BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang YX, Zheng YM, Abdullaev I, Kotlikoff MI. Metabolic inhibition with cyanide induces calcium release in pulmonary artery myocytes and Xenopus oocytes. Am J Physiol Cell Physiol. 2003;284:C378-C388. [PMID: 12388060 DOI: 10.1152/ajpcell.00260.2002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 2.1] [Reference Citation Analysis]
Number Citing Articles
1 Zheng YM, Wang QS, Rathore R, Zhang WH, Mazurkiewicz JE, Sorrentino V, Singer HA, Kotlikoff MI, Wang YX. Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. J Gen Physiol 2005;125:427-40. [PMID: 15795312 DOI: 10.1085/jgp.200409232] [Cited by in Crossref: 72] [Cited by in F6Publishing: 67] [Article Influence: 4.5] [Reference Citation Analysis]
2 Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JX. Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2003;285:L1233-45. [PMID: 12909593 DOI: 10.1152/ajplung.00445.2002] [Cited by in Crossref: 136] [Cited by in F6Publishing: 127] [Article Influence: 7.6] [Reference Citation Analysis]
3 Wang J, Shimoda LA, Sylvester JT. Ca2+ responses of pulmonary arterial myocytes to acute hypoxia require release from ryanodine and inositol trisphosphate receptors in sarcoplasmic reticulum. Am J Physiol Lung Cell Mol Physiol 2012;303:L161-8. [PMID: 22582116 DOI: 10.1152/ajplung.00348.2011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
4 Li XQ, Zheng YM, Rathore R, Ma J, Takeshima H, Wang YX. Genetic evidence for functional role of ryanodine receptor 1 in pulmonary artery smooth muscle cells. Pflugers Arch 2009;457:771-83. [PMID: 18663468 DOI: 10.1007/s00424-008-0556-8] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
5 Cheranov SY, Jaggar JH. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J Physiol 2004;556:755-71. [PMID: 14766935 DOI: 10.1113/jphysiol.2003.059568] [Cited by in Crossref: 74] [Cited by in F6Publishing: 68] [Article Influence: 4.4] [Reference Citation Analysis]
6 Wang N, He D, Zhou Y, Wen J, Liu X, Li P, Yang Y, Cheng J. Hydroxysafflor yellow A actives BKCa channels and inhibits L-type Ca channels to induce vascular relaxation. Eur J Pharmacol 2020;870:172873. [PMID: 31866408 DOI: 10.1016/j.ejphar.2019.172873] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
7 Truong L, Zheng YM, Wang YX. Mitochondrial Rieske iron-sulfur protein in pulmonary artery smooth muscle: A key primary signaling molecule in pulmonary hypertension. Arch Biochem Biophys 2019;664:68-75. [PMID: 30710505 DOI: 10.1016/j.abb.2019.01.029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
8 Gil DA, Sharick JT, Mancha S, Gamm UA, Choma MA, Skala MC. Redox imaging and optical coherence tomography of the respiratory ciliated epithelium. J Biomed Opt 2019;24:1-4. [PMID: 30701725 DOI: 10.1117/1.JBO.24.1.010501] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Xi Q, Cheranov SY, Jaggar JH. Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks. Circ Res 2005;97:354-62. [PMID: 16020754 DOI: 10.1161/01.RES.0000177669.29525.78] [Cited by in Crossref: 100] [Cited by in F6Publishing: 54] [Article Influence: 6.3] [Reference Citation Analysis]
10 Rahman M, Inman M, Kiss L, Janssen LJ. Reverse-mode NCX current in mouse airway smooth muscle: Na(+) and voltage dependence, contributions to Ca(2+) influx and contraction, and altered expression in a model of allergen-induced hyperresponsiveness. Acta Physiol (Oxf) 2012;205:279-91. [PMID: 22212361 DOI: 10.1111/j.1748-1716.2011.02401.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
11 Truong L, Zheng YM, Wang YX. Mitochondrial Rieske iron-sulfur protein in pulmonary artery smooth muscle: A key primary signaling molecule in pulmonary hypertension. Arch Biochem Biophys 2020;683:108234. [PMID: 31980131 DOI: 10.1016/j.abb.2019.108234] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Li XQ, Zheng YM, Reyes-García J, Wang YX. Diversity of ryanodine receptor 1-mediated Ca2+ signaling in systemic and pulmonary artery smooth muscle cells. Life Sci 2021;270:119016. [PMID: 33515564 DOI: 10.1016/j.lfs.2021.119016] [Reference Citation Analysis]
13 Wang YX, Zheng YM. Role of ROS signaling in differential hypoxic Ca2+ and contractile responses in pulmonary and systemic vascular smooth muscle cells. Respir Physiol Neurobiol 2010;174:192-200. [PMID: 20713188 DOI: 10.1016/j.resp.2010.08.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
14 Wang YX, Zheng YM. ROS-dependent signaling mechanisms for hypoxic Ca(2+) responses in pulmonary artery myocytes. Antioxid Redox Signal 2010;12:611-23. [PMID: 19764882 DOI: 10.1089/ars.2009.2877] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 5.4] [Reference Citation Analysis]
15 Rathore R, Zheng YM, Niu CF, Liu QH, Korde A, Ho YS, Wang YX. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 2008;45:1223-31. [PMID: 18638544 DOI: 10.1016/j.freeradbiomed.2008.06.012] [Cited by in Crossref: 205] [Cited by in F6Publishing: 183] [Article Influence: 15.8] [Reference Citation Analysis]
16 Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT. Hypoxic Pulmonary Vasoconstriction. Physiological Reviews 2012;92:367-520. [DOI: 10.1152/physrev.00041.2010] [Cited by in Crossref: 406] [Cited by in F6Publishing: 330] [Article Influence: 45.1] [Reference Citation Analysis]
17 Waypa GB, Schumacker PT. Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing. J Appl Physiol (1985) 2005;98:404-14. [PMID: 15591310 DOI: 10.1152/japplphysiol.00722.2004] [Cited by in Crossref: 127] [Cited by in F6Publishing: 117] [Article Influence: 7.9] [Reference Citation Analysis]
18 Yang XR, Lin MJ, Yip KP, Jeyakumar LH, Fleischer S, Leung GP, Sham JS. Multiple ryanodine receptor subtypes and heterogeneous ryanodine receptor-gated Ca2+ stores in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2005;289:L338-48. [PMID: 15863441 DOI: 10.1152/ajplung.00328.2004] [Cited by in Crossref: 63] [Cited by in F6Publishing: 67] [Article Influence: 3.9] [Reference Citation Analysis]
19 Liu Q, Zheng Y, Wang Y. Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells. Pflugers Arch - Eur J Physiol 2006;453:531-41. [DOI: 10.1007/s00424-006-0130-1] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 1.7] [Reference Citation Analysis]
20 Wang J, Shimoda LA, Sylvester JT. Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 2004;286:L848-58. [PMID: 14672922 DOI: 10.1152/ajplung.00319.2003] [Cited by in Crossref: 120] [Cited by in F6Publishing: 122] [Article Influence: 6.7] [Reference Citation Analysis]
21 Zheng YM, Mei QB, Wang QS, Abdullaev I, Lai FA, Xin HB, Kotlikoff MI, Wang YX. Role of FKBP12.6 in hypoxia- and norepinephrine-induced Ca2+ release and contraction in pulmonary artery myocytes. Cell Calcium 2004;35:345-55. [PMID: 15036951 DOI: 10.1016/j.ceca.2003.09.006] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 2.3] [Reference Citation Analysis]
22 Waypa GB, Schumacker PT. Hypoxia-induced changes in pulmonary and systemic vascular resistance: where is the O2 sensor? Respir Physiol Neurobiol 2010;174:201-11. [PMID: 20713189 DOI: 10.1016/j.resp.2010.08.007] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 4.6] [Reference Citation Analysis]
23 Di Mise A, Wang YX, Zheng YM. Role of Transcription Factors in Pulmonary Artery Smooth Muscle Cells: An Important Link to Hypoxic Pulmonary Hypertension. Adv Exp Med Biol 2017;967:13-32. [PMID: 29047078 DOI: 10.1007/978-3-319-63245-2_2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
24 Dong L, Zheng YM, Van Riper D, Rathore R, Liu QH, Singer HA, Wang YX. Functional and molecular evidence for impairment of calcium-activated potassium channels in type-1 diabetic cerebral artery smooth muscle cells. J Cereb Blood Flow Metab 2008;28:377-86. [PMID: 17684520 DOI: 10.1038/sj.jcbfm.9600536] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 4.0] [Reference Citation Analysis]
25 Wray S, Burdyga T. Sarcoplasmic reticulum function in smooth muscle. Physiol Rev. 2010;90:113-178. [PMID: 20086075 DOI: 10.1152/physrev.00018.2008] [Cited by in Crossref: 107] [Cited by in F6Publishing: 84] [Article Influence: 9.7] [Reference Citation Analysis]
26 Huang XL, Ling YL, Ling YQ, Zhou JL, Liu Y, Wang QH. Heme oxygenase-1 in cholecystokinin-octapeptipe attenuated injury of pulmonary artery smooth muscle cells induced by lipopolysaccharide and its signal transduction mechanism. World J Gastroenterol. 2004;10:1789-1794. [PMID: 15188507 DOI: 10.3748/wjg.v10.i12.1789] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
27 Poburko D, Lee C, van Breemen C. Vascular smooth muscle mitochondria at the cross roads of Ca2+ regulation. Cell Calcium 2004;35:509-21. [DOI: 10.1016/j.ceca.2004.01.020] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 1.6] [Reference Citation Analysis]
28 Morado SA, Cetica PD, Beconi MT, Dalvit GC. Reactive oxygen species in bovine oocyte maturation in vitro. Reprod Fertil Dev 2009;21:608. [DOI: 10.1071/rd08198] [Cited by in Crossref: 46] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
29 Ji G, Feldman M, Doran R, Zipfel W, Kotlikoff MI. Ca2+ -induced Ca2+ release through localized Ca2+ uncaging in smooth muscle. J Gen Physiol. 2006;127:225-235. [PMID: 16505145 DOI: 10.1085/jgp.200509422] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
30 Wang J, Weigand L, Foxson J, Shimoda LA, Sylvester JT. Ca2+ signaling in hypoxic pulmonary vasoconstriction: effects of myosin light chain and Rho kinase antagonists. Am J Physiol Lung Cell Mol Physiol 2007;293:L674-85. [PMID: 17575009 DOI: 10.1152/ajplung.00141.2007] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 3.8] [Reference Citation Analysis]
31 Ward JP, Snetkov VA, Aaronson PI. Calcium, mitochondria and oxygen sensing in the pulmonary circulation. Cell Calcium 2004;36:209-20. [PMID: 15261477 DOI: 10.1016/j.ceca.2004.02.017] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 2.2] [Reference Citation Analysis]
32 Midzak AS, Liu J, Zirkin BR, Chen H. Effect of Myxothiazol on Leydig Cell Steroidogenesis: Inhibition of Luteinizing Hormone-Mediated Testosterone Synthesis but Stimulation of Basal Steroidogenesis. Endocrinology 2007;148:2583-90. [DOI: 10.1210/en.2006-1488] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
33 Ibe BO, Portugal AM, Chaturvedi S, Raj JU. Oxygen-dependent PAF receptor binding and intracellular signaling in ovine fetal pulmonary vascular smooth muscle. Am J Physiol Lung Cell Mol Physiol 2005;288:L879-86. [PMID: 15618453 DOI: 10.1152/ajplung.00341.2004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 0.7] [Reference Citation Analysis]
34 Zhang XD, He CX, Cheng J, Wen J, Li PY, Wang N, Li G, Zeng XR, Cao JM, Yang Y. Sodium Tanshinone II-A Sulfonate (DS-201) Induces Vasorelaxation of Rat Mesenteric Arteries via Inhibition of L-Type Ca2+ Channel. Front Pharmacol 2018;9:62. [PMID: 29456510 DOI: 10.3389/fphar.2018.00062] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
35 Liao B, Zheng YM, Yadav VR, Korde AS, Wang YX. Hypoxia induces intracellular Ca2+ release by causing reactive oxygen species-mediated dissociation of FK506-binding protein 12.6 from ryanodine receptor 2 in pulmonary artery myocytes. Antioxid Redox Signal 2011;14:37-47. [PMID: 20518593 DOI: 10.1089/ars.2009.3047] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 3.4] [Reference Citation Analysis]
36 Zheng YM, Wang QS, Liu QH, Rathore R, Yadav V, Wang YX. Heterogeneous gene expression and functional activity of ryanodine receptors in resistance and conduit pulmonary as well as mesenteric artery smooth muscle cells. J Vasc Res 2008;45:469-79. [PMID: 18434746 DOI: 10.1159/000127438] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 2.6] [Reference Citation Analysis]
37 Caplanusi A, Fuller AJ, Gonzalez-Villalobos RA, Hammond TG, Navar LG. Metabolic inhibition-induced transient Ca2+ increase depends on mitochondria in a human proximal renal cell line. Am J Physiol Renal Physiol 2007;293:F533-40. [PMID: 17522266 DOI: 10.1152/ajprenal.00030.2007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
38 Ward JP. Point: Hypoxic pulmonary vasoconstriction is mediated by increased production of reactive oxygen species. J Appl Physiol (1985) 2006;101:993-5; discussion 999. [PMID: 16675614 DOI: 10.1152/japplphysiol.00480.2006] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 3.4] [Reference Citation Analysis]