BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bilodeau PA, Coyne ES, Wing SS. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. American Journal of Physiology-Cell Physiology 2016;311:C392-403. [DOI: 10.1152/ajpcell.00125.2016] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Abrigo J, Gonzalez F, Aguirre F, Tacchi F, Gonzalez A, Meza MP, Simon F, Cabrera D, Arrese M, Karpen S, Cabello-Verrugio C. Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. J Cell Physiol 2021;236:260-72. [PMID: 32506638 DOI: 10.1002/jcp.29839] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
2 Hughes DC, Baehr LM, Driscoll JR, Lynch SA, Waddell DS, Bodine SC. Identification and characterization of Fbxl22, a novel skeletal muscle atrophy-promoting E3 ubiquitin ligase. Am J Physiol Cell Physiol 2020;319:C700-19. [PMID: 32783651 DOI: 10.1152/ajpcell.00253.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
3 Zhang Y, Wang J, Wang X, Gao T, Tian H, Zhou D, Zhang L, Li G, Wang X. The autophagic-lysosomal and ubiquitin proteasome systems are simultaneously activated in the skeletal muscle of gastric cancer patients with cachexia. Am J Clin Nutr 2020;111:570-9. [PMID: 31968072 DOI: 10.1093/ajcn/nqz347] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
4 Mandelli A, Tacconi E, Levinger I, Duque G, Hayes A. The role of estrogens in osteosarcopenia: from biology to potential dual therapeutic effects. Climacteric 2021;:1-7. [PMID: 34423690 DOI: 10.1080/13697137.2021.1965118] [Reference Citation Analysis]
5 Coyne ES, Bedard N, Wykes L, Stretch C, Jammoul S, Li S, Zhang K, Sladek RS, Bathe OF, Jagoe RT, Posner BI, Wing SS. Knockout of USP19 Deubiquitinating Enzyme Prevents Muscle Wasting by Modulating Insulin and Glucocorticoid Signaling. Endocrinology 2018;159:2966-77. [PMID: 29901692 DOI: 10.1210/en.2018-00290] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
6 Wing SS. Deubiquitinating enzymes in skeletal muscle atrophy-An essential role for USP19. Int J Biochem Cell Biol 2016;79:462-8. [PMID: 27475983 DOI: 10.1016/j.biocel.2016.07.028] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
7 Shen Y, Zhang R, Xu L, Wan Q, Zhu J, Gu J, Huang Z, Ma W, Shen M, Ding F, Sun H. Microarray Analysis of Gene Expression Provides New Insights Into Denervation-Induced Skeletal Muscle Atrophy. Front Physiol 2019;10:1298. [PMID: 31681010 DOI: 10.3389/fphys.2019.01298] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
8 Xiong J, Le Y, Rao Y, Zhou L, Hu Y, Guo S, Sun Y. RANKL Mediates Muscle Atrophy and Dysfunction in a Cigarette Smoke-induced Model of Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2021;64:617-28. [PMID: 33689672 DOI: 10.1165/rcmb.2020-0449OC] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Parker BL, Kiens B, Wojtaszewski JFP, Richter EA, James DE. Quantification of exercise‐regulated ubiquitin signaling in human skeletal muscle identifies protein modification cross talk via NEDDylation. FASEB j 2020;34:5906-16. [DOI: 10.1096/fj.202000075r] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
10 Chen HJ, Wang CC, Chan DC, Chiu CY, Yang RS, Liu SH. Adverse effects of acrolein, a ubiquitous environmental toxicant, on muscle regeneration and mass. J Cachexia Sarcopenia Muscle 2019;10:165-76. [PMID: 30378754 DOI: 10.1002/jcsm.12362] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
11 Fairman CM, Lønbro S, Cardaci TD, Vanderveen BN, Nilsen TS, Murphy AE. Muscle wasting in cancer: opportunities and challenges for exercise in clinical cancer trials. JCSM Rapid Communications 2022;5:52-67. [DOI: 10.1002/rco2.56] [Reference Citation Analysis]
12 Tassinari V, De Gennaro V, La Sala G, Marazziti D, Bolasco G, Aguanno S, De Angelis L, Naro F, Pellegrini M. Atrophy, oxidative switching and ultrastructural defects in skeletal muscle of the ataxia telangiectasia mouse model. J Cell Sci 2019;132:jcs223008. [PMID: 30745336 DOI: 10.1242/jcs.223008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
13 Pierucci F, Frati A, Battistini C, Penna F, Costelli P, Meacci E. Control of Skeletal Muscle Atrophy Associated to Cancer or Corticosteroids by Ceramide Kinase. Cancers (Basel) 2021;13:3285. [PMID: 34209043 DOI: 10.3390/cancers13133285] [Reference Citation Analysis]
14 Adegoke OAJ, Beatty BE, Kimball SR, Wing SS. Interactions of the super complexes: When mTORC1 meets the proteasome. Int J Biochem Cell Biol 2019;117:105638. [PMID: 31678320 DOI: 10.1016/j.biocel.2019.105638] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Gao H, Li YF. Distinct signal transductions in fast- and slow- twitch muscles upon denervation. Physiol Rep 2018;6. [PMID: 29464929 DOI: 10.14814/phy2.13606] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
16 Lee YS, Park EJ, Kim SM, Kim JY, Lee HJ. Anti-Sarcopenic Obesity Effects of Lonicera caerulea Extract in High-Fat Diet-Fed Mice. Antioxidants (Basel) 2021;10:1633. [PMID: 34679767 DOI: 10.3390/antiox10101633] [Reference Citation Analysis]
17 Meyer-schwesinger C. The ubiquitin–proteasome system in kidney physiology and disease. Nat Rev Nephrol 2019;15:393-411. [DOI: 10.1038/s41581-019-0148-1] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 12.0] [Reference Citation Analysis]
18 Reckman GAR, Gomes-Neto AW, Vonk RJ, Ottery FD, van der Schans CP, Navis GJ, Jager-Wittenaar H. Anabolic competence: Assessment and integration of the multimodality interventional approach in disease-related malnutrition. Nutrition 2019;65:179-84. [PMID: 31170682 DOI: 10.1016/j.nut.2019.03.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Kitajima Y, Ogawa S, Egusa S, Ono Y. Soymilk Improves Muscle Weakness in Young Ovariectomized Female Mice. Nutrients 2017;9:E834. [PMID: 28777295 DOI: 10.3390/nu9080834] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
20 Gouvêa AL, Gracindo Silva M, Cabral B, Martinez CG, Lauthartte LC, Rodrigues Bastos W, Kurtenbach E. Progressive resistance exercise prevents muscle strength loss due to muscle atrophy induced by methylmercury systemic intoxication. JCSM Clinical Reports 2021;6:80-92. [DOI: 10.1002/crt2.34] [Reference Citation Analysis]
21 Chanon S, Chazarin B, Toubhans B, Durand C, Chery I, Robert M, Vieille-Marchiset A, Swenson JE, Zedrosser A, Evans AL, Brunberg S, Arnemo JM, Gauquelin-Koch G, Storey KB, Simon C, Blanc S, Bertile F, Lefai E. Proteolysis inhibition by hibernating bear serum leads to increased protein content in human muscle cells. Sci Rep 2018;8:5525. [PMID: 29615761 DOI: 10.1038/s41598-018-23891-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
22 Yoshida T, Delafontaine P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020;9:E1970. [PMID: 32858949 DOI: 10.3390/cells9091970] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 12.5] [Reference Citation Analysis]
23 Moon JY, Kim DJ, Kim HS. Sulforaphane ameliorates serum starvation-induced muscle atrophy via activation of the Nrf2 pathway in cultured C2C12 cells. Cell Biol Int 2020;44:1831-9. [PMID: 32401383 DOI: 10.1002/cbin.11377] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Sataranatarajan K, Pharaoh G, Brown JL, Ranjit R, Piekarz KM, Street K, Wren JD, Georgescu C, Kinter C, Kinter M, Freeman WM, Richardson A, Van Remmen H. Molecular changes in transcription and metabolic pathways underlying muscle atrophy in the CuZnSOD null mouse model of sarcopenia. Geroscience 2020;42:1101-18. [PMID: 32394347 DOI: 10.1007/s11357-020-00189-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
25 Haun CT, Roberts MD, Romero MA, Osburn SC, Mobley CB, Anderson RG, Goodlett MD, Pascoe DD, Martin JS. Does external pneumatic compression treatment between bouts of overreaching resistance training sessions exert differential effects on molecular signaling and performance-related variables compared to passive recovery? An exploratory study. PLoS One 2017;12:e0180429. [PMID: 28662152 DOI: 10.1371/journal.pone.0180429] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
26 Sadri H, Ghaffari MH, Steinhoff-Wagner J, Görs S, Hammon HM, Sauerwein H. Expression of specific signaling components related to muscle protein turnover and of branched-chain amino acid catabolic enzymes in muscle and adipose tissue of preterm and term calves. J Dairy Sci 2021:S0022-0302(21)00762-1. [PMID: 34334194 DOI: 10.3168/jds.2021-20527] [Reference Citation Analysis]
27 Zhang J, Yu Y, Wang J. Protein Nutritional Support: The Classical and Potential New Mechanisms in the Prevention and Therapy of Sarcopenia. J Agric Food Chem 2020;68:4098-108. [PMID: 32202113 DOI: 10.1021/acs.jafc.0c00688] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
28 Niu M, Song S, Su Z, Wei L, Li L, Pu W, Zhao C, Ding Y, Wang J, Cao W, Gao Q, Wang H. Inhibition of heat shock protein (HSP) 90 reverses signal transducer and activator of transcription (STAT) 3-mediated muscle wasting in cancer cachexia mice. Br J Pharmacol 2021. [PMID: 34265073 DOI: 10.1111/bph.15625] [Reference Citation Analysis]
29 Olguín HC. The Gentle Side of the UPS: Ubiquitin-Proteasome System and the Regulation of the Myogenic Program. Front Cell Dev Biol 2022;9:821839. [DOI: 10.3389/fcell.2021.821839] [Reference Citation Analysis]
30 Lawrence MM, Zwetsloot KA, Arthur ST, Sherman CA, Huot JR, Badmaev V, Grace M, Lila MA, Nieman DC, Shanely RA. Phytoecdysteroids Do Not Have Anabolic Effects in Skeletal Muscle in Sedentary Aging Mice. Int J Environ Res Public Health 2021;18:E370. [PMID: 33418916 DOI: 10.3390/ijerph18020370] [Reference Citation Analysis]
31 Renna LV, Bosè F, Brigonzi E, Fossati B, Meola G, Cardani R. Aberrant insulin receptor expression is associated with insulin resistance and skeletal muscle atrophy in myotonic dystrophies. PLoS One 2019;14:e0214254. [PMID: 30901379 DOI: 10.1371/journal.pone.0214254] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
32 Ahtiainen JP. Physiological and Molecular Adaptations to Strength Training. In: Schumann M, Rønnestad BR, editors. Concurrent Aerobic and Strength Training. Cham: Springer International Publishing; 2019. pp. 51-73. [DOI: 10.1007/978-3-319-75547-2_5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Cao RY, Li J, Dai Q, Li Q, Yang J. Muscle Atrophy: Present and Future. In: Xiao J, editor. Muscle Atrophy. Singapore: Springer; 2018. pp. 605-24. [DOI: 10.1007/978-981-13-1435-3_29] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
34 Steiner JL, Lang CH. Ethanol acutely antagonizes the refeeding-induced increase in mTOR-dependent protein synthesis and decrease in autophagy in skeletal muscle. Mol Cell Biochem 2019;456:41-51. [PMID: 30523512 DOI: 10.1007/s11010-018-3488-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
35 Nakai N, Kitai S, Iida N, Inoue S, Higashida K. Autophagy under glucose starvation enhances protein translation initiation in response to re-addition of glucose in C2C12 myotubes. FEBS Open Bio 2020;10:2149-56. [PMID: 32882752 DOI: 10.1002/2211-5463.12970] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Brooks DS, Vishal K, Bawa S, Alder A, Geisbrecht ER. Integration of proteomic and genetic approaches to assess developmental muscle atrophy. J Exp Biol 2021;224:jeb242698. [PMID: 34647571 DOI: 10.1242/jeb.242698] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Song H, Tian X, Liu D, Liu M, Liu Y, Liu J, Mei Z, Yan C, Han Y. CREG1 improves the capacity of the skeletal muscle response to exercise endurance via modulation of mitophagy. Autophagy 2021;:1-17. [PMID: 33726618 DOI: 10.1080/15548627.2021.1904488] [Reference Citation Analysis]
38 Tsai MT, Tseng WC, Ou SM, Lee KH, Yang CY, Tarng DC. Comparison of Simplified Creatinine Index and Systemic Inflammatory Markers for Nutritional Evaluation of Hemodialysis Patients. Nutrients 2021;13:1870. [PMID: 34070850 DOI: 10.3390/nu13061870] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019;6:56. [PMID: 31482094 DOI: 10.3389/fmolb.2019.00056] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
40 Park SH, Kim DS, Oh J, Geum JH, Kim JE, Choi SY, Kim JH, Cho JY. Matricaria chamomilla (Chamomile) Ameliorates Muscle Atrophy in Mice by Targeting Protein Catalytic Pathways, Myogenesis, and Mitochondrial Dysfunction. Am J Chin Med 2021;49:1493-514. [PMID: 34247561 DOI: 10.1142/S0192415X21500701] [Reference Citation Analysis]
41 Wattin M, Gaweda L, Muller P, Baritaud M, Scholtes C, Lozano C, Gieseler K, Kretz-Remy C. Modulation of Protein Quality Control and Proteasome to Autophagy Switch in Immortalized Myoblasts from Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2018;19:E178. [PMID: 29316663 DOI: 10.3390/ijms19010178] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
42 Hyatt H, Deminice R, Yoshihara T, Powers SK. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Arch Biochem Biophys 2019;662:49-60. [PMID: 30452895 DOI: 10.1016/j.abb.2018.11.005] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 11.5] [Reference Citation Analysis]
43 Hosoyama T, Iida H, Kawai-Takaishi M, Watanabe K. Vitamin D Inhibits Myogenic Cell Fusion and Expression of Fusogenic Genes. Nutrients 2020;12:E2192. [PMID: 32717927 DOI: 10.3390/nu12082192] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Yang L, Smith L, Hamer M. Gender-specific risk factors for incident sarcopenia: 8-year follow-up of the English longitudinal study of ageing. J Epidemiol Community Health 2019;73:86-8. [PMID: 30368480 DOI: 10.1136/jech-2018-211258] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
45 Scalabrin M, Adams V, Labeit S, Bowen TS. Emerging Strategies Targeting Catabolic Muscle Stress Relief. Int J Mol Sci 2020;21:E4681. [PMID: 32630118 DOI: 10.3390/ijms21134681] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
46 Bondì M, Germinario E, Pirazzini M, Zanetti G, Cencetti F, Donati C, Gorza L, Betto R, Bruni P, Danieli-betto D. Ablation of S1P 3 receptor protects mouse soleus from age-related drop in muscle mass, force, and regenerative capacity. American Journal of Physiology-Cell Physiology 2017;313:C54-67. [DOI: 10.1152/ajpcell.00027.2017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
47 Cardaci TD, Machek SB, Wilburn DT, Hwang PS, Willoughby DS. Ubiquitin Proteasome System Activity is Suppressed by Curcumin following Exercise-Induced Muscle Damage in Human Skeletal Muscle. J Am Coll Nutr 2021;40:401-11. [PMID: 32701392 DOI: 10.1080/07315724.2020.1783721] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
48 Chen Y, Baskaran R, Chang CF, Mohammedsaleh ZM, Lin W. Decapeptide from Potato Hydrolysate Induces Myogenic Differentiation and Ameliorates High Glucose-Associated Modulations in Protein Synthesis and Mitochondrial Biogenesis in C2C12 Cells. Biomolecules 2022;12:565. [DOI: 10.3390/biom12040565] [Reference Citation Analysis]
49 Cao Z, Scott AM, Hoogenraad NJ, Osellame LD. Mediators and clinical treatment for cancer cachexia: a systematic review. JCSM Rapid Communications 2021;4:166-86. [DOI: 10.1002/rco2.30] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Lee JH, Jeon JH, Lee MJ. Docosahexaenoic Acid, a Potential Treatment for Sarcopenia, Modulates the Ubiquitin-Proteasome and the Autophagy-Lysosome Systems. Nutrients 2020;12:E2597. [PMID: 32859116 DOI: 10.3390/nu12092597] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
51 Mekheal M, Steiner JL, Lang CH. Acute alcohol prevents the refeeding-induced decrease in autophagy but does not alter the increased protein synthetic response in heart. Alcohol 2018;73:79-88. [PMID: 30316145 DOI: 10.1016/j.alcohol.2018.04.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
52 Liu SH, Chiu CY, Wang LP, Chiang MT. Omega-3 Fatty Acids-Enriched Fish Oil Activates AMPK/PGC-1α Signaling and Prevents Obesity-Related Skeletal Muscle Wasting. Mar Drugs 2019;17:E380. [PMID: 31242648 DOI: 10.3390/md17060380] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
53 Garcia S, Nissanka N, Mareco EA, Rossi S, Peralta S, Diaz F, Rotundo RL, Carvalho RF, Moraes CT. Overexpression of PGC-1α in aging muscle enhances a subset of young-like molecular patterns. Aging Cell 2018;17. [PMID: 29427317 DOI: 10.1111/acel.12707] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 6.8] [Reference Citation Analysis]
54 Saul D, Kosinsky RL. Dextran Sodium Sulfate-induced Colitis as a Model for Sarcopenia in Mice. Inflamm Bowel Dis 2020;26:56-65. [PMID: 31228348 DOI: 10.1093/ibd/izz127] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
55 Kitajima Y, Yoshioka K, Suzuki N. The ubiquitin–proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J Physiol Sci 2020;70. [DOI: 10.1186/s12576-020-00768-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
56 Abrigo J, Marín T, Aguirre F, Tacchi F, Vilos C, Simon F, Arrese M, Cabrera D, Cabello-verrugio C. N-Acetyl Cysteine Attenuates the Sarcopenia and Muscle Apoptosis Induced by Chronic Liver Disease. CMM 2019;20:60-71. [DOI: 10.2174/1566524019666190917124636] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
57 Theilen NT, Kunkel GH, Tyagi SC. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. J Cell Physiol 2017;232:2348-58. [PMID: 27966783 DOI: 10.1002/jcp.25737] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 9.8] [Reference Citation Analysis]
58 Widner DB, Files DC, Weaver KE, Shiozawa Y. Preclinical and clinical studies on cancer-associated cachexia. Front Biol 2018;13:11-8. [DOI: 10.1007/s11515-018-1484-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
59 Campos F, Abrigo J, Aguirre F, Garcés B, Arrese M, Karpen S, Cabrera D, Andía ME, Simon F, Cabello-verrugio C. Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin–proteasome system and oxidative stress. Pflugers Arch - Eur J Physiol 2018;470:1503-19. [DOI: 10.1007/s00424-018-2167-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
60 Pierucci F, Frati A, Battistini C, Matteini F, Iachini MC, Vestri A, Penna F, Costelli P, Meacci E. Involvement of released sphingosine 1-phosphate/sphingosine 1-phosphate receptor axis in skeletal muscle atrophy. Biochim Biophys Acta Mol Basis Dis 2018;1864:3598-614. [PMID: 30279138 DOI: 10.1016/j.bbadis.2018.08.040] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
61 Baehr LM, Hughes DC, Lynch SA, Van Haver D, Maia TM, Marshall AG, Radoshevich L, Impens F, Waddell DS, Bodine SC. Identification of the MuRF1 Skeletal Muscle Ubiquitylome Through Quantitative Proteomics. Function (Oxf) 2021;2:zqab029. [PMID: 34179788 DOI: 10.1093/function/zqab029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
62 Senoo N, Akahori T, Ichida H, Miyoshi N, Morita A, Shimizu T, Shindou H, Miura S. Fasting increases 18:2-containing phosphatidylcholines to complement the decrease in 22:6-containing phosphatidylcholines in mouse skeletal muscle. PLoS One 2021;16:e0255178. [PMID: 34310656 DOI: 10.1371/journal.pone.0255178] [Reference Citation Analysis]
63 Seo JY, Kang JS, Kim YL, Jo YW, Kim JH, Hann SH, Park J, Park I, Park H, Yoo K, Rhee J, Park JW, Ha YC, Kong YY. Maintenance of type 2 glycolytic myofibers with age by Mib1-Actn3 axis. Nat Commun 2021;12:1294. [PMID: 33637766 DOI: 10.1038/s41467-021-21621-6] [Reference Citation Analysis]
64 Collins BC, Laakkonen EK, Lowe DA. Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone 2019;123:137-44. [PMID: 30930293 DOI: 10.1016/j.bone.2019.03.033] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
65 Yegorova S, Yegorov O, Ferreira LF. RNA-sequencing reveals transcriptional signature of pathological remodeling in the diaphragm of rats after myocardial infarction. Gene 2021;770:145356. [PMID: 33333219 DOI: 10.1016/j.gene.2020.145356] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
66 Suryadevara V, Willis MS. Walk the Line: The Role of Ubiquitin in Regulating Transcription in Myocytes. Physiology (Bethesda) 2019;34:327-40. [PMID: 31389777 DOI: 10.1152/physiol.00055.2018] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
67 Khalil RM, Abdo WS, Saad A, Khedr EG. Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy. Mol Cell Biochem 2018;444:161-8. [DOI: 10.1007/s11010-017-3240-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
68 Aversa Z, Zhang X, Fielding RA, Lanza I, LeBrasseur NK. The clinical impact and biological mechanisms of skeletal muscle aging. Bone 2019;127:26-36. [PMID: 31128290 DOI: 10.1016/j.bone.2019.05.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
69 Aravena J, Abrigo J, Gonzalez F, Aguirre F, Gonzalez A, Simon F, Cabello-Verrugio C. Angiotensin (1-7) Decreases Myostatin-Induced NF-κB Signaling and Skeletal Muscle Atrophy. Int J Mol Sci 2020;21:E1167. [PMID: 32050585 DOI: 10.3390/ijms21031167] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
70 Yang Y, Sadri H, Prehn C, Adamski J, Rehage J, Dänicke S, von Soosten D, Metges CC, Ghaffari MH, Sauerwein H. Proteasome activity and expression of mammalian target of rapamycin signaling factors in skeletal muscle of dairy cows supplemented with conjugated linoleic acids during early lactation. J Dairy Sci 2020;103:2829-46. [PMID: 31954574 DOI: 10.3168/jds.2019-17244] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
71 Rosa-Caldwell ME, Fix DK, Washington TA, Greene NP. Muscle alterations in the development and progression of cancer-induced muscle atrophy: a review. J Appl Physiol (1985) 2020;128:25-41. [PMID: 31725360 DOI: 10.1152/japplphysiol.00622.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
72 Khalil R. Ubiquitin-Proteasome Pathway and Muscle Atrophy. In: Xiao J, editor. Muscle Atrophy. Singapore: Springer; 2018. pp. 235-48. [DOI: 10.1007/978-981-13-1435-3_10] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
73 Leal LG, Lopes MA, Peres SB, Batista ML Jr. Exercise Training as Therapeutic Approach in Cancer Cachexia: A Review of Potential Anti-inflammatory Effect on Muscle Wasting. Front Physiol 2020;11:570170. [PMID: 33613297 DOI: 10.3389/fphys.2020.570170] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]