BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Madden CJ, Morrison SF. Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2009;296:R831-43. [PMID: 19129373 DOI: 10.1152/ajpregu.91007.2008] [Cited by in Crossref: 87] [Cited by in F6Publishing: 92] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Waterson M, Horvath T. Neuronal Regulation of Energy Homeostasis: Beyond the Hypothalamus and Feeding. Cell Metabolism 2015;22:962-70. [DOI: 10.1016/j.cmet.2015.09.026] [Cited by in Crossref: 201] [Cited by in F6Publishing: 182] [Article Influence: 28.7] [Reference Citation Analysis]
2 Song K, Wang H, Kamm GB, Pohle J, Reis FDC, Heppenstall P, Wende H, Siemens J. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 2016;353:1393-8. [DOI: 10.1126/science.aaf7537] [Cited by in Crossref: 169] [Cited by in F6Publishing: 150] [Article Influence: 28.2] [Reference Citation Analysis]
3 Guyenet PG, Stornetta RL, Bochorishvili G, Depuy SD, Burke PG, Abbott SB. C1 neurons: the body's EMTs. Am J Physiol Regul Integr Comp Physiol 2013;305:R187-204. [PMID: 23697799 DOI: 10.1152/ajpregu.00054.2013] [Cited by in Crossref: 154] [Cited by in F6Publishing: 152] [Article Influence: 17.1] [Reference Citation Analysis]
4 Lob HE, Song J, Hurr C, Chung A, Young CN, Mark AL, Davisson RL. Deletion of p22phox-dependent oxidative stress in the hypothalamus protects against obesity by modulating β3-adrenergic mechanisms. JCI Insight 2017;2:e87094. [PMID: 28138551 DOI: 10.1172/jci.insight.87094] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
5 Tokizawa K, Onoue Y, Uchida, Y, Nagashima K. Ghrelin Induces Time-Dependent Modulation of Thermoregulation in the Cold. Chronobiology International 2012;29:736-46. [DOI: 10.3109/07420528.2012.678452] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
6 Kuperman Y, Weiss M, Dine J, Staikin K, Golani O, Ramot A, Nahum T, Kühne C, Shemesh Y, Wurst W, Harmelin A, Deussing JM, Eder M, Chen A. CRFR1 in AgRP Neurons Modulates Sympathetic Nervous System Activity to Adapt to Cold Stress and Fasting. Cell Metab 2016;23:1185-99. [PMID: 27211900 DOI: 10.1016/j.cmet.2016.04.017] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
7 González-García I, Milbank E, Martinez-Ordoñez A, Diéguez C, López M, Contreras C. HYPOTHesizing about central comBAT against obesity. J Physiol Biochem 2020;76:193-211. [PMID: 31845114 DOI: 10.1007/s13105-019-00719-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Hahn JD, Swanson LW. Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 2010;64:14-103. [PMID: 20170674 DOI: 10.1016/j.brainresrev.2010.02.002] [Cited by in Crossref: 72] [Cited by in F6Publishing: 76] [Article Influence: 6.0] [Reference Citation Analysis]
9 Deuchars SA, Lall VK. Sympathetic preganglionic neurons: properties and inputs. Compr Physiol 2015;5:829-69. [PMID: 25880515 DOI: 10.1002/cphy.c140020] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 5.5] [Reference Citation Analysis]
10 Sinden DS, Holman CD, Bare CJ, Sun X, Gade AR, Cohen DE, Pitt GS. Knockout of the X-linked Fgf13 in the hypothalamic paraventricular nucleus impairs sympathetic output to brown fat and causes obesity. FASEB J 2019;33:11579-94. [PMID: 31339804 DOI: 10.1096/fj.201901178R] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
11 Ambler M, Hitrec T, Pickering A. Turn it off and on again: characteristics and control of torpor. Wellcome Open Res 2021;6:313. [PMID: 35087956 DOI: 10.12688/wellcomeopenres.17379.2] [Reference Citation Analysis]
12 He M, Deng C, Huang X. The Role of Hypothalamic H1 Receptor Antagonism in Antipsychotic-Induced Weight Gain. CNS Drugs 2013;27:423-34. [DOI: 10.1007/s40263-013-0062-1] [Cited by in Crossref: 57] [Cited by in F6Publishing: 48] [Article Influence: 6.3] [Reference Citation Analysis]
13 Kong D, Tong Q, Ye C, Koda S, Fuller PM, Krashes MJ, Vong L, Ray RS, Olson DP, Lowell BB. GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 2012;151:645-57. [PMID: 23101631 DOI: 10.1016/j.cell.2012.09.020] [Cited by in Crossref: 151] [Cited by in F6Publishing: 144] [Article Influence: 16.8] [Reference Citation Analysis]
14 Hitrec T, Luppi M, Bastianini S, Squarcio F, Berteotti C, Lo Martire V, Martelli D, Occhinegro A, Tupone D, Zoccoli G, Amici R, Cerri M. Neural control of fasting-induced torpor in mice. Sci Rep 2019;9:15462. [PMID: 31664081 DOI: 10.1038/s41598-019-51841-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
15 Morrison SF, Madden CJ, Tupone D. Central control of brown adipose tissue thermogenesis. Front Endocrinol (Lausanne) 2012;3:00005. [PMID: 22389645 DOI: 10.3389/fendo.2012.00005] [Cited by in Crossref: 97] [Cited by in F6Publishing: 114] [Article Influence: 9.7] [Reference Citation Analysis]
16 Tupone D, Madden CJ, Morrison SF. Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis. Front Neurosci 2014;8:14. [PMID: 24570653 DOI: 10.3389/fnins.2014.00014] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 6.6] [Reference Citation Analysis]
17 Wu Z, Xu Y, Zhu Y, Sutton AK, Zhao R, Lowell BB, Olson DP, Tong Q. An obligate role of oxytocin neurons in diet induced energy expenditure. PLoS One 2012;7:e45167. [PMID: 23028821 DOI: 10.1371/journal.pone.0045167] [Cited by in Crossref: 98] [Cited by in F6Publishing: 92] [Article Influence: 9.8] [Reference Citation Analysis]
18 Martelli D, Luppi M, Cerri M, Tupone D, Perez E, Zamboni G, Amici R. Waking and sleeping following water deprivation in the rat. PLoS One 2012;7:e46116. [PMID: 23029406 DOI: 10.1371/journal.pone.0046116] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
19 Madden CJ. Glucoprivation in the ventrolateral medulla decreases brown adipose tissue sympathetic nerve activity by decreasing the activity of neurons in raphe pallidus. Am J Physiol Regul Integr Comp Physiol 2012;302:R224-32. [PMID: 22071154 DOI: 10.1152/ajpregu.00449.2011] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
20 Sutton AK, Myers MG Jr, Olson DP. The Role of PVH Circuits in Leptin Action and Energy Balance. Annu Rev Physiol 2016;78:207-21. [PMID: 26863324 DOI: 10.1146/annurev-physiol-021115-105347] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 8.0] [Reference Citation Analysis]
21 Piñol RA, Mogul AS, Hadley CK, Saha A, Li C, Škop V, Province HS, Xiao C, Gavrilova O, Krashes MJ, Reitman ML. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metab 2021;33:1389-1403.e6. [PMID: 34038711 DOI: 10.1016/j.cmet.2021.05.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Morselli LL, Claflin KE, Cui H, Grobe JL. Control of Energy Expenditure by AgRP Neurons of the Arcuate Nucleus: Neurocircuitry, Signaling Pathways, and Angiotensin. Curr Hypertens Rep 2018;20:25. [PMID: 29556733 DOI: 10.1007/s11906-018-0824-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
23 Morrison SF. Central neural control of thermoregulation and brown adipose tissue. Auton Neurosci 2016;196:14-24. [PMID: 26924538 DOI: 10.1016/j.autneu.2016.02.010] [Cited by in Crossref: 110] [Cited by in F6Publishing: 99] [Article Influence: 18.3] [Reference Citation Analysis]
24 Madden CJ, Morrison SF. A high-fat diet impairs cooling-evoked brown adipose tissue activation via a vagal afferent mechanism. Am J Physiol Endocrinol Metab 2016;311:E287-92. [PMID: 27354235 DOI: 10.1152/ajpendo.00081.2016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
25 Cerri M, Amici R. Thermoregulation and Sleep: Functional Interaction and Central Nervous Control. Compr Physiol 2021;11:1591-604. [PMID: 33792906 DOI: 10.1002/cphy.c140012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Madden CJ, Santos da Conceicao EP, Morrison SF. Vagal afferent activation decreases brown adipose tissue (BAT) sympathetic nerve activity and BAT thermogenesis. Temperature (Austin) 2017;4:89-96. [PMID: 28349097 DOI: 10.1080/23328940.2016.1257407] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
27 Nakamura K. Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 2011;301:R1207-28. [PMID: 21900642 DOI: 10.1152/ajpregu.00109.2011] [Cited by in Crossref: 286] [Cited by in F6Publishing: 267] [Article Influence: 26.0] [Reference Citation Analysis]
28 Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The Physiological Control of Eating: Signals, Neurons, and Networks. Physiol Rev 2021. [PMID: 34486393 DOI: 10.1152/physrev.00028.2020] [Reference Citation Analysis]
29 Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2021;96:642-72. [PMID: 33314677 DOI: 10.1111/brv.12671] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Leitner C, Bartness TJ. Acute brown adipose tissue temperature response to cold in monosodium glutamate-treated Siberian hamsters. Brain Res 2009;1292:38-51. [PMID: 19643091 DOI: 10.1016/j.brainres.2009.07.062] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
31 Rui L. Brain regulation of energy balance and body weight. Rev Endocr Metab Disord. 2013;14:387-407. [PMID: 23990408 DOI: 10.1007/s11154-013-9261-9] [Cited by in Crossref: 86] [Cited by in F6Publishing: 74] [Article Influence: 10.8] [Reference Citation Analysis]
32 Zhang Z, Machado F, Zhao L, Heinen CA, Foppen E, Ackermans MT, Zhou J, Bisschop PH, Boelen A, Fliers E, Kalsbeek A. Administration of Thyrotropin-Releasing Hormone in the Hypothalamic Paraventricular Nucleus of Male Rats Mimics the Metabolic Cold Defense Response. Neuroendocrinology 2018;107:267-79. [PMID: 30092582 DOI: 10.1159/000492785] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
33 Carlin JL, Jain S, Duroux R, Suresh RR, Xiao C, Auchampach JA, Jacobson KA, Gavrilova O, Reitman ML. Activation of adenosine A2A or A2B receptors causes hypothermia in mice. Neuropharmacology 2018;139:268-78. [PMID: 29548686 DOI: 10.1016/j.neuropharm.2018.02.035] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
34 Chen F, Liu F, Badoer E. AT1 receptors in the paraventricular nucleus mediate the hyperthermia-induced reflex reduction of renal blood flow in rats. Am J Physiol Regul Integr Comp Physiol 2011;300:R479-85. [PMID: 21123758 DOI: 10.1152/ajpregu.00604.2010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
35 Nakamura K, Nakamura Y. Hunger and Satiety Signaling: Modeling Two Hypothalamomedullary Pathways for Energy Homeostasis. BioEssays 2018;40:1700252. [DOI: 10.1002/bies.201700252] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
36 Romanovsky AA, Almeida MC, Garami A, Steiner AA, Norman MH, Morrison SF, Nakamura K, Burmeister JJ, Nucci TB. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev 2009;61:228-61. [PMID: 19749171 DOI: 10.1124/pr.109.001263] [Cited by in Crossref: 162] [Cited by in F6Publishing: 158] [Article Influence: 12.5] [Reference Citation Analysis]
37 Nakamura Y, Yanagawa Y, Morrison SF, Nakamura K. Medullary Reticular Neurons Mediate Neuropeptide Y-Induced Metabolic Inhibition and Mastication. Cell Metab 2017;25:322-34. [PMID: 28065829 DOI: 10.1016/j.cmet.2016.12.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
38 Qin C, Li J, Tang K. The Paraventricular Nucleus of the Hypothalamus: Development, Function, and Human Diseases. Endocrinology 2018;159:3458-72. [PMID: 30052854 DOI: 10.1210/en.2018-00453] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 9.7] [Reference Citation Analysis]
39 Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ, Morgan D, Csikasz RI, Gallego R, Rodriguez-Cuenca S. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149:871-885. [PMID: 22579288 DOI: 10.1016/j.cell.2012.02.066] [Cited by in Crossref: 390] [Cited by in F6Publishing: 367] [Article Influence: 39.0] [Reference Citation Analysis]
40 Xu JH, Hou XY, Tang Y, Luo R, Zhang J, Liu C, Yang YL. Arginine vasopressin antagonizes the effects of prostaglandin E2 on the spontaneous activity of warm-sensitive and temperature-insensitive neurons in the medial preoptic area in rats. Neurosci Lett 2018;662:59-64. [PMID: 28988972 DOI: 10.1016/j.neulet.2017.10.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
41 Morrison SF, Nakamura K. Central neural pathways for thermoregulation. Front Biosci (Landmark Ed) 2011;16:74-104. [PMID: 21196160 DOI: 10.2741/3677] [Cited by in Crossref: 372] [Cited by in F6Publishing: 339] [Article Influence: 33.8] [Reference Citation Analysis]
42 Seoane-Collazo P, Martínez-Sánchez N, Milbank E, Contreras C. Incendiary Leptin. Nutrients 2020;12:E472. [PMID: 32069871 DOI: 10.3390/nu12020472] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
43 Shi Z, Madden CJ, Brooks VL. Arcuate neuropeptide Y inhibits sympathetic nerve activity via multiple neuropathways. J Clin Invest 2017;127:2868-80. [PMID: 28628036 DOI: 10.1172/JCI92008] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 5.2] [Reference Citation Analysis]
44 Lage R, Fernø J, Nogueiras R, Diéguez C, López M. Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance. Biochemical Journal 2016;473:4063-82. [DOI: 10.1042/bcj20160012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
45 Nakamura Y, Nakamura K. Central regulation of brown adipose tissue thermogenesis and energy homeostasis dependent on food availability. Pflugers Arch 2018;470:823-37. [PMID: 29209779 DOI: 10.1007/s00424-017-2090-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
46 Yang X, Ruan HB. Neuronal Control of Adaptive Thermogenesis. Front Endocrinol (Lausanne) 2015;6:149. [PMID: 26441839 DOI: 10.3389/fendo.2015.00149] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
47 Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, López M. The brain and brown fat. Ann Med 2015;47:150-68. [PMID: 24915455 DOI: 10.3109/07853890.2014.919727] [Cited by in Crossref: 92] [Cited by in F6Publishing: 83] [Article Influence: 11.5] [Reference Citation Analysis]
48 Contreras C, Nogueiras R, Diéguez C, Medina-Gómez G, López M. Hypothalamus and thermogenesis: Heating the BAT, browning the WAT. Mol Cell Endocrinol 2016;438:107-15. [PMID: 27498420 DOI: 10.1016/j.mce.2016.08.002] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 8.3] [Reference Citation Analysis]
49 Nunan BLCZ, Drummond LR, Rodrigues QT, Crestani CC, Szawka RE, Coimbra CC, da Silva GSF. Inhibition of nNOS in the paraventricular nucleus of hypothalamus decreases exercise-induced hyperthermia. Brain Res Bull 2021;177:64-72. [PMID: 34536522 DOI: 10.1016/j.brainresbull.2021.09.011] [Reference Citation Analysis]
50 Santiago HP, Leite LH, Lima PMA, Rodovalho GV, Szawka RE, Coimbra CC. The improvement of exercise performance by physical training is related to increased hypothalamic neuronal activation. Clin Exp Pharmacol Physiol 2016;43:116-24. [DOI: 10.1111/1440-1681.12507] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
51 Verty ANA, Allen AM, Oldfield BJ. The Endogenous Actions of Hypothalamic Peptides on Brown Adipose Tissue Thermogenesis in the Rat. Endocrinology 2010;151:4236-46. [DOI: 10.1210/en.2009-1235] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 3.8] [Reference Citation Analysis]
52 Wanner SP, Yoshida K, Kulchitsky VA, Ivanov AI, Kanosue K, Romanovsky AA. Lipopolysaccharide-induced neuronal activation in the paraventricular and dorsomedial hypothalamus depends on ambient temperature. PLoS One 2013;8:e75733. [PMID: 24069444 DOI: 10.1371/journal.pone.0075733] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
53 Tsukita S, Yamada T, Uno K, Takahashi K, Kaneko K, Ishigaki Y, Imai J, Hasegawa Y, Sawada S, Ishihara H, Oka Y, Katagiri H. Hepatic glucokinase modulates obesity predisposition by regulating BAT thermogenesis via neural signals. Cell Metab 2012;16:825-32. [PMID: 23217261 DOI: 10.1016/j.cmet.2012.11.006] [Cited by in Crossref: 67] [Cited by in F6Publishing: 59] [Article Influence: 7.4] [Reference Citation Analysis]
54 Houtz J, Liao GY, An JJ, Xu B. Discrete TrkB-expressing neurons of the dorsomedial hypothalamus regulate feeding and thermogenesis. Proc Natl Acad Sci U S A 2021;118:e2017218118. [PMID: 33468645 DOI: 10.1073/pnas.2017218118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
55 Seoane-Collazo P, Fernø J, Gonzalez F, Diéguez C, Leis R, Nogueiras R, López M. Hypothalamic-autonomic control of energy homeostasis. Endocrine 2015;50:276-91. [PMID: 26089260 DOI: 10.1007/s12020-015-0658-y] [Cited by in Crossref: 94] [Cited by in F6Publishing: 81] [Article Influence: 13.4] [Reference Citation Analysis]
56 Li X, Fan K, Li Q, Pan D, Hai R, Du C. Melanocortin 4 receptor-mediated effects of amylin on thermogenesis and regulation of food intake. Diabetes Metab Res Rev 2019;35:e3149. [PMID: 30851142 DOI: 10.1002/dmrr.3149] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
57 Morrison SF, Madden CJ. Central nervous system regulation of brown adipose tissue. Compr Physiol 2014;4:1677-713. [PMID: 25428857 DOI: 10.1002/cphy.c140013] [Cited by in Crossref: 82] [Cited by in F6Publishing: 77] [Article Influence: 11.7] [Reference Citation Analysis]
58 Whittle AJ, López M, Vidal-Puig A. Using brown adipose tissue to treat obesity - the central issue. Trends Mol Med 2011;17:405-11. [PMID: 21602104 DOI: 10.1016/j.molmed.2011.04.001] [Cited by in Crossref: 102] [Cited by in F6Publishing: 98] [Article Influence: 9.3] [Reference Citation Analysis]
59 Griko Y, Regan MD. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space. Life Sci Space Res (Amst). 2018;16:101-107. [PMID: 29475515 DOI: 10.1016/j.lssr.2018.01.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
60 Sutoh M, Kasuya E, Yayou K. Effects of intravenous tryptophan infusion on thermoregulation in steers exposed to acute heat stress. Anim Sci J 2018;89:777-83. [DOI: 10.1111/asj.12988] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Lee SJ, Kirigiti M, Lindsley SR, Loche A, Madden CJ, Morrison SF, Smith MS, Grove KL. Efferent projections of neuropeptide Y-expressing neurons of the dorsomedial hypothalamus in chronic hyperphagic models. J Comp Neurol 2013;521:1891-914. [PMID: 23172177 DOI: 10.1002/cne.23265] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
62 Su CK, Chiang CH, Lee CM, Fan YP, Ho CM, Shyu LY. Computational solution of spike overlapping using data-based subtraction algorithms to resolve synchronous sympathetic nerve discharge. Front Comput Neurosci 2013;7:149. [PMID: 24198782 DOI: 10.3389/fncom.2013.00149] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
63 Rezai-Zadeh K, Münzberg H. Integration of sensory information via central thermoregulatory leptin targets. Physiol Behav 2013;121:49-55. [PMID: 23458626 DOI: 10.1016/j.physbeh.2013.02.014] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
64 Townsend K, Tseng YH. Brown adipose tissue: Recent insights into development, metabolic function and therapeutic potential. Adipocyte. 2012;1:13-24. [PMID: 23700507 DOI: 10.4161/adip.18951] [Cited by in Crossref: 84] [Cited by in F6Publishing: 80] [Article Influence: 10.5] [Reference Citation Analysis]
65 Nunn N, Womack M, Dart C, Barrett-Jolley R. Function and pharmacology of spinally-projecting sympathetic pre-autonomic neurones in the paraventricular nucleus of the hypothalamus. Curr Neuropharmacol 2011;9:262-77. [PMID: 22131936 DOI: 10.2174/157015911795596531] [Cited by in Crossref: 46] [Cited by in F6Publishing: 50] [Article Influence: 4.6] [Reference Citation Analysis]
66 Zaretsky DV, Molosh AI, Zaretskaia MV, Rusyniak DE, DiMicco JA. Increase in plasma ACTH induced by urethane is not a consequence of hyperosmolality. Neurosci Lett 2010;479:10-2. [PMID: 20470865 DOI: 10.1016/j.neulet.2010.05.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
67 Jeong JH, Lee DK, Blouet C, Ruiz HH, Buettner C, Chua S Jr, Schwartz GJ, Jo YH. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism. Mol Metab 2015;4:483-92. [PMID: 26042202 DOI: 10.1016/j.molmet.2015.03.006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
68 Jastroch M, Giroud S, Barrett P, Geiser F, Heldmaier G, Herwig A. Seasonal Control of Mammalian Energy Balance: Recent Advances in the Understanding of Daily Torpor and Hibernation. J Neuroendocrinol 2016;28. [PMID: 27755687 DOI: 10.1111/jne.12437] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 11.5] [Reference Citation Analysis]
69 Inuzuka M, Tamura N, Yamada N, Katsuura G, Oyamada N, Taura D, Sonoyama T, Fukunaga Y, Ohinata K, Sone M, Nakao K. C-Type Natriuretic Peptide as a New Regulator of Food Intake and Energy Expenditure. Endocrinology 2010;151:3633-42. [DOI: 10.1210/en.2010-0141] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
70 Morrison SF, Madden CJ, Tupone D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 2014;19:741-56. [PMID: 24630813 DOI: 10.1016/j.cmet.2014.02.007] [Cited by in Crossref: 247] [Cited by in F6Publishing: 242] [Article Influence: 30.9] [Reference Citation Analysis]
71 Kosari S, Rathner JA, Badoer E. Central resistin enhances renal sympathetic nerve activity via phosphatidylinositol 3-kinase but reduces the activity to brown adipose tissue via extracellular signal-regulated kinase 1/2. J Neuroendocrinol 2012;24:1432-9. [PMID: 22702339 DOI: 10.1111/j.1365-2826.2012.02352.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
72 Krieger JP, Santos da Conceição EP, Sanchez-Watts G, Arnold M, Pettersen KG, Mohammed M, Modica S, Lossel P, Morrison SF, Madden CJ, Watts AG, Langhans W, Lee SJ. Glucagon-like peptide-1 regulates brown adipose tissue thermogenesis via the gut-brain axis in rats. Am J Physiol Regul Integr Comp Physiol 2018;315:R708-20. [PMID: 29847161 DOI: 10.1152/ajpregu.00068.2018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 5.5] [Reference Citation Analysis]
73 de Kloet AD, Krause EG, Scott KA, Foster MT, Herman JP, Sakai RR, Seeley RJ, Woods SC. Central angiotensin II has catabolic action at white and brown adipose tissue. Am J Physiol Endocrinol Metab. 2011;301:E1081-E1091. [PMID: 21862725 DOI: 10.1152/ajpendo.00307.2011] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 4.7] [Reference Citation Analysis]
74 Lee SJ, Sanchez-Watts G, Krieger JP, Pignalosa A, Norell PN, Cortella A, Pettersen KG, Vrdoljak D, Hayes MR, Kanoski SE, Langhans W, Watts AG. Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity. Mol Metab 2018;11:33-46. [PMID: 29650350 DOI: 10.1016/j.molmet.2018.03.008] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 9.3] [Reference Citation Analysis]
75 Pendlebury JD, Yusuf K, Bano S, Lumb KJ, Schneider JM, Hasan SU. Prenatal cigarette smoke exposure and postnatal respiratory responses to hypoxia and hypercapnia. Pediatr Pulmonol 2012;47:487-97. [PMID: 22028310 DOI: 10.1002/ppul.21578] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
76 Contreras C, Nogueiras R, Diéguez C, Rahmouni K, López M. Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway. Redox Biol 2017;12:854-63. [PMID: 28448947 DOI: 10.1016/j.redox.2017.04.019] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 9.4] [Reference Citation Analysis]
77 Resch JM, Maunze B, Gerhardt AK, Magnuson SK, Phillips KA, Choi S. Intrahypothalamic pituitary adenylate cyclase-activating polypeptide regulates energy balance via site-specific actions on feeding and metabolism. Am J Physiol Endocrinol Metab 2013;305:E1452-63. [PMID: 24148346 DOI: 10.1152/ajpendo.00293.2013] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
78 Straat ME, Schinkelshoek MS, Fronczek R, Lammers GJ, Rensen PCN, Boon MR. Role of Brown Adipose Tissue in Adiposity Associated With Narcolepsy Type 1. Front Endocrinol (Lausanne) 2020;11:145. [PMID: 32373062 DOI: 10.3389/fendo.2020.00145] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
79 Madden CJ, Morrison SF. Endogenous activation of spinal 5-hydroxytryptamine (5-HT) receptors contributes to the thermoregulatory activation of brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2010;298:R776-83. [PMID: 20071609 DOI: 10.1152/ajpregu.00614.2009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 2.8] [Reference Citation Analysis]
80 Reilly AM, Zhou S, Panigrahi SK, Yan S, Conley JM, Sheets PL, Wardlaw SL, Ren H. Gpr17 deficiency in POMC neurons ameliorates the metabolic derangements caused by long-term high-fat diet feeding. Nutr Diabetes 2019;9:29. [PMID: 31611548 DOI: 10.1038/s41387-019-0096-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
81 Kosari S, Rathner JA, Chen F, Kosari S, Badoer E. Centrally administered resistin enhances sympathetic nerve activity to the hindlimb but attenuates the activity to brown adipose tissue. Endocrinology 2011;152:2626-33. [PMID: 21586564 DOI: 10.1210/en.2010-1492] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
82 Conceição EP, Madden CJ, Morrison SF. Glycinergic inhibition of BAT sympathetic premotor neurons in rostral raphe pallidus. Am J Physiol Regul Integr Comp Physiol 2017;312:R919-26. [PMID: 28254751 DOI: 10.1152/ajpregu.00551.2016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
83 Chitravanshi VC, Kawabe K, Sapru HN. Stimulation of the hypothalamic arcuate nucleus increases brown adipose tissue nerve activity via hypothalamic paraventricular and dorsomedial nuclei. Am J Physiol Heart Circ Physiol 2016;311:H433-44. [PMID: 27402666 DOI: 10.1152/ajpheart.00176.2016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
84 Nakamura K, Nakamura Y, Kataoka N. A hypothalamomedullary network for physiological responses to environmental stresses. Nat Rev Neurosci 2021. [PMID: 34728833 DOI: 10.1038/s41583-021-00532-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Bartfai T. Cool by neuronal decision. Science 2016;353:1363-4. [PMID: 27708024 DOI: 10.1126/science.aai8465] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
86 Chen F, Cham JL, Badoer E. High-fat feeding alters the cardiovascular role of the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 2010;298:R799-807. [PMID: 20042687 DOI: 10.1152/ajpregu.00558.2009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
87 Bouyer K, Simerly RB. Neonatal leptin exposure specifies innervation of presympathetic hypothalamic neurons and improves the metabolic status of leptin-deficient mice. J Neurosci 2013;33:840-51. [PMID: 23303959 DOI: 10.1523/JNEUROSCI.3215-12.2013] [Cited by in Crossref: 62] [Cited by in F6Publishing: 38] [Article Influence: 6.9] [Reference Citation Analysis]
88 Busnardo C, Tavares RF, Resstel LB, Elias LL, Correa FM. Paraventricular nucleus modulates autonomic and neuroendocrine responses to acute restraint stress in rats. Auton Neurosci 2010;158:51-7. [PMID: 20594922 DOI: 10.1016/j.autneu.2010.06.003] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 4.8] [Reference Citation Analysis]
89 Pandit R, Beerens S, Adan RAH. Role of leptin in energy expenditure: the hypothalamic perspective. Am J Physiol Regul Integr Comp Physiol 2017;312:R938-47. [PMID: 28356295 DOI: 10.1152/ajpregu.00045.2016] [Cited by in Crossref: 86] [Cited by in F6Publishing: 81] [Article Influence: 17.2] [Reference Citation Analysis]
90 Bi S, Li L. Browning of white adipose tissue: role of hypothalamic signaling. Ann N Y Acad Sci 2013;1302:30-4. [PMID: 23980536 DOI: 10.1111/nyas.12258] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
91 Burke LK, Darwish T, Cavanaugh AR, Virtue S, Roth E, Morro J, Liu SM, Xia J, Dalley JW, Burling K, Chua S, Vidal-Puig T, Schwartz GJ, Blouet C. mTORC1 in AGRP neurons integrates exteroceptive and interoceptive food-related cues in the modulation of adaptive energy expenditure in mice. Elife 2017;6:e22848. [PMID: 28532548 DOI: 10.7554/eLife.22848] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
92 Silvani A, Cerri M, Zoccoli G, Swoap SJ. Is Adenosine Action Common Ground for NREM Sleep, Torpor, and Other Hypometabolic States? Physiology (Bethesda) 2018;33:182-96. [PMID: 29616880 DOI: 10.1152/physiol.00007.2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
93 Madden CJ, Tupone D, Cano G, Morrison SF. α2 Adrenergic receptor-mediated inhibition of thermogenesis. J Neurosci 2013;33:2017-28. [PMID: 23365239 DOI: 10.1523/JNEUROSCI.4701-12.2013] [Cited by in Crossref: 66] [Cited by in F6Publishing: 36] [Article Influence: 7.3] [Reference Citation Analysis]
94 Gonzalez IE, Ramirez-Matias J, Lu C, Pan W, Zhu A, Myers MG, Olson DP. Paraventricular Calcitonin Receptor-Expressing Neurons Modulate Energy Homeostasis in Male Mice. Endocrinology 2021;162:bqab072. [PMID: 33834205 DOI: 10.1210/endocr/bqab072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Morrison SF. Efferent neural pathways for the control of brown adipose tissue thermogenesis and shivering. Thermoregulation: From Basic Neuroscience to Clinical Neurology Part I. Elsevier; 2018. pp. 281-303. [DOI: 10.1016/b978-0-444-63912-7.00017-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
96 Oliveira-Pelegrin GR, Branco LG, Rocha MJ. Central NO-cGMP pathway in thermoregulation and survival rate during polymicrobial sepsis. Can J Physiol Pharmacol 2010;88:113-20. [PMID: 20237585 DOI: 10.1139/Y09-116] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
97 Münzberg H, Qualls-Creekmore E, Berthoud HR, Morrison CD, Yu S. Neural Control of Energy Expenditure. Handb Exp Pharmacol 2016;233:173-94. [PMID: 26578523 DOI: 10.1007/164_2015_33] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]