BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Basova TV, Ray AK. Review—Hybrid Materials Based on Phthalocyanines and Metal Nanoparticles for Chemiresistive and Electrochemical Sensors: A Mini-Review. ECS J Solid State Sci Technol 2020;9:061001. [DOI: 10.1149/2162-8777/ab9fe8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Ndebele N, Nyokong T. The use of carbon-based nanomaterials conjugated to cobalt phthalocyanine complex in the electrochemical detection of nitrite. Diamond and Related Materials 2023. [DOI: 10.1016/j.diamond.2022.109672] [Reference Citation Analysis]
2 Powroźnik P, Solecka B, Pander P, Jakubik W, Dias FB, Krzywiecki M. Zinc Phthalocyanine Sensing Mechanism Quantification for Potential Application in Chemical Warfare Agent Detectors. Sensors (Basel) 2022;22. [PMID: 36560314 DOI: 10.3390/s22249947] [Reference Citation Analysis]
3 Ndebele N, Nyokong T. Electrocatalytic behaviour of Chalcone Substituted Co, Cu, Mn and Ni Phthalocyanines towards the detection of nitrite. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.116951] [Reference Citation Analysis]
4 Zakaria SA, Ahmadi SH, Amini MH. Chemiresistive gas sensors based on layered double hydroxides (LDHs) structures: A review. Sensors and Actuators A: Physical 2022;346:113827. [DOI: 10.1016/j.sna.2022.113827] [Reference Citation Analysis]
5 Dorovskikh SI, Klyamer DD, Fedorenko AD, Morozova NB, Basova TV. Electrochemical Sensor Based on Iron(II) Phthalocyanine and Gold Nanoparticles for Nitrite Detection in Meat Products. Sensors 2022;22:5780. [DOI: 10.3390/s22155780] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
6 Centane S, Mgidlana S, Openda Y, Nyokong T. Electrochemical detection of human epidermal growth factor receptor 2 using an aptamer on cobalt phthalocyanines – Cerium oxide nanoparticle conjugate. Bioelectrochemistry 2022;146:108146. [DOI: 10.1016/j.bioelechem.2022.108146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Nazeri MT, Javanbakht S, Ramezani M, Shaabani A. A facile and green synthesis of cobalt phthalocyanine-conjugated multiwall carbon nanotube by the Ugi reaction: As an efficient CO2 fixation catalyst. Journal of the Taiwan Institute of Chemical Engineers 2022;136:104428. [DOI: 10.1016/j.jtice.2022.104428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Dorovskikh SI, Klyamer DD, Maksimovskiy EA, Volchek VV, Zharkov SM, Morozova NB, Basova TV. Heterostructures Based on Cobalt Phthalocyanine Films Decorated with Gold Nanoparticles for the Detection of Low Concentrations of Ammonia and Nitric Oxide. Biosensors 2022;12:476. [DOI: 10.3390/bios12070476] [Reference Citation Analysis]
9 Huang Q, Hye Lee E, Oh BM, Chun HW, Lee W, Kim JH. Strategy for colorimetric and reversible recognition of strong acid in solution, solid, and dyed fabric conditions: Substitution of aminophenoxy groups to phthalocyanine. Spectrochim Acta A Mol Biomol Spectrosc 2022;280:121565. [PMID: 35779473 DOI: 10.1016/j.saa.2022.121565] [Reference Citation Analysis]
10 Nazeri MT, Javanbakht S, Nabi M, Shaabani A. Copper phthalocyanine-conjugated pectin via the Ugi four-component reaction: An efficient catalyst for CO2 fixation. Carbohydrate Polymers 2022;283:119144. [DOI: 10.1016/j.carbpol.2022.119144] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
11 Dorovskikh SI, Tryakhov DE, Klyamer DD, Sukhikh AS, Mirzaeva IV, Morozova NB, Basova TV. The Theoretical and Experimental Investigation of the Fluorinated Palladium β-Diketonate Derivatives: Structure and Physicochemical Properties. Molecules 2022;27:2207. [DOI: 10.3390/molecules27072207] [Reference Citation Analysis]
12 Canevari TC. Application of hybrid nanomaterials for development of electrochemical sensors. Functionalized Nanomaterial-Based Electrochemical Sensors 2022. [DOI: 10.1016/b978-0-12-823788-5.00002-8] [Reference Citation Analysis]
13 Harmandar K, Kaya EN, Saglam MF, Sengul IF, Atilla D. Synthesis and photo-physicochemical properties of phthalocyanines substituted with sterically hindered phenol. Monatsh Chem 2021;152:1561-9. [DOI: 10.1007/s00706-021-02864-x] [Reference Citation Analysis]
14 Klyamer D, Bonegardt D, Basova T. Fluoro-Substituted Metal Phthalocyanines for Active Layers of Chemical Sensors. Chemosensors 2021;9:133. [DOI: 10.3390/chemosensors9060133] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
15 Chen X, Hussain S, Hao Y, Tian X, Gao R. Review—Recent Advances of Signal Amplified Smart Conjugated Polymers for Optical Detection on Solid Support. ECS J Solid State Sci Technol 2021;10:037006. [DOI: 10.1149/2162-8777/abeed1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
16 Yang Q, Yang C, Yi J, Fan G, Yang H, Ge Z. A Sensitive Carbon Paste Electrode for Selective Detection of Lead Based on the Synergistic Effect of Bismuth and Chelating Agent. ECS J Solid State Sci Technol 2020;9:101012. [DOI: 10.1149/2162-8777/abb8ba] [Cited by in F6Publishing: 1] [Reference Citation Analysis]