BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ren M, Miller PC, Schlame M, Phoon CKL. A critical appraisal of the tafazzin knockdown mouse model of Barth syndrome: what have we learned about pathogenesis and potential treatments? Am J Physiol Heart Circ Physiol 2019;317:H1183-93. [PMID: 31603701 DOI: 10.1152/ajpheart.00504.2019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Pang J, Bao Y, Mitchell-silbaugh K, Veevers J, Fang X. Barth Syndrome Cardiomyopathy: An Update. Genes 2022;13:656. [DOI: 10.3390/genes13040656] [Reference Citation Analysis]
2 Olivar-Villanueva M, Ren M, Phoon CKL. Neurological & psychological aspects of Barth syndrome: Clinical manifestations and potential pathogenic mechanisms. Mitochondrion 2021:S1567-7249(21)00084-2. [PMID: 34197965 DOI: 10.1016/j.mito.2021.06.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Goncalves RLS, Schlame M, Bartelt A, Brand MD, Hotamışlıgil GS. Cardiolipin deficiency in Barth syndrome is not associated with increased superoxide/H2 O2 production in heart and skeletal muscle mitochondria. FEBS Lett 2021;595:415-32. [PMID: 33112430 DOI: 10.1002/1873-3468.13973] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
4 Zegallai HM, Abu-El-Rub E, Cole LK, Field J, Mejia EM, Gordon JW, Marshall AJ, Hatch GM. Tafazzin deficiency impairs mitochondrial metabolism and function of lipopolysaccharide activated B lymphocytes in mice. FASEB J 2021;35:e22023. [PMID: 34767647 DOI: 10.1096/fj.202100811RR] [Reference Citation Analysis]
5 Sohn J, Milosevic J, Brouse T, Aziz N, Elkhoury J, Wang S, Hauschild A, van Gastel N, Cetinbas M, Tufa SF, Keene DR, Sadreyev RI, Pu WT, Sykes DB. A new murine model of Barth syndrome neutropenia links TAFAZZIN deficiency to increased ER stress-induced apoptosis. Blood Adv 2022;6:2557-77. [PMID: 34979560 DOI: 10.1182/bloodadvances.2021005720] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Fatica EM, DeLeonibus GA, House A, Kodger JV, Pearce RW, Shah RR, Levi L, Sandlers Y. Barth Syndrome: Exploring Cardiac Metabolism with Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Metabolites 2019;9:E306. [PMID: 31861102 DOI: 10.3390/metabo9120306] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
7 Elkes M, Andonovski M, Vidal D, Farago M, Modafferi R, Claypool SM, LeBlanc PJ. The Influence of Supplemental Dietary Linoleic Acid on Skeletal Muscle Contractile Function in a Rodent Model of Barth Syndrome. Front Physiol 2021;12:731961. [PMID: 34489741 DOI: 10.3389/fphys.2021.731961] [Reference Citation Analysis]
8 Ji J, Greenberg ML. Cardiolipin function in the yeast S. cerevisiae and the lessons learned for Barth syndrome. J Inherit Metab Dis 2021. [PMID: 34626131 DOI: 10.1002/jimd.12447] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 da Rosa-junior NT, Parmeggiani B, Glänzel NM, de Moura Alvorcem L, Brondani M, Britto R, Grings M, Ortiz VD, Turck P, da Rosa Araujo AS, Wajner M, Leipnitz G. Antioxidant system disturbances and mitochondrial dysfunction induced by 3-methyglutaric acid in rat heart are prevented by bezafibrate. European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.174950] [Reference Citation Analysis]
10 Pu WT. Experimental models of Barth syndrome. J Inherit Metab Dis 2021. [PMID: 34370877 DOI: 10.1002/jimd.12423] [Reference Citation Analysis]
11 Bayona-Bafaluy MP, Iglesias E, López-Gallardo E, Emperador S, Pacheu-Grau D, Labarta L, Montoya J, Ruiz-Pesini E. Genetic aspects of the oxidative phosphorylation dysfunction in dilated cardiomyopathy. Mutat Res Rev Mutat Res 2020;786:108334. [PMID: 33339579 DOI: 10.1016/j.mrrev.2020.108334] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Smeir E, Leberer S, Blumrich A, Vogler G, Vasiliades A, Dresen S, Jaeger C, Gloaguen Y, Klose C, Beule D, Schulze PC, Bodmer R, Foryst-Ludwig A, Kintscher U. Depletion of cardiac cardiolipin synthase alters systolic and diastolic function. iScience 2021;24:103314. [PMID: 34805785 DOI: 10.1016/j.isci.2021.103314] [Reference Citation Analysis]
13 Mitchell W, Ng EA, Tamucci JD, Boyd KJ, Sathappa M, Coscia A, Pan M, Han X, Eddy NA, May ER, Szeto HH, Alder NN. The mitochondria-targeted peptide SS-31 binds lipid bilayers and modulates surface electrostatics as a key component of its mechanism of action. J Biol Chem 2020;295:7452-69. [PMID: 32273339 DOI: 10.1074/jbc.RA119.012094] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 10.5] [Reference Citation Analysis]
14 El-Hafidi M, Correa F, Zazueta C. Mitochondrial dysfunction in metabolic and cardiovascular diseases associated with cardiolipin remodeling. Biochim Biophys Acta Mol Basis Dis 2020;1866:165744. [PMID: 32105822 DOI: 10.1016/j.bbadis.2020.165744] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]