BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nishimoto G, Zelenina M, Li D, Yasui M, Aperia A, Nielsen S, Nairn AC. Arginine vasopressin stimulates phosphorylation of aquaporin-2 in rat renal tissue. Am J Physiol 1999;276:F254-9. [PMID: 9950956 DOI: 10.1152/ajprenal.1999.276.2.F254] [Cited by in Crossref: 57] [Cited by in F6Publishing: 41] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Tsukada J, Tahara A, Tomura Y, Wada Ki, Kusayama T, Ishii N, Yatsu T, Uchida W, Taniguchi N, Tanaka A. Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells. Br J Pharmacol 2001;133:746-54. [PMID: 11429400 DOI: 10.1038/sj.bjp.0704117] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.4] [Reference Citation Analysis]
2 Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F, Knepper MA. Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem 2008;283:24617-27. [PMID: 18606813 DOI: 10.1074/jbc.M803074200] [Cited by in Crossref: 183] [Cited by in F6Publishing: 112] [Article Influence: 13.1] [Reference Citation Analysis]
3 Yip KP. Coupling of vasopressin-induced intracellular Ca2+ mobilization and apical exocytosis in perfused rat kidney collecting duct. J Physiol 2002;538:891-9. [PMID: 11826172 DOI: 10.1113/jphysiol.2001.012606] [Cited by in Crossref: 74] [Cited by in F6Publishing: 67] [Article Influence: 3.7] [Reference Citation Analysis]
4 Yui N, Lu HJ, Bouley R, Brown D. AQP2 is necessary for vasopressin- and forskolin-mediated filamentous actin depolymerization in renal epithelial cells. Biol Open 2012;1:101-8. [PMID: 23213402 DOI: 10.1242/bio.2011042] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.1] [Reference Citation Analysis]
5 Mobasheri A, Barrett-Jolley R. Aquaporin water channels in the mammary gland: from physiology to pathophysiology and neoplasia. J Mammary Gland Biol Neoplasia 2014;19:91-102. [PMID: 24338153 DOI: 10.1007/s10911-013-9312-6] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 4.1] [Reference Citation Analysis]
6 Goel M, Zuo CD, Schilling WP. Role of cAMP/PKA signaling cascade in vasopressin-induced trafficking of TRPC3 channels in principal cells of the collecting duct. Am J Physiol Renal Physiol 2010;298:F988-96. [PMID: 20107112 DOI: 10.1152/ajprenal.00586.2009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 29] [Article Influence: 3.5] [Reference Citation Analysis]
7 Fenton RA, Moeller HB, Hoffert JD, Yu MJ, Nielsen S, Knepper MA. Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc Natl Acad Sci U S A 2008;105:3134-9. [PMID: 18287043 DOI: 10.1073/pnas.0712338105] [Cited by in Crossref: 113] [Cited by in F6Publishing: 102] [Article Influence: 8.1] [Reference Citation Analysis]
8 Xie L, Hoffert JD, Chou CL, Yu MJ, Pisitkun T, Knepper MA, Fenton RA. Quantitative analysis of aquaporin-2 phosphorylation. Am J Physiol Renal Physiol 2010;298:F1018-23. [PMID: 20089674 DOI: 10.1152/ajprenal.00580.2009] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 3.4] [Reference Citation Analysis]
9 Brown D, Hasler U, Nunes P, Bouley R, Lu HA. Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr Opin Nephrol Hypertens 2008;17:491-8. [PMID: 18695390 DOI: 10.1097/MNH.0b013e3283094eb1] [Cited by in Crossref: 69] [Cited by in F6Publishing: 40] [Article Influence: 5.3] [Reference Citation Analysis]
10 Whiting JL, Ogier L, Forbush KA, Bucko P, Gopalan J, Seternes OM, Langeberg LK, Scott JD. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption. Proc Natl Acad Sci U S A 2016;113:E4328-37. [PMID: 27402760 DOI: 10.1073/pnas.1607745113] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 4.5] [Reference Citation Analysis]
11 Yui N, Lu HA, Chen Y, Nomura N, Bouley R, Brown D. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am J Physiol Cell Physiol 2013;304:C38-48. [PMID: 23015545 DOI: 10.1152/ajpcell.00109.2012] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 4.5] [Reference Citation Analysis]
12 Raghuram V, Salhadar K, Limbutara K, Park E, Yang CR, Knepper MA. Protein kinase A catalytic-α and catalytic-β proteins have nonredundant regulatory functions. Am J Physiol Renal Physiol 2020;319:F848-62. [PMID: 33017189 DOI: 10.1152/ajprenal.00383.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Zhou L, Panasiuk A, Downton M, Zhao D, Yang B, Jia Z, Yang T. Systemic PPARγ deletion causes severe disturbance in fluid homeostasis in mice. Physiol Genomics 2015;47:541-7. [PMID: 26330489 DOI: 10.1152/physiolgenomics.00066.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
14 Kamsteeg EJ, Heijnen I, van Os CH, Deen PM. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 2000;151:919-30. [PMID: 11076974 DOI: 10.1083/jcb.151.4.919] [Cited by in Crossref: 130] [Cited by in F6Publishing: 113] [Article Influence: 5.9] [Reference Citation Analysis]
15 Stødkilde L, Nørregaard R, Fenton RA, Wang G, Knepper MA, Frøkiær J. Bilateral ureteral obstruction induces early downregulation and redistribution of AQP2 and phosphorylated AQP2. Am J Physiol Renal Physiol 2011;301:F226-35. [PMID: 21525134 DOI: 10.1152/ajprenal.00664.2010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
16 Maroli N, Kalagatur NK, Bhasuran B, Jayakrishnan A, Manoharan RR, Kolandaivel P, Natarajan J, Kadirvelu K. Molecular Mechanism of T-2 Toxin-Induced Cerebral Edema by Aquaporin-4 Blocking and Permeation. J Chem Inf Model 2019;59:4942-58. [DOI: 10.1021/acs.jcim.9b00711] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
17 Rieg T, Tang T, Murray F, Schroth J, Insel PA, Fenton RA, Hammond HK, Vallon V. Adenylate cyclase 6 determines cAMP formation and aquaporin-2 phosphorylation and trafficking in inner medulla. J Am Soc Nephrol 2010;21:2059-68. [PMID: 20864687 DOI: 10.1681/ASN.2010040409] [Cited by in Crossref: 69] [Cited by in F6Publishing: 45] [Article Influence: 5.8] [Reference Citation Analysis]
18 Jung HJ, Kwon TH. Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Renal Physiol 2016;311:F1318-28. [PMID: 27760771 DOI: 10.1152/ajprenal.00485.2016] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 8.3] [Reference Citation Analysis]
19 Dema A, Faust D, Lazarow K, Wippich M, Neuenschwander M, Zühlke K, Geelhaar A, Pallien T, Hallscheidt E, Eichhorst J, Wiesner B, Černecká H, Popp O, Mertins P, Dittmar G, von Kries JP, Klussmann E. Cyclin-Dependent Kinase 18 Controls Trafficking of Aquaporin-2 and Its Abundance through Ubiquitin Ligase STUB1, Which Functions as an AKAP. Cells 2020;9:E673. [PMID: 32164329 DOI: 10.3390/cells9030673] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
20 Moeller HB, MacAulay N, Knepper MA, Fenton RA. Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating. Am J Physiol Renal Physiol 2009;296:F649-57. [PMID: 19144687 DOI: 10.1152/ajprenal.90682.2008] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 4.7] [Reference Citation Analysis]
21 Procino G, Barbieri C, Tamma G, De Benedictis L, Pessin JE, Svelto M, Valenti G. AQP2 exocytosis in the renal collecting duct -- involvement of SNARE isoforms and the regulatory role of Munc18b. J Cell Sci 2008;121:2097-106. [PMID: 18505797 DOI: 10.1242/jcs.022210] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 3.0] [Reference Citation Analysis]
22 Jaswal DS, Cui X, Torabi-Parizi P, Ohanjanian L, Sampath-Kumar H, Fitz Y, Li Y, Xu W, Eichacker PQ. Bacillus anthracis Edema Toxin Increases Fractional Free Water and Sodium Reabsorption in an Isolated Perfused Rat Kidney Model. Infect Immun 2017;85:e00264-17. [PMID: 28438974 DOI: 10.1128/IAI.00264-17] [Reference Citation Analysis]
23 Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A 2006;103:7159-64. [PMID: 16641100 DOI: 10.1073/pnas.0600895103] [Cited by in Crossref: 272] [Cited by in F6Publishing: 252] [Article Influence: 17.0] [Reference Citation Analysis]
24 Moeller HB, Knepper MA, Fenton RA. Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells. Kidney Int 2009;75:295-303. [PMID: 18843259 DOI: 10.1038/ki.2008.505] [Cited by in Crossref: 106] [Cited by in F6Publishing: 96] [Article Influence: 7.6] [Reference Citation Analysis]
25 Cheung PW, Ueberdiek L, Day J, Bouley R, Brown D. Protein phosphatase 2C is responsible for VP-induced dephosphorylation of AQP2 serine 261. Am J Physiol Renal Physiol 2017;313:F404-13. [PMID: 28381458 DOI: 10.1152/ajprenal.00004.2017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
26 Wilson JL, Miranda CA, Knepper MA. Vasopressin and the regulation of aquaporin-2. Clin Exp Nephrol 2013;17:751-64. [PMID: 23584881 DOI: 10.1007/s10157-013-0789-5] [Cited by in Crossref: 78] [Cited by in F6Publishing: 66] [Article Influence: 8.7] [Reference Citation Analysis]
27 Knepper MA, Kwon TH, Nielsen S. Molecular physiology of water balance. N Engl J Med. 2015;372:1349-1358. [PMID: 25830425 DOI: 10.1056/nejmra1404726] [Cited by in Crossref: 122] [Cited by in F6Publishing: 56] [Article Influence: 17.4] [Reference Citation Analysis]
28 Balasubramanian L, Sham JS, Yip KP. Calcium signaling in vasopressin-induced aquaporin-2 trafficking. Pflugers Arch 2008;456:747-54. [PMID: 17957381 DOI: 10.1007/s00424-007-0371-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.4] [Reference Citation Analysis]
29 Shi PP, Cao XR, Qu J, Volk KA, Kirby P, Williamson RA, Stokes JB, Yang B. Nephrogenic diabetes insipidus in mice caused by deleting COOH-terminal tail of aquaporin-2. Am J Physiol Renal Physiol 2007;292:F1334-44. [PMID: 17229678 DOI: 10.1152/ajprenal.00308.2006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
30 Rinschen MM, Limbutara K, Knepper MA, Payne DM, Pisitkun T. From Molecules to Mechanisms: Functional Proteomics and Its Application to Renal Tubule Physiology. Physiol Rev 2018;98:2571-606. [PMID: 30182799 DOI: 10.1152/physrev.00057.2017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
31 Baltzer S, Klussmann E. Small molecules for modulating the localisation of the water channel aquaporin-2-disease relevance and perspectives for targeting local cAMP signalling. Naunyn Schmiedebergs Arch Pharmacol 2019;392:1049-64. [PMID: 31300862 DOI: 10.1007/s00210-019-01686-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
32 Sachs AN, Pisitkun T, Hoffert JD, Yu MJ, Knepper MA. LC-MS/MS analysis of differential centrifugation fractions from native inner medullary collecting duct of rat. Am J Physiol Renal Physiol 2008;295:F1799-806. [PMID: 18922883 DOI: 10.1152/ajprenal.90510.2008] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.1] [Reference Citation Analysis]
33 Somparn P, Boonkrai C, Charngkaew K, Chomanee N, Hodge KG, Fenton RA, Pisitkun T, Khositseth S. Bilateral ureteral obstruction is rapidly accompanied by ER stress and activation of autophagic degradation of IMCD proteins, including AQP2. Am J Physiol Renal Physiol 2020;318:F135-47. [PMID: 31736351 DOI: 10.1152/ajprenal.00113.2019] [Reference Citation Analysis]
34 Yu MJ, Pisitkun T, Wang G, Aranda JF, Gonzales PA, Tchapyjnikov D, Shen RF, Alonso MA, Knepper MA. Large-scale quantitative LC-MS/MS analysis of detergent-resistant membrane proteins from rat renal collecting duct. Am J Physiol Cell Physiol 2008;295:C661-78. [PMID: 18596208 DOI: 10.1152/ajpcell.90650.2007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 2.7] [Reference Citation Analysis]
35 Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN, Lin HY, Ausiello DA, Brown D. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest 2000;106:1115-26. [PMID: 11067864 DOI: 10.1172/JCI9594] [Cited by in Crossref: 173] [Cited by in F6Publishing: 66] [Article Influence: 7.9] [Reference Citation Analysis]
36 Vukićević T, Schulz M, Faust D, Klussmann E. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front Pharmacol 2016;7:23. [PMID: 26903868 DOI: 10.3389/fphar.2016.00023] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
37 Vukićević T, Hinze C, Baltzer S, Himmerkus N, Quintanova C, Zühlke K, Compton F, Ahlborn R, Dema A, Eichhorst J, Wiesner B, Bleich M, Schmidt-Ott KM, Klussmann E. Fluconazole Increases Osmotic Water Transport in Renal Collecting Duct through Effects on Aquaporin-2 Trafficking. J Am Soc Nephrol 2019;30:795-810. [PMID: 30988011 DOI: 10.1681/ASN.2018060668] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
38 Eto K, Noda Y, Horikawa S, Uchida S, Sasaki S. Phosphorylation of aquaporin-2 regulates its water permeability. J Biol Chem 2010;285:40777-84. [PMID: 20971851 DOI: 10.1074/jbc.M110.151928] [Cited by in Crossref: 52] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
39 Hosoi K, Yao C, Hasegawa T, Yoshimura H, Akamatsu T. Dynamics of Salivary Gland AQP5 under Normal and Pathologic Conditions. Int J Mol Sci 2020;21:E1182. [PMID: 32053992 DOI: 10.3390/ijms21041182] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
40 Hoffert JD, Chou CL, Knepper MA. Aquaporin-2 in the "-omics" era. J Biol Chem 2009;284:14683-7. [PMID: 19193633 DOI: 10.1074/jbc.R900006200] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
41 van Balkom BW, Boone M, Hendriks G, Kamsteeg EJ, Robben JH, Stronks HC, van der Voorde A, van Herp F, van der Sluijs P, Deen PM. LIP5 interacts with aquaporin 2 and facilitates its lysosomal degradation. J Am Soc Nephrol 2009;20:990-1001. [PMID: 19357255 DOI: 10.1681/ASN.2008060648] [Cited by in Crossref: 39] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]