. [PMID: 21822218 DOI: 10.1038/emboj.2011.268] [Cited by in Crossref: 127] [Cited by in F6Publishing: 117] [Article Influence: 11.5] [Reference Citation Analysis]
516 Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflugers Arch 2018;470:745-59. [PMID: 29484488 DOI: 10.1007/s00424-018-2120-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
517 Ramírez D, Arévalo B, Martínez G, Rinné S, Sepúlveda FV, Decher N, González W. Side Fenestrations Provide an "Anchor" for a Stable Binding of A1899 to the Pore of TASK-1 Potassium Channels. Mol Pharm 2017;14:2197-208. [PMID: 28494157 DOI: 10.1021/acs.molpharmaceut.7b00005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
518 Acosta C, Djouhri L, Watkins R, Berry C, Bromage K, Lawson SN. TREK2 expressed selectively in IB4-binding C-fiber nociceptors hyperpolarizes their membrane potentials and limits spontaneous pain. J Neurosci 2014;34:1494-509. [PMID: 24453337 DOI: 10.1523/JNEUROSCI.4528-13.2014] [Cited by in Crossref: 77] [Cited by in F6Publishing: 45] [Article Influence: 9.6] [Reference Citation Analysis]
519 Bachmann M, Li W, Edwards MJ, Ahmad SA, Patel S, Szabo I, Gulbins E. Voltage-Gated Potassium Channels as Regulators of Cell Death. Front Cell Dev Biol 2020;8:611853. [PMID: 33381507 DOI: 10.3389/fcell.2020.611853] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
520 Ma XY, Yu JM, Zhang SZ, Liu XY, Wu BH, Wei XL, Yan JQ, Sun HL, Yan HT, Zheng JQ. External Ba2+ block of the two-pore domain potassium channel TREK-1 defines conformational transition in its selectivity filter. J Biol Chem 2011;286:39813-22. [PMID: 21965685 DOI: 10.1074/jbc.M111.264788] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
521 Riel EB, Jürs BC, Cordeiro S, Musinszki M, Schewe M, Baukrowitz T. The versatile regulation of K2P channels by polyanionic lipids of the phosphoinositide and fatty acid metabolism. J Gen Physiol 2022;154:e202112989. [PMID: 34928298 DOI: 10.1085/jgp.202112989] [Reference Citation Analysis]
522 Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K+ channels and their implications for disease mechanisms. Pharmacol Ther 2021;227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
523 Wang W, Putra A, Schools GP, Ma B, Chen H, Kaczmarek LK, Barhanin J, Lesage F, Zhou M. The contribution of TWIK-1 channels to astrocyte K(+) current is limited by retention in intracellular compartments. Front Cell Neurosci 2013;7:246. [PMID: 24368895 DOI: 10.3389/fncel.2013.00246] [Cited by in Crossref: 19] [Cited by in F6Publishing: 28] [Article Influence: 2.1] [Reference Citation Analysis]
524 Humphries ES, Dart C. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets: Promise and Pitfalls. J Biomol Screen. 2015;20:1055-1073. [PMID: 26303307 DOI: 10.1177/1087057115601677] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 6.1] [Reference Citation Analysis]
525 Wiedmann F, Rinné S, Donner B, Decher N, Katus HA, Schmidt C. Mechanosensitive TREK-1 two-pore-domain potassium (K2P) channels in the cardiovascular system. Prog Biophys Mol Biol 2021;159:126-35. [PMID: 32553901 DOI: 10.1016/j.pbiomolbio.2020.05.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
526 Busserolles J, Tsantoulas C, Eschalier A, López García JA. Potassium channels in neuropathic pain: advances, challenges, and emerging ideas. Pain 2016;157:S7-S14. [DOI: 10.1097/j.pain.0000000000000368] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 9.2] [Reference Citation Analysis]
527 Tu N, Liang D, Zhang P. Whole-exome sequencing and genome-wide evolutionary analyses identify novel candidate genes associated with infrared perception in pit vipers. Sci Rep 2020;10:13033. [PMID: 32747674 DOI: 10.1038/s41598-020-69843-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
528 Ceballos CC, Li S, Roque AC, Tzounopoulos T, Leão RM. Ih Equalizes Membrane Input Resistance in a Heterogeneous Population of Fusiform Neurons in the Dorsal Cochlear Nucleus. Front Cell Neurosci 2016;10:249. [PMID: 27833532 DOI: 10.3389/fncel.2016.00249] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]