BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ciarlone GE, Dean JB. Normobaric hyperoxia stimulates superoxide and nitric oxide production in the caudal solitary complex of rat brain slices. Am J Physiol Cell Physiol 2016;311:C1014-26. [PMID: 27733362 DOI: 10.1152/ajpcell.00160.2016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Su XJ, Huang L, Qu Y, Mu D. Progress in research on the role of Omi/HtrA2 in neurological diseases. Rev Neurosci 2019;30:279-87. [PMID: 30205651 DOI: 10.1515/revneuro-2018-0004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
2 Tetzlaff K, Lemaitre F, Burgstahler C, Luetkens JA, Eichhorn L. Going to Extremes of Lung Physiology-Deep Breath-Hold Diving. Front Physiol 2021;12:710429. [PMID: 34305657 DOI: 10.3389/fphys.2021.710429] [Reference Citation Analysis]
3 Sepehrinezhad A, Dehghanian A, Rafati A, Ketabchi F. Impact of liver damage on blood-borne variables and pulmonary hemodynamic responses to hypoxia and hyperoxia in anesthetized rats. BMC Cardiovasc Disord 2020;20:13. [PMID: 31931715 DOI: 10.1186/s12872-019-01297-z] [Reference Citation Analysis]
4 Terraneo L, Samaja M. Comparative Response of Brain to Chronic Hypoxia and Hyperoxia. Int J Mol Sci 2017;18:E1914. [PMID: 28880206 DOI: 10.3390/ijms18091914] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
5 Bavis RW. Effects of Perinatal Hyperoxia on Breathing. Compr Physiol 2020;10:597-636. [PMID: 32163205 DOI: 10.1002/cphy.c190023] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Ciarlone GE, Dean JB. Acute hypercapnic hyperoxia stimulates reactive species production in the caudal solitary complex of rat brain slices but does not induce oxidative stress. American Journal of Physiology-Cell Physiology 2016;311:C1027-39. [DOI: 10.1152/ajpcell.00161.2016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
7 Damato EG, Flak TA, Mayes RS, Strohl KP, Ziganti AM, Abdollahifar A, Flask CA, LaManna JC, Decker MJ. Neurovascular and cortical responses to hyperoxia: enhanced cognition and electroencephalographic activity despite reduced perfusion. J Physiol 2020;598:3941-56. [PMID: 33174711 DOI: 10.1113/JP279453] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Hinojo CM, Ciarlone GE, D'Agostino DP, Dean JB. Exogenous ketone salts inhibit superoxide production in the rat caudal solitary complex during exposure to normobaric and hyperbaric hyperoxia. J Appl Physiol (1985) 2021;130:1936-54. [PMID: 33661724 DOI: 10.1152/japplphysiol.01071.2020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Regul Integr Comp Physiol 2018;315:R1-R27. [PMID: 29488785 DOI: 10.1152/ajpregu.00165.2017] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
10 Ciarlone GE, Hinojo CM, Stavitzski NM, Dean JB. CNS function and dysfunction during exposure to hyperbaric oxygen in operational and clinical settings. Redox Biol 2019;27:101159. [PMID: 30902504 DOI: 10.1016/j.redox.2019.101159] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]