BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shimoda LA, Polak J. Hypoxia. 4. Hypoxia and ion channel function. Am J Physiol Cell Physiol 2011;300:C951-67. [PMID: 21178108 DOI: 10.1152/ajpcell.00512.2010] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Martewicz S, Michielin F, Serena E, Zambon A, Mongillo M, Elvassore N. Reversible alteration of calcium dynamics in cardiomyocytes during acute hypoxia transient in a microfluidic platform. Integr Biol (Camb) 2012;4:153-64. [PMID: 22158991 DOI: 10.1039/c1ib00087j] [Cited by in Crossref: 31] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
2 Behn C, Dinamarca GA, De Gregorio NF, Lips V, Vivaldi EA, Soza D, Guerra MA, Jiménez RF, Lecannelier EA, Varela H, Silva-urra JA. Age-Related Arrhythmogenesis on Ascent and Descent: “Autonomic Conflicts” on Hypoxia/Reoxygenation at High Altitude? High Altitude Medicine & Biology 2014;15:356-63. [DOI: 10.1089/ham.2013.1092] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
3 Hooper R, Samakai E, Kedra J, Soboloff J. Multifaceted roles of STIM proteins. Pflugers Arch 2013;465:1383-96. [PMID: 23568369 DOI: 10.1007/s00424-013-1270-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
4 Iorio J, Petroni G, Duranti C, Lastraioli E. Potassium and Sodium Channels and the Warburg Effect: Biophysical Regulation of Cancer Metabolism. Bioelectricity 2019;1:188-200. [PMID: 34471821 DOI: 10.1089/bioe.2019.0017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
5 Zhou T, Matsunami H. Lessons from single-cell transcriptome analysis of oxygen-sensing cells. Cell Tissue Res 2018;372:403-15. [PMID: 28887696 DOI: 10.1007/s00441-017-2682-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
6 Cserne Szappanos H, Viola H, Hool LC. L-type calcium channel: Clarifying the "oxygen sensing hypothesis". Int J Biochem Cell Biol 2017;86:32-6. [PMID: 28323207 DOI: 10.1016/j.biocel.2017.03.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
7 Prasad M, Zachar V, Fink T, Pennisi CP. Moderate hypoxia influences potassium outward currents in adipose-derived stem cells. PLoS One 2014;9:e104912. [PMID: 25115627 DOI: 10.1371/journal.pone.0104912] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
8 Papreck JR, Martin EA, Lazzarini P, Kang D, Kim D. Modulation of K2P3.1 (TASK-1), K2P9.1 (TASK-3), and TASK-1/3 heteromer by reactive oxygen species. Pflugers Arch 2012;464:471-80. [PMID: 23007462 DOI: 10.1007/s00424-012-1159-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
9 Rosenberry R, Nelson MD. Reactive hyperemia: a review of methods, mechanisms, and considerations. Am J Physiol Regul Integr Comp Physiol 2020;318:R605-18. [PMID: 32022580 DOI: 10.1152/ajpregu.00339.2019] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 10.5] [Reference Citation Analysis]
10 Perez-Neut M, Haar L, Rao V, Santha S, Lansu K, Rana B, Jones WK, Gentile S. Activation of hERG3 channel stimulates autophagy and promotes cellular senescence in melanoma. Oncotarget 2016;7:21991-2004. [PMID: 26942884 DOI: 10.18632/oncotarget.7831] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
11 López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera MC, Pardal R, Ortega-Sáenz P. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol 2016;310:C629-42. [PMID: 26764048 DOI: 10.1152/ajpcell.00265.2015] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 10.2] [Reference Citation Analysis]
12 Yang M, Dart C, Kamishima T, Quayle JM. Hypoxia and metabolic inhibitors alter the intracellular ATP:ADP ratio and membrane potential in human coronary artery smooth muscle cells. PeerJ 2020;8:e10344. [PMID: 33240653 DOI: 10.7717/peerj.10344] [Reference Citation Analysis]
13 Horváth B, Szentandrássy N, Almássy J, Dienes C, Kovács ZM, Nánási PP, Banyasz T. Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going? Pharmaceuticals 2022;15:231. [DOI: 10.3390/ph15020231] [Reference Citation Analysis]
14 Chen P, Liu Y, Liu W, Wang Y, Liu Z, Rong M. Impact of High-Altitude Hypoxia on Bone Defect Repair: A Review of Molecular Mechanisms and Therapeutic Implications. Front Med (Lausanne) 2022;9:842800. [PMID: 35620712 DOI: 10.3389/fmed.2022.842800] [Reference Citation Analysis]
15 Gao L, González-Rodríguez P, Ortega-Sáenz P, López-Barneo J. Redox signaling in acute oxygen sensing. Redox Biol 2017;12:908-15. [PMID: 28476010 DOI: 10.1016/j.redox.2017.04.033] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
16 Hocanli I, Tanriverdi Z, Kabak M, Gungoren F, Tascanov MB. The relationship between frontal QRS-T angle and the severity of newly diagnosed chronic obstructive pulmonary disease. Int J Clin Pract 2021;:e14500. [PMID: 34117683 DOI: 10.1111/ijcp.14500] [Reference Citation Analysis]
17 Sforna L, Cenciarini M, Belia S, D'Adamo MC, Pessia M, Franciolini F, Catacuzzeno L. The role of ion channels in the hypoxia-induced aggressiveness of glioblastoma. Front Cell Neurosci 2014;8:467. [PMID: 25642170 DOI: 10.3389/fncel.2014.00467] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
18 Buck LT, Pamenter ME. The hypoxia-tolerant vertebrate brain: Arresting synaptic activity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2018;224:61-70. [DOI: 10.1016/j.cbpb.2017.11.015] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
19 Horvath B, Bers DM. The late sodium current in heart failure: pathophysiology and clinical relevance. ESC Heart Fail 2014;1:26-40. [PMID: 28834665 DOI: 10.1002/ehf2.12003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
20 Semenza GL. Hypoxia. Cross talk between oxygen sensing and the cell cycle machinery. Am J Physiol Cell Physiol 2011;301:C550-2. [PMID: 21677261 DOI: 10.1152/ajpcell.00176.2011] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 4.9] [Reference Citation Analysis]
21 Maron BA, Machado RF, Shimoda L. Pulmonary vascular and ventricular dysfunction in the susceptible patient (2015 Grover Conference series). Pulm Circ 2016;6:426-38. [PMID: 28090285 DOI: 10.1086/688315] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
22 Trotta MC, Ferraro B, Messina A, Panarese I, Gulotta E, Nicoletti GF, D'Amico M, Pieretti G. Telmisartan cardioprotects from the ischaemic/hypoxic damage through a miR-1-dependent pathway. J Cell Mol Med 2019;23:6635-45. [PMID: 31369209 DOI: 10.1111/jcmm.14534] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
23 Lamothe SM, Song W, Guo J, Li W, Yang T, Baranchuk A, Graham CH, Zhang S. Hypoxia reduces mature hERG channels through calpain up‐regulation. FASEB j 2017;31:5068-77. [DOI: 10.1096/fj.201700255r] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
24 Horváth B, Hézső T, Kiss D, Kistamás K, Magyar J, Nánási PP, Bányász T. Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Front Pharmacol 2020;11:413. [PMID: 32372952 DOI: 10.3389/fphar.2020.00413] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
25 Wang F, Chen ZH, Shabala S. Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors. Plant Cell Physiol 2017;58:1126-42. [PMID: 28838128 DOI: 10.1093/pcp/pcx079] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
26 Schramm AE, Carton-Leclercq A, Diallo S, Navarro V, Chavez M, Mahon S, Charpier S. Identifying neuronal correlates of dying and resuscitation in a model of reversible brain anoxia. Prog Neurobiol 2020;185:101733. [PMID: 31836416 DOI: 10.1016/j.pneurobio.2019.101733] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
27 Ivonina NI, Fokin AA, Roshchevskaya IM. Body Surface Potential Mapping During Heart Ventricular Repolarization in Male Swimmers and Untrained Persons Under Hypoxic and Hypercapnic Hypoxia. High Alt Med Biol 2021. [PMID: 34314614 DOI: 10.1089/ham.2020.0103] [Reference Citation Analysis]
28 Suresh K, Shimoda LA. Lung Circulation. Compr Physiol 2016;6:897-943. [PMID: 27065170 DOI: 10.1002/cphy.c140049] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
29 Taglauer E, Abman SH, Keller RL. Recent advances in antenatal factors predisposing to bronchopulmonary dysplasia. Semin Perinatol 2018;42:413-24. [PMID: 30389227 DOI: 10.1053/j.semperi.2018.09.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 7.8] [Reference Citation Analysis]
30 Bishop T, Ratcliffe PJ. HIF hydroxylase pathways in cardiovascular physiology and medicine. Circ Res 2015;117:65-79. [PMID: 26089364 DOI: 10.1161/CIRCRESAHA.117.305109] [Cited by in Crossref: 95] [Cited by in F6Publishing: 59] [Article Influence: 13.6] [Reference Citation Analysis]
31 Olschewski A, Weir EK. Redox regulation of ion channels in the pulmonary circulation. Antioxid Redox Signal 2015;22:465-85. [PMID: 24702125 DOI: 10.1089/ars.2014.5899] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
32 López-barneo J, Ortega-sáenz P, González-rodríguez P, Fernández-agüera MC, Macías D, Pardal R, Gao L. Oxygen-sensing by arterial chemoreceptors: Mechanisms and medical translation. Molecular Aspects of Medicine 2016;47-48:90-108. [DOI: 10.1016/j.mam.2015.12.002] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 6.3] [Reference Citation Analysis]
33 López-Barneo J, Ortega-Sáenz P. Mitochondrial acute oxygen sensing and signaling. Crit Rev Biochem Mol Biol 2021;:1-21. [PMID: 34852688 DOI: 10.1080/10409238.2021.2004575] [Reference Citation Analysis]
34 Marinheiro R, Parreira L, Amador P, Mesquita D, Farinha J, Fonseca M, Duarte T, Lopes C, Fernandes A, Caria R. Ventricular Arrhythmias in Patients with Obstructive Sleep Apnea. Curr Cardiol Rev 2019;15:64-74. [PMID: 30338742 DOI: 10.2174/1573403X14666181012153252] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Byrne TJ. A "cure" for preeclampsia: Improving neonatal outcomes by overcoming excess fetal placental vascular resistance. Med Hypotheses 2015;85:311-9. [PMID: 26105573 DOI: 10.1016/j.mehy.2015.06.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
36 Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021;101:1177-235. [PMID: 33570461 DOI: 10.1152/physrev.00039.2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 Wood CE, Keller-Wood M. Current paradigms and new perspectives on fetal hypoxia: implications for fetal brain development in late gestation. Am J Physiol Regul Integr Comp Physiol 2019;317:R1-R13. [PMID: 31017808 DOI: 10.1152/ajpregu.00008.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
38 Olson KR. Hydrogen sulfide is an oxygen sensor in the carotid body. Respir Physiol Neurobiol 2011;179:103-10. [PMID: 21968289 DOI: 10.1016/j.resp.2011.09.010] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 3.4] [Reference Citation Analysis]
39 Gusakova SV, Birulina YG, Smagliy LV, Kovalev IV, Petrova IV, Nosarev AV, Orlov SN. Regulation of Contractile Responses of Vascular Smooth Muscle Cells under Conditions of Hypoxia-Reoxygenation. Bull Exp Biol Med 2016;162:195-8. [PMID: 27913935 DOI: 10.1007/s10517-016-3574-0] [Reference Citation Analysis]
40 Shimoda LA, Laurie SS. Vascular remodeling in pulmonary hypertension. J Mol Med (Berl) 2013;91:297-309. [PMID: 23334338 DOI: 10.1007/s00109-013-0998-0] [Cited by in Crossref: 132] [Cited by in F6Publishing: 120] [Article Influence: 14.7] [Reference Citation Analysis]
41 Kistamás K, Hézső T, Horváth B, Nánási PP. Late sodium current and calcium homeostasis in arrhythmogenesis. Channels (Austin) 2021;15:1-19. [PMID: 33258400 DOI: 10.1080/19336950.2020.1854986] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Pavlacky J, Polak J. Technical Feasibility and Physiological Relevance of Hypoxic Cell Culture Models. Front Endocrinol (Lausanne) 2020;11:57. [PMID: 32153502 DOI: 10.3389/fendo.2020.00057] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
43 Lima CB, Santos SA, Andrade Júnior DR. Hypoxic stress, hepatocytes and CACO-2 viability and susceptibility to Shigella flexneri invasion. Rev Inst Med Trop Sao Paulo 2013;55:341-6. [PMID: 24037289 DOI: 10.1590/S0036-46652013000500008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
44 Mancarella S, Wang Y, Deng X, Landesberg G, Scalia R, Panettieri RA, Mallilankaraman K, Tang XD, Madesh M, Gill DL. Hypoxia-induced acidosis uncouples the STIM-Orai calcium signaling complex. J Biol Chem 2011;286:44788-98. [PMID: 22084246 DOI: 10.1074/jbc.M111.303081] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
45 Choi SW, Yin MZ, Park NK, Woo JH, Kim SJ. Dual Mechanisms of Cardiac Action Potential Prolongation by 4-Oxo-Nonenal Increasing the Risk of Arrhythmia; Late Na+ Current Induction and hERG K+ Channel Inhibition. Antioxidants (Basel) 2021;10:1139. [PMID: 34356372 DOI: 10.3390/antiox10071139] [Reference Citation Analysis]
46 Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W. Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol. 2012;52:794-801. [PMID: 22004900 DOI: 10.1016/j.yjmcc.2011.10.001] [Cited by in Crossref: 64] [Cited by in F6Publishing: 46] [Article Influence: 5.8] [Reference Citation Analysis]
47 Verratti V, Tonacci A, Bondi D, Chiavaroli A, Ferrante C, Brunetti L, Crisafulli A, Cerretelli P. Ethnic Differences on Cardiac Rhythms and Autonomic Nervous System Responses During a High-Altitude Trek: A Pilot Study Comparing Italian Trekkers to Nepalese Porters. Front Physiol 2021;12:709451. [PMID: 34497537 DOI: 10.3389/fphys.2021.709451] [Reference Citation Analysis]
48 Christiansen D, Eibye KH, Rasmussen V, Voldbye HM, Thomassen M, Nyberg M, Gunnarsson TGP, Skovgaard C, Lindskrog MS, Bishop DJ, Hostrup M, Bangsbo J. Cycling with blood flow restriction improves performance and muscle K+ regulation and alters the effect of anti-oxidant infusion in humans. J Physiol 2019;597:2421-44. [PMID: 30843602 DOI: 10.1113/JP277657] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
49 Liu W, Zhang XP, Yang DL, Song SW. Humanin attenuated the change of voltage-dependent potassium currents in hippocampal neurons induced by anoxia. CNS Neurosci Ther 2014;20:95-7. [PMID: 24341938 DOI: 10.1111/cns.12211] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
50 Girault A, Ahidouch A, Ouadid-Ahidouch H. Roles for Ca2+ and K+ channels in cancer cells exposed to the hypoxic tumour microenvironment. Biochim Biophys Acta Mol Cell Res 2020;1867:118644. [PMID: 31931022 DOI: 10.1016/j.bbamcr.2020.118644] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021;11:1895-959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Yingjun G, Xun Q. Acid-sensing ion channels under hypoxia. Channels (Austin) 2013;7:231-7. [PMID: 23764948 DOI: 10.4161/chan.25223] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
53 Hu XQ, Zhang L. Function and regulation of large conductance Ca(2+)-activated K+ channel in vascular smooth muscle cells. Drug Discov Today 2012;17:974-87. [PMID: 22521666 DOI: 10.1016/j.drudis.2012.04.002] [Cited by in Crossref: 67] [Cited by in F6Publishing: 63] [Article Influence: 6.7] [Reference Citation Analysis]
54 Scarpellino G, Munaron L, Cantelmo AR, Fiorio Pla A. Calcium-Permeable Channels in Tumor Vascularization: Peculiar Sensors of Microenvironmental Chemical and Physical Cues. Berlin: Springer Berlin Heidelberg; 2020. [DOI: 10.1007/112_2020_32] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 He S, Zhu T, Fang Z. The Role and Regulation of Pulmonary Artery Smooth Muscle Cells in Pulmonary Hypertension. Int J Hypertens 2020;2020:1478291. [PMID: 32850144 DOI: 10.1155/2020/1478291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Hool LC. How does the heart sense changes in oxygen tension: a role for ion channels? Antioxid Redox Signal 2015;22:522-36. [PMID: 24684612 DOI: 10.1089/ars.2014.5880] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
57 Lam A, Karekar P, Shah K, Hariharan G, Fleyshman M, Kaur H, Singh H, Gururaja Rao S. Drosophila Voltage-Gated Calcium Channel α1-Subunits Regulate Cardiac Function in the Aging Heart. Sci Rep 2018;8:6910. [PMID: 29720608 DOI: 10.1038/s41598-018-25195-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
58 van Oosten EM, Boag AH, Cunningham K, Veinot J, Hamilton A, Petsikas D, Payne D, Hopman WM, Redfearn DP, Song W, Lamothe S, Zhang S, Baranchuk A. The histology of human right atrial tissue in patients with high-risk Obstructive Sleep Apnea and underlying cardiovascular disease: A pilot study. Int J Cardiol Heart Vasc 2015;6:71-5. [PMID: 28785630 DOI: 10.1016/j.ijcha.2015.01.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
59 Hu XQ, Chen M, Dasgupta C, Xiao D, Huang X, Yang S, Zhang L. Chronic hypoxia upregulates DNA methyltransferase and represses large conductance Ca2+-activated K+ channel function in ovine uterine arteries. Biol Reprod 2017;96:424-34. [PMID: 28203702 DOI: 10.1095/biolreprod.116.145946] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
60 Senavirathna LK, Huang C, Yang X, Munteanu MC, Sathiaseelan R, Xu D, Henke CA, Liu L. Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling. Sci Rep 2018;8:2709. [PMID: 29426911 DOI: 10.1038/s41598-018-21073-x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 8.3] [Reference Citation Analysis]