BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Perri RE, Langer DA, Chatterjee S, Gibbons SJ, Gadgil J, Cao S, Farrugia G, Shah VH. Defects in cGMP-PKG pathway contribute to impaired NO-dependent responses in hepatic stellate cells upon activation. Am J Physiol Gastrointest Liver Physiol. 2006;290:G535-G542. [PMID: 16269521 DOI: 10.1152/ajpgi.00297.2005] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Chen T, Huang Z, Chen W, Ding R, Li N, Cui H, Wu F, Liang C, Cong X. Potential cardioprotective influence of bupropion against CCl4-triggered cirrhotic cardiomyopathy. Arabian Journal of Chemistry 2022;15:103599. [DOI: 10.1016/j.arabjc.2021.103599] [Reference Citation Analysis]
2 Kreisel W, Lazaro A, Trebicka J, Grosse Perdekamp M, Schmitt-Graeff A, Deibert P. Cyclic GMP in Liver Cirrhosis-Role in Pathophysiology of Portal Hypertension and Therapeutic Implications. Int J Mol Sci 2021;22:10372. [PMID: 34638713 DOI: 10.3390/ijms221910372] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Broermann A, Schmid R, Gabrielyan O, Sakowski M, Eisele C, Keller S, Wolff M, Baum P, Stierstorfer B, Huber J, Krämer BK, Hocher B, Streicher R, Delić D. Exosomal miRNAs as Potential Biomarkers to Monitor Phosphodiesterase 5 Inhibitor Induced Anti-Fibrotic Effects on CCl4 Treated Rats. Int J Mol Sci 2020;22:E382. [PMID: 33396535 DOI: 10.3390/ijms22010382] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
4 Claveria-Cabello A, Colyn L, Uriarte I, Latasa MU, Arechederra M, Herranz JM, Alvarez L, Urman JM, Martinez-Chantar ML, Banales JM, Sangro B, Rombouts K, Oyarzabal J, Marin JJG, Berasain C, Avila MA, Fernandez-Barrena MG. Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. Cancers (Basel) 2020;12:E3748. [PMID: 33322158 DOI: 10.3390/cancers12123748] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Srinivasan G, Parida S, Pavithra S, Panigrahi M, Sahoo M, Singh TU, Madhu CL, Manickam K, Shyamkumar TS, Kumar D, Mishra SK. Leptin receptor stimulation in late pregnant mouse uterine tissue inhibits spontaneous contractions by increasing NO and cGMP. Cytokine 2021;137:155341. [PMID: 33128919 DOI: 10.1016/j.cyto.2020.155341] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Chen PJ, Kuo LM, Wu YH, Chang YC, Lai KH, Hwang TL. BAY 41-2272 Attenuates CTGF Expression via sGC/cGMP-Independent Pathway in TGFβ1-Activated Hepatic Stellate Cells. Biomedicines 2020;8:E330. [PMID: 32899801 DOI: 10.3390/biomedicines8090330] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
7 Kreisel W, Schaffner D, Lazaro A, Trebicka J, Merfort I, Schmitt-Graeff A, Deibert P. Phosphodiesterases in the Liver as Potential Therapeutic Targets of Cirrhotic Portal Hypertension. Int J Mol Sci 2020;21:E6223. [PMID: 32872119 DOI: 10.3390/ijms21176223] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
8 Hu J, Le Q, Wang Y, Kuang S, Zhang M, Gu W, Sun Y, Jacques KJ, Li Y, Zhang Y, Sun J, Yang Y, Xu S, Yan X. Comparative transcriptome analysis of olfactory epithelium in large yellow croaker: Evidence for olfactory adaptation to feed phagostimulant in fish. Aquaculture 2020;519:734920. [DOI: 10.1016/j.aquaculture.2020.734920] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wang F, Liu F, Wang X, Chen W, Meng X. Transcriptomic responses to yam ( Dioscorea oppositifolia L .) extract dietary supplementation in rainbow trout ( Oncorhynchus mykiss ) liver. Aquac Res 2019;51:932-45. [DOI: 10.1111/are.14438] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
10 Francque SM, Kwanten WJ, van der Graaff D. Portal Hypertension in NASH: Is It Different from Other Aetiologies? Curr Hepatology Rep 2019;18:134-143. [DOI: 10.1007/s11901-019-00459-z] [Reference Citation Analysis]
11 Caracuel L, Sastre E, Llévenes P, Prieto I, Funes T, Aller MÁ, Arias J, Balfagón G, Blanco-Rivero J. Acute-on-chronic liver disease enhances phenylephrine-induced endothelial nitric oxide release in rat mesenteric resistance arteries through enhanced PKA, PI3K/AKT and cGMP signalling pathways. Sci Rep 2019;9:6993. [PMID: 31061522 DOI: 10.1038/s41598-019-43513-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
12 Liu Z, Zhang Z, Huang M, Sun X, Liu B, Guo Q, Chang Q, Duan Z. Taurocholic acid is an active promoting factor, not just a biomarker of progression of liver cirrhosis: evidence from a human metabolomic study and in vitro experiments. BMC Gastroenterol 2018;18:112. [PMID: 29996772 DOI: 10.1186/s12876-018-0842-7] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 10.5] [Reference Citation Analysis]
13 Schwabl P, Brusilovskaya K, Supper P, Bauer D, Königshofer P, Riedl F, Hayden H, Fuchs CD, Stift J, Oberhuber G, Aschauer S, Bonderman D, Gnad T, Pfeifer A, Uschner FE, Trebicka J, Rohr-Udilova N, Podesser BK, Peck-Radosavljevic M, Trauner M, Reiberger T. The soluble guanylate cyclase stimulator riociguat reduces fibrogenesis and portal pressure in cirrhotic rats. Sci Rep 2018;8:9372. [PMID: 29921982 DOI: 10.1038/s41598-018-27656-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
14 Norvell JP, Pillai AA, Flynn MM. Gastrointestinal and Hepatic Physiology in Liver Disease. Hepatic Critical Care 2018. [DOI: 10.1007/978-3-319-66432-3_4] [Reference Citation Analysis]
15 de Mesquita FC, Guixé-Muntet S, Fernández-Iglesias A, Maeso-Díaz R, Vila S, Hide D, Ortega-Ribera M, Rosa JL, García-Pagán JC, Bosch J, de Oliveira JR, Gracia-Sancho J. Liraglutide improves liver microvascular dysfunction in cirrhosis: Evidence from translational studies. Sci Rep 2017;7:3255. [PMID: 28607430 DOI: 10.1038/s41598-017-02866-y] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 8.8] [Reference Citation Analysis]
16 Vorobioff J, Groszmann R. Portal Hypertension—Molecular Mechanisms. Liver Pathophysiology. Elsevier; 2017. pp. 435-49. [DOI: 10.1016/b978-0-12-804274-8.00034-5] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
17 Loughran P, Xu L, Billiar T. Nitric Oxide and the Liver. Liver Pathophysiology 2017. [DOI: 10.1016/b978-0-12-804274-8.00058-8] [Reference Citation Analysis]
18 Zhang CG, Zhang B, Deng WS, Duan M, Chen W, Wu ZY. Role of estrogen receptor β selective agonist in ameliorating portal hypertension in rats with CCl4-induced liver cirrhosis. World J Gastroenterol 2016; 22(18): 4484-4500 [PMID: 27182159 DOI: 10.3748/wjg.v22.i18.4484] [Cited by in CrossRef: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.2] [Reference Citation Analysis]
19 Woreta TA, Li Z. Management of Upper Gastrointestinal Hemorrhage Related to Portal Hypertension. Yamada' s Textbook of Gastroenterology 2015. [DOI: 10.1002/9781118512074.ch138] [Reference Citation Analysis]
20 Fernandez M. Molecular pathophysiology of portal hypertension. Hepatology 2015;61:1406-15. [PMID: 25092403 DOI: 10.1002/hep.27343] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 11.3] [Reference Citation Analysis]
21 Minarchick VC, Stapleton PA, Fix NR, Leonard SS, Sabolsky EM, Nurkiewicz TR. Intravenous and gastric cerium dioxide nanoparticle exposure disrupts microvascular smooth muscle signaling. Toxicol Sci 2015;144:77-89. [PMID: 25481005 DOI: 10.1093/toxsci/kfu256] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
22 Fallowfield JA, Hayden AL, Snowdon VK, Aucott RL, Stutchfield BM, Mole DJ, Pellicoro A, Gordon-Walker TT, Henke A, Schrader J, Trivedi PJ, Princivalle M, Forbes SJ, Collins JE, Iredale JP. Relaxin modulates human and rat hepatic myofibroblast function and ameliorates portal hypertension in vivo. Hepatology 2014;59:1492-504. [PMID: 23873655 DOI: 10.1002/hep.26627] [Cited by in Crossref: 74] [Cited by in F6Publishing: 74] [Article Influence: 9.3] [Reference Citation Analysis]
23 Iwakiri Y. Pathophysiology of portal hypertension. Clin Liver Dis. 2014;18:281-291. [PMID: 24679494 DOI: 10.1016/j.cld.2013.12.001] [Cited by in Crossref: 143] [Cited by in F6Publishing: 145] [Article Influence: 17.9] [Reference Citation Analysis]
24 Piguet A, Majumder S, Maheshwari U, Manjunathan R, Saran U, Chatterjee S, Dufour J. Everolimus is a potent inhibitor of activated hepatic stellate cell functions in vitro and in vivo, while demonstrating anti-angiogenic activities. Clinical Science 2014;126:775-91. [DOI: 10.1042/cs20130081] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
25 Greene SJ, Gheorghiade M, Borlaug BA, Pieske B, Vaduganathan M, Burnett JC Jr, Roessig L, Stasch JP, Solomon SD, Paulus WJ, Butler J. The cGMP signaling pathway as a therapeutic target in heart failure with preserved ejection fraction. J Am Heart Assoc 2013;2:e000536. [PMID: 24334823 DOI: 10.1161/JAHA.113.000536] [Cited by in Crossref: 89] [Cited by in F6Publishing: 92] [Article Influence: 9.9] [Reference Citation Analysis]
26 Hu LS, George J, Wang JH. Current concepts on the role of nitric oxide in portal hypertension. World J Gastroenterol 2013; 19(11): 1707-1717 [PMID: 23555159 DOI: 10.3748/wjg.v19.i11.1707] [Cited by in CrossRef: 47] [Cited by in F6Publishing: 51] [Article Influence: 5.2] [Reference Citation Analysis]
27 Majumder S, Piguet AC, Dufour JF, Chatterjee S. Study of the cellular mechanism of Sunitinib mediated inactivation of activated hepatic stellate cells and its implications in angiogenesis. Eur J Pharmacol. 2013;705:86-95. [PMID: 23454556 DOI: 10.1016/j.ejphar.2013.02.026] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 3.7] [Reference Citation Analysis]
28 Chen Y, Chitapanarux T, Wu J, Soon RK Jr, Melton AC, Yee HF Jr. Inducible NOS mediates CNP-induced relaxation of intestinal myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2013;304:G673-9. [PMID: 23348803 DOI: 10.1152/ajpgi.00214.2012] [Reference Citation Analysis]
29 Ali G, Mohsin S, Khan M, Nasir GA, Shams S, Khan SN, Riazuddin S. Nitric oxide augments mesenchymal stem cell ability to repair liver fibrosis. J Transl Med 2012;10:75. [PMID: 22533821 DOI: 10.1186/1479-5876-10-75] [Cited by in Crossref: 50] [Cited by in F6Publishing: 55] [Article Influence: 5.0] [Reference Citation Analysis]
30 Guturu P, Shah V. New insights into the pathobiology of portal hypertension. Hepatol Res 2009;39:1016-9. [PMID: 19796039 DOI: 10.1111/j.1872-034X.2009.00553.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
31 Kim MY, Baik SK, Lee SS. Hemodynamic alterations in cirrhosis and portal hypertension. Korean J Hepatol 2010;16:347-52. [PMID: 21415576 DOI: 10.3350/kjhep.2010.16.4.347] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 5.5] [Reference Citation Analysis]
32 Routray C, Liu C, Yaqoob U, Billadeau DD, Bloch KD, Kaibuchi K, Shah VH, Kang N. Protein kinase G signaling disrupts Rac1-dependent focal adhesion assembly in liver specific pericytes. Am J Physiol Cell Physiol 2011;301:C66-74. [PMID: 21451103 DOI: 10.1152/ajpcell.00038.2011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
33 Khimji AK, Rockey DC. Endothelin and hepatic wound healing. Pharmacol Res. 2011;63:512-518. [PMID: 21421048 DOI: 10.1016/j.phrs.2011.03.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
34 Singla SK, Shah VH. Portal Hypertension. Molecular Pathology Library 2011. [DOI: 10.1007/978-1-4419-7107-4_33] [Reference Citation Analysis]
35 Schonhoff CM, Ramasamy U, Anwer MS. Nitric oxide-mediated inhibition of taurocholate uptake involves S-nitrosylation of NTCP. Am J Physiol Gastrointest Liver Physiol 2011;300:G364-70. [PMID: 21109590 DOI: 10.1152/ajpgi.00170.2010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
36 Steib CJ, Bilzer M, Härtl JM, Beitinger F, Gülberg V, Göke B, Gerbes AL. Kupffer cell activation by hydrogen peroxide: a new mechanism of portal pressure increase. Shock. 2010;33:412-418. [PMID: 20118678 DOI: 10.1097/shk.0b013e3181b85934] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
37 Das A, Mukherjee P, Singla SK, Guturu P, Frost MC, Mukhopadhyay D, Shah VH, Patra CR. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide. Nanotechnology. 2010;21:305102. [PMID: 20610873 DOI: 10.1088/0957-4484/21/30/305102] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 3.1] [Reference Citation Analysis]
38 Dai L, Ji H, Kong XW, Zhang YH. Antifibrotic effects of ZK14, a novel nitric oxide-donating biphenyldicarboxylate derivative, on rat HSC-T6 cells and CCl4-induced hepatic fibrosis. Acta Pharmacol Sin 2010;31:27-34. [PMID: 19966836 DOI: 10.1038/aps.2009.170] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
39 Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev. 2009;89:1269-1339. [PMID: 19789382 DOI: 10.1152/physrev.00027.2008] [Cited by in Crossref: 320] [Cited by in F6Publishing: 355] [Article Influence: 24.6] [Reference Citation Analysis]
40 Soon RK, Yee HF. Stellate cell contraction: role, regulation, and potential therapeutic target. Clin Liver Dis. 2008;12:791-803, viii. [PMID: 18984467 DOI: 10.1016/j.cld.2008.07.004] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
41 Semela D, Das A, Langer D, Kang N, Leof E, Shah V. Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology 2008;135:671-9. [PMID: 18570897 DOI: 10.1053/j.gastro.2008.04.010] [Cited by in Crossref: 112] [Cited by in F6Publishing: 119] [Article Influence: 8.0] [Reference Citation Analysis]
42 Langer DA, Das A, Semela D, Kang-Decker N, Hendrickson H, Bronk SF, Katusic ZS, Gores GJ, Shah VH. Nitric oxide promotes caspase-independent hepatic stellate cell apoptosis through the generation of reactive oxygen species. Hepatology 2008;47:1983-93. [PMID: 18459124 DOI: 10.1002/hep.22285] [Cited by in Crossref: 85] [Cited by in F6Publishing: 95] [Article Influence: 6.1] [Reference Citation Analysis]
43 Martín-Vílchez S, Sanz-Cameno P, Rodríguez-Muñoz Y, Majano PL, Molina-Jiménez F, López-Cabrera M, Moreno-Otero R, Lara-Pezzi E. The hepatitis B virus X protein induces paracrine activation of human hepatic stellate cells. Hepatology 2008;47:1872-83. [PMID: 18449922 DOI: 10.1002/hep.22265] [Cited by in Crossref: 75] [Cited by in F6Publishing: 80] [Article Influence: 5.4] [Reference Citation Analysis]
44 Majumder S, Tamilarasan KP, Kolluru GK, Muley A, Nair CM, Omanakuttan A, Murty KV, Chatterjee S. Activated pericyte attenuates endothelial functions: nitric oxide-cGMP rescues activated pericyte-associated endothelial dysfunctions. Biochem Cell Biol 2007;85:709-20. [PMID: 18059529 DOI: 10.1139/o07-140] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
45 Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008;88:125-72. [PMID: 18195085 DOI: 10.1152/physrev.00013.2007] [Cited by in Crossref: 1866] [Cited by in F6Publishing: 2001] [Article Influence: 133.3] [Reference Citation Analysis]
46 Shah V. Molecular mechanisms of increased intrahepatic resistance in portal hypertension. J Clin Gastroenterol. 2007;41 Suppl 3:S259-S261. [PMID: 17975474 DOI: 10.1097/mcg.0b013e318150d0e1] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 1.8] [Reference Citation Analysis]
47 Kang-Decker N, Cao S, Chatterjee S, Yao J, Egan LJ, Semela D, Mukhopadhyay D, Shah V. Nitric oxide promotes endothelial cell survival signaling through S-nitrosylation and activation of dynamin-2. J Cell Sci 2007;120:492-501. [PMID: 17251380 DOI: 10.1242/jcs.03361] [Cited by in Crossref: 99] [Cited by in F6Publishing: 102] [Article Influence: 6.6] [Reference Citation Analysis]
48 Lee JS, Semela D, Iredale J, Shah VH. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology 2007;45:817-25. [PMID: 17326208 DOI: 10.1002/hep.21564] [Cited by in Crossref: 179] [Cited by in F6Publishing: 189] [Article Influence: 11.9] [Reference Citation Analysis]
49 Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt HH, Stasch JP. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 2006;5:755-68. [PMID: 16955067 DOI: 10.1038/nrd2038] [Cited by in Crossref: 538] [Cited by in F6Publishing: 543] [Article Influence: 33.6] [Reference Citation Analysis]
50 Langer DA, Shah VH. Nitric oxide and portal hypertension: interface of vasoreactivity and angiogenesis. J Hepatol. 2006;44:209-216. [PMID: 16297493 DOI: 10.1016/j.jhep.2005.10.004] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 2.9] [Reference Citation Analysis]
51 Schmidt HHHW, Schmidt PM, Stasch J. NO- and Haem-Independent Soluble Guanylate Cyclase Activators. In: Schmidt HHHW, Hofmann F, Stasch J, editors. cGMP: Generators, Effectors and Therapeutic Implications. Berlin: Springer Berlin Heidelberg; 2009. pp. 309-39. [DOI: 10.1007/978-3-540-68964-5_14] [Cited by in Crossref: 107] [Cited by in F6Publishing: 91] [Reference Citation Analysis]