BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li G, Xia Y, Tian Y, Wu Y, Liu J, He Q, Chen D. Review—Recent Developments on Graphene-Based Electrochemical Sensors toward Nitrite. J Electrochem Soc 2019;166:B881-95. [DOI: 10.1149/2.0171912jes] [Cited by in Crossref: 92] [Cited by in F6Publishing: 20] [Article Influence: 30.7] [Reference Citation Analysis]
Number Citing Articles
1 Ahmad K, Kumar P, Mobin SM. Hydrothermally Grown SnO 2 Flowers as Efficient Electrode Modifier for Simultaneous Detection of Catechol and Hydroquinone. J Electrochem Soc 2019;166:B1577-84. [DOI: 10.1149/2.0871915jes] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 5.3] [Reference Citation Analysis]
2 Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2021;2:1821-71. [DOI: 10.1039/d0ma00807a] [Cited by in Crossref: 75] [Cited by in F6Publishing: 9] [Article Influence: 75.0] [Reference Citation Analysis]
3 Moradi AH, Dehghan P, Alipour E, Divband B, Akbari A, Khezerlou A. Detection of nitrite using a novel electrochemical sensor based on palladium/zinc oxide/ graphene oxide nanocomposite. International Journal of Environmental Analytical Chemistry. [DOI: 10.1080/03067319.2021.2020765] [Reference Citation Analysis]
4 Marlinda AR, An'amt MN, Yusoff N, Sagadevan S, Wahab YA, Johan MR. Recent Progress in Nitrates and Nitrites Sensor with Graphene-Based Nanocomposites as Electrocatalysts. Trends in Environmental Analytical Chemistry 2022. [DOI: 10.1016/j.teac.2022.e00162] [Reference Citation Analysis]
5 Ji L, Peng L, Chen T, Li X, Zhu X, Hu P. Facile synthesis of Fe-BTC and electrochemical enhancement effect for sunset yellow determination. Talanta Open 2022;5:100084. [DOI: 10.1016/j.talo.2022.100084] [Reference Citation Analysis]
6 Li Q, Wu JT, Liu Y, Qi XM, Jin HG, Yang C, Liu J, Li GL, He QG. Recent advances in black phosphorus-based electrochemical sensors: A review. Anal Chim Acta 2021;1170:338480. [PMID: 34090586 DOI: 10.1016/j.aca.2021.338480] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 14.0] [Reference Citation Analysis]
7 Yang Z, Zhong Y, Zhou X, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for nitrite detection: a short review. Food Measure. [DOI: 10.1007/s11694-021-01270-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 S. R, Abraham P, S. A, Kumary V. A. Graphene-Palladium Composite for the Simultaneous Electrochemical Determination of Epinephrine, Ascorbic acid and Uric Acid. J Electrochem Soc 2019;166:B1321-9. [DOI: 10.1149/2.0941914jes] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Yang Z, Zhou X, Yin Y, Fang W. Determination of Nitrite by Noble Metal Nanomaterial-Based Electrochemical Sensors: A Minireview. Analytical Letters 2021;54:2826-50. [DOI: 10.1080/00032719.2021.1897134] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Althagafi ZT, Althakafy JT, Al Jahdaly BA, Awad MI. Differential Electroanalysis of Dopamine in the Presence of a Large Excess of Ascorbic Acid at a Nickel Oxide Nanoparticle-Modified Glassy Carbon Electrode. Journal of Sensors 2020;2020:1-15. [DOI: 10.1155/2020/8873930] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
11 Wang J, Zeng W, Palma AJ. Research Progress on Humidity-Sensing Properties of Cu-Based Humidity Sensors: A Review. Journal of Sensors 2022;2022:1-29. [DOI: 10.1155/2022/7749890] [Reference Citation Analysis]
12 Salhi O, Ez‐zine T, El Rhazi M. Hybrid Materials Based on Conducting Polymers for Nitrite Sensing: A Mini Review. Electroanalysis 2021;33:1681-90. [DOI: 10.1002/elan.202100033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Liu H, Xiong R, Zhong P, Li G, Liu J, Wu J, Liu Y, He Q. Nanohybrids of shuttle-like α-Fe 2 O 3 nanoparticles and nitrogen-doped graphene for simultaneous voltammetric detection of dopamine and uric acid. New J Chem 2020;44:20797-805. [DOI: 10.1039/d0nj04629a] [Cited by in Crossref: 20] [Article Influence: 10.0] [Reference Citation Analysis]
14 Baig N, Waheed A, Sajid M, Khan I, Kawde A, Sohail M. Porous graphene-based electrodes: Advances in electrochemical sensing of environmental contaminants. Trends in Environmental Analytical Chemistry 2021;30:e00120. [DOI: 10.1016/j.teac.2021.e00120] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
15 Shaalan NM. Promising Novel Barium Carbonate One-Dimensional Nanostructures and Their Gas Sensing Application: Preparation and Characterization. Chemosensors 2022;10:230. [DOI: 10.3390/chemosensors10060230] [Reference Citation Analysis]
16 Mathew G, Narayanan N, Abraham DA, De M, Neppolian B. Facile Green Approach for Developing Electrochemically Reduced Graphene Oxide-Embedded Platinum Nanoparticles for Ultrasensitive Detection of Nitric Oxide. ACS Omega 2021;6:8068-80. [DOI: 10.1021/acsomega.0c05644] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
17 Rajaji U, Ganesh P, Kim S, Govindasamy M, Alshgari RA, Liu T. MoS 2 Sphere/2D S-Ti 3 C 2 MXene Nanocatalysts on Laser-Induced Graphene Electrodes for Hazardous Aristolochic Acid and Roxarsone Electrochemical Detection. ACS Appl Nano Mater 2022;5:3252-64. [DOI: 10.1021/acsanm.1c03680] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Nataraj N, Chen S. Interfacial Influence of Strontium Niobium Engulfed Reduced Graphene Oxide Composite for Sulfamethazine Detection: Employing an Electrochemical Route in Real Samples. J Electrochem Soc 2021;168:057512. [DOI: 10.1149/1945-7111/abff02] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Cheng Z, Song H, Zhang X, Cheng X, Xu Y, Zhao H, Gao S, Huo L. Enhanced non-enzyme nitrite electrochemical sensing property based on stir bar-shaped ZnO nanorods decorated with nitrogen-doped reduced graphene oxide. Sensors and Actuators B: Chemical 2022;355:131313. [DOI: 10.1016/j.snb.2021.131313] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Jiang J, Wang C. Review—Electrolytic Metal Atoms Enabled Manufacturing of Nanostructured Sensor Electrodes. J Electrochem Soc 2019;167:037521. [DOI: 10.1149/2.0212003jes] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Altun M, Bilgi Kamaç M, Bilgi A, Yılmaz M. Dopamine biosensor based on screen-printed electrode modified with reduced graphene oxide, polyneutral red and gold nanoparticle. International Journal of Environmental Analytical Chemistry 2020;100:451-67. [DOI: 10.1080/03067319.2020.1720669] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
22 Clinsha PC, Gnanasekar KI, Jayaraman V. Studies on Solid Solution of AgCl in AgI and Their Application towards Halogen Sensing. J Electrochem Soc 2020;167:027504. [DOI: 10.1149/1945-7111/ab627f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
23 Li Q, Xia Y, Wan X, Yang S, Cai Z, Ye Y, Li G. Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid. Mater Sci Eng C Mater Biol Appl 2020;109:110615. [PMID: 32228941 DOI: 10.1016/j.msec.2019.110615] [Cited by in Crossref: 53] [Cited by in F6Publishing: 19] [Article Influence: 17.7] [Reference Citation Analysis]
24 Li G, Zhong P, Ye Y, Wan X, Cai Z, Yang S, Xia Y, Li Q, Liu J, He Q. A Highly Sensitive and Stable Dopamine Sensor Using Shuttle-Like α-Fe 2 O 3 Nanoparticles/Electro-Reduced Graphene Oxide Composites. J Electrochem Soc 2019;166:B1552-61. [DOI: 10.1149/2.1071915jes] [Cited by in Crossref: 21] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
25 Brindha R, Mohanraj R, Manojkumar P, Selvam M, Sakthipandi K. Hybrid Electrochemical Behaviour of La 1-x CaxMnO 3 Nano Perovskites and Recycled Polar Interspersed Graphene for Metal-Air Battery System. J Electrochem Soc 2020;167:120539. [DOI: 10.1149/1945-7111/abb34f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
26 Li GL, Wu JT, Xia YH, He QG, Jin HG. Review of semi-dry electrodes for EEG recording. J Neural Eng 2020;17:051004. [PMID: 33002886 DOI: 10.1088/1741-2552/abbd50] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
27 Li F, Ni B, Zheng Y, Huang Y, Li G. A simple and efficient voltammetric sensor for dopamine determination based on ZnO nanorods/electro-reduced graphene oxide composite. Surfaces and Interfaces 2021;26:101375. [DOI: 10.1016/j.surfin.2021.101375] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
28 Deng H, Huang J, Hu Z, Chen X, Huang D, Jin T. Fabrication of a Three-Dimensionally Networked MoO3/PPy/rGO Composite for a High-Performance Symmetric Supercapacitor. ACS Omega 2021;6:9426-32. [PMID: 33869922 DOI: 10.1021/acsomega.0c05953] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
29 Xu J, Qi Q, Sun L, Guo X, Zhang H, Zhao X. Green fluorescent carbon dots from chitosan as selective and sensitive “off-on” probes for nitrite and “on-off-on” probes for enrofloxacin detection. Journal of Alloys and Compounds 2022;908:164519. [DOI: 10.1016/j.jallcom.2022.164519] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Arul P, Huang S, Mani V, Hu Y. Ultrasonic synthesis of bismuth-organic framework intercalated carbon nanofibers: A dual electrocatalyst for trace-level monitoring of nitro hazards. Electrochimica Acta 2021;381:138280. [DOI: 10.1016/j.electacta.2021.138280] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
31 Rostami S, Mehdinia A, Jabbari A. Intrinsic peroxidase-like activity of graphene nanoribbons for label-free colorimetric detection of dopamine. Materials Science and Engineering: C 2020;114:111034. [DOI: 10.1016/j.msec.2020.111034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
32 Coroş M, Pruneanu S, Stefan-van Staden R. Review—Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. J Electrochem Soc 2020;167:037528. [DOI: 10.1149/2.0282003jes] [Cited by in Crossref: 30] [Article Influence: 15.0] [Reference Citation Analysis]
33 Wu Y, Li G, Tian Y, Feng J, Xiao J, Liu J, Liu X, He Q. Electropolymerization of molecularly imprinted polypyrrole film on multiwalled carbon nanotube surface for highly selective and stable determination of carcinogenic amaranth. Journal of Electroanalytical Chemistry 2021;895:115494. [DOI: 10.1016/j.jelechem.2021.115494] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
34 Wei Y, Xu Z, Wang S, Liu Y, Zhang D, Fang Y. One-step preparation of carbon quantum dots-reduced graphene oxide nanocomposite–modified glass carbon electrode for the simultaneous detection of ascorbic acid, dopamine, and uric acid. Ionics 2020;26:5817-28. [DOI: 10.1007/s11581-020-03703-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Hsiao S, You H, Chen H. Promotion of NO 2 Sensing Performance with Ag Modified DDT/Au/GaAs-Based Schottky Diode. J Electrochem Soc 2020;167:047507. [DOI: 10.1149/1945-7111/ab7330] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Zhang W, Ge C, Jin L, Yoon S, Kim W, Xu G, Jang H. Nickel nanoparticles incorporated Co, N co-doped carbon polyhedron derived from core-shell ZIF-8@ZIF-67 for electrochemical sensing of nitrite. Journal of Electroanalytical Chemistry 2021;887:115163. [DOI: 10.1016/j.jelechem.2021.115163] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
37 Lete C, Chelu M, Marin M, Mihaiu S, Preda S, Anastasescu M, Calderón-moreno JM, Dinulescu S, Moldovan C, Gartner M. Nitrite electrochemical sensing platform based on tin oxide films. Sensors and Actuators B: Chemical 2020;316:128102. [DOI: 10.1016/j.snb.2020.128102] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
38 Sohouli E, Keihan AH, Shahdost-fard F, Naghian E, Plonska-brzezinska ME, Rahimi-nasrabadi M, Ahmadi F. A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl. Materials Science and Engineering: C 2020;110:110684. [DOI: 10.1016/j.msec.2020.110684] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 12.5] [Reference Citation Analysis]
39 Ficca VC, Santoro C, Marsili E, da Silva Freitas W, Serov A, Atanassov P, Mecheri B. Sensing nitrite by iron-nitrogen-carbon oxygen reduction electrocatalyst. Electrochimica Acta 2022;402:139514. [DOI: 10.1016/j.electacta.2021.139514] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Bhat VS, S. S, Hegde G. Review—Biomass Derived Carbon Materials for Electrochemical Sensors. J Electrochem Soc 2020;167:037526. [DOI: 10.1149/2.0262003jes] [Cited by in Crossref: 22] [Article Influence: 11.0] [Reference Citation Analysis]
41 Abraham P, S R, Vijayan P, V N, Sreevalsan K, Anithakumary V. Review—Review on the Progress in Electrochemical Detection of Morphine Based on Different Modified Electrodes. J Electrochem Soc 2020;167:037559. [DOI: 10.1149/1945-7111/ab6cf6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
42 Immanuel S, Sivasubramanian R. Electrochemical studies of NADH oxidation on chemically reduced graphene oxide nanosheets modified glassy carbon electrode. Materials Chemistry and Physics 2020;249:123015. [DOI: 10.1016/j.matchemphys.2020.123015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
43 Adekunle AS, Fakayode OJ, Mamba BB, Nkambule TTI. Determination of humic acid (HA) and sodium alginate in water using Fe 2 O 3 and CuO nanoparticle-modified glassy carbon electrode. International Journal of Environmental Analytical Chemistry. [DOI: 10.1080/03067319.2020.1726334] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Hwa KY, Santhan A, Ganguly A, Kanna Sharma TS. Synthesis of Nickel Vanadate Anchored on Reduced Graphene Oxide for Electrochemical Determination of Antioxidant Radical Cations of Diphenylamine H •+. ACS Appl Electron Mater 2021;3:2247-60. [DOI: 10.1021/acsaelm.1c00183] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
45 dos Santos OAL, Sneha M, Devarani T, Bououdina M, Backx BP, Vijaya JJ, Bellucci S. Review—Perovskite/Spinel Based Graphene Derivatives Electrochemical and Biosensors. J Electrochem Soc 2021;168:067506. [DOI: 10.1149/1945-7111/ac0306] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
46 Amali R, Lim H, Ibrahim I, Huang N, Zainal Z, Ahmad S. Significance of nanomaterials in electrochemical sensors for nitrate detection: A review. Trends in Environmental Analytical Chemistry 2021;31:e00135. [DOI: 10.1016/j.teac.2021.e00135] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Tamilalagan E, Vetri Selvi S, Chen S, Akilarasan M, Maheshwaran S, Chen T, Al-mohaimeed AM, Al-onazi WA, Soliman Elshikh M, Liu X. Fabrication of p-n Junction (Ni/Zn)O and Reduced Graphene Oxide (rGO) Nanocomposites for the Electrocatalysis of Analgesic Drug (Acetaminophen) Detection in Pharmaceutical and Biological Samples. J Electrochem Soc 2021;168:036501. [DOI: 10.1149/1945-7111/abe6eb] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
48 Ostovar S, Maghsoudi S, Mousavi M. Development of a sensitive voltammetric sensor for diltiazem determination in biological samples using MWCNT/PPy-PBA modified glassy carbon electrode. Synthetic Metals 2021;281:116928. [DOI: 10.1016/j.synthmet.2021.116928] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Zhang Y, Xie Q, Xia Z, Gui G, Deng F. Fulvic Acid Reduced GO and Phthalocyanine Nanorods as Reaction Platform for Simultaneous Determination of Catechol, Hydroquinone, Phenol and p -nitrophenol. J Electrochem Soc 2019;166:B1293-9. [DOI: 10.1149/2.0351914jes] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
50 Abdel-atty S, Abdel-raoof AM, Mohamed TF, Nasr ZA, Mohamed GF, Elgazzar E. The Fabrication of a Highly Sensitive Nano Green Carbon Paste Electrode Modified with Yttrium Doped Manganese Oxide (Mn 2 O 3 /Y 2 O 3 ) for Electrochemical Determination of Marbofloxacin and Its Residues in Bovine Meat and Milk Samples. J Electrochem Soc 2020;167:107509. [DOI: 10.1149/1945-7111/ab9c86] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
51 Torrinha Á, Morais S. Electrochemical (bio)sensors based on carbon cloth and carbon paper: An overview. TrAC Trends in Analytical Chemistry 2021;142:116324. [DOI: 10.1016/j.trac.2021.116324] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
52 Baah M, Rahman A, Sibilia S, Trezza G, Ferrigno L, Micheli L, Maffucci A, Soboleva E, Svirko Y, Kuzhir P. Electrical impedance sensing of organic pollutants with ultrathin graphitic membranes. Nanotechnology 2021;33. [PMID: 34757955 DOI: 10.1088/1361-6528/ac3861] [Reference Citation Analysis]
53 Zhang X, Zhu M, Jiang Y, Wang X, Guo Z, Shi J, Zou X, Han E. Simple electrochemical sensing for mercury ions in dairy product using optimal Cu2+-based metal-organic frameworks as signal reporting. Journal of Hazardous Materials 2020;400:123222. [DOI: 10.1016/j.jhazmat.2020.123222] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
54 Qin Z, Zhang J, Liu Y, Wu J, Li G, Liu J, He Q. A Simple but Efficient Voltammetric Sensor for Simultaneous Detection of Tartrazine and Ponceau 4R Based on TiO2/Electro-Reduced Graphene Oxide Nanocomposite. Chemosensors 2020;8:70. [DOI: 10.3390/chemosensors8030070] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
55 Titov I, Köpke M, Gerken M. Monolithic Integrated OLED–OPD Unit for Point-of-Need Nitrite Sensing. Sensors 2022;22:910. [DOI: 10.3390/s22030910] [Reference Citation Analysis]
56 Fernandes-junior WS, Zaccarin LF, Oliveira GG, de Oliveira PR, Kalinke C, Bonacin JA, Prakash J, Janegitz BC, Srivastava SK. Electrochemical Sensor Based on Nanodiamonds and Manioc Starch for Detection of Tetracycline. Journal of Sensors 2021;2021:1-10. [DOI: 10.1155/2021/6622612] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
57 Sakamoto Y, Ikuta T, Maehashi K. Electrical Detection of Molecular Transformations Associated with Chemical Reactions Using Graphene Devices. ACS Appl Mater Interfaces 2021;13:45001-7. [PMID: 34494425 DOI: 10.1021/acsami.1c09985] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Hu Z, Yang Y, Li X. Singular elastic field induced by a rigid line inclusion in a thin nanoplate with surface elasticity. International Journal of Mechanical Sciences 2021;198:106386. [DOI: 10.1016/j.ijmecsci.2021.106386] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
59 Liu G, Xiong Z, Yang L, Shi H, Fang D, Wang M, Shao P, Luo X. Electrochemical approach toward reduced graphene oxide-based electrodes for environmental applications: A review. Sci Total Environ 2021;778:146301. [PMID: 33725599 DOI: 10.1016/j.scitotenv.2021.146301] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
60 Khan MZH. Recent Biosensors for Detection of Antibiotics in Animal Derived Food. Crit Rev Anal Chem 2020;:1-11. [PMID: 33040606 DOI: 10.1080/10408347.2020.1828027] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Sun Z, Liu X, Zhang X, Zuo M, Zou X, Niu Z, Pan H, Li J, Gao Y. Single-step electrochemical sensing toward ppb-level nitrite in cured meat sensitized with functionalized Ia3d mesoporous carbon. Sensors and Actuators B: Chemical 2021;338:129846. [DOI: 10.1016/j.snb.2021.129846] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
62 Yu T, Breslin CB. Review—Two-Dimensional Titanium Carbide MXenes and Their Emerging Applications as Electrochemical Sensors. J Electrochem Soc 2020;167:037514. [DOI: 10.1149/2.0142003jes] [Cited by in Crossref: 18] [Article Influence: 9.0] [Reference Citation Analysis]
63 Velmurugan S, Palanisamy S, Yang TC. Single-crystalline SnS2 nano-hexagons based non-enzymatic electrochemical sensor for detection of carcinogenic nitrite in food samples. Sensors and Actuators B: Chemical 2020;316:128106. [DOI: 10.1016/j.snb.2020.128106] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 8.5] [Reference Citation Analysis]
64 El-shafai NM, El-mehasseb IM, Shukry M, Farrag F, Ibrahim MM, Ramadan MS, Dawood MA, Moustafa EM, El-kemary MA. Influence nanohybrid of (GO@Se.ZnO) for enhancing the fish production wealth and economical return via the improvement dietary, immunity, physiological and antioxidant activity on Nile Tilapia. Materials Chemistry and Physics 2021;266:124536. [DOI: 10.1016/j.matchemphys.2021.124536] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
65 Hao Y, Li Z, Chen C, Xu Z, Feng S. Polyethyleneimine/Graphene Multilayer Film Supported Ferric Cobalt Modified Electrode for High-Performance Sensing of L-cysteine. J Electrochem Soc 2019;166:B1408-14. [DOI: 10.1149/2.0391915jes] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
66 Vaghela NR, Nath K. Reduced graphene oxide coated graphite electrodes for treating Reactive Turquoise Blue 21 rinse water using an indirect electro-oxidation process. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-03719-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
67 Kour R, Arya S, Young S, Gupta V, Bandhoria P, Khosla A. Review—Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. J Electrochem Soc 2020;167:037555. [DOI: 10.1149/1945-7111/ab6bc4] [Cited by in Crossref: 98] [Cited by in F6Publishing: 5] [Article Influence: 49.0] [Reference Citation Analysis]
68 Mirzaei M, Behboudnia M, Kheiri F, Chianeh VA, Naeim H, Jannatdoust E, Sirousazar M. Fabrication of Non-Enzymatic Electrochemical Hydrogen Peroxide Sensor Based on Ag NPs/Co 3 O 4 /ERGO Composite. J Electrochem Soc 2019;166:B1232-7. [DOI: 10.1149/2.1281913jes] [Cited by in Crossref: 15] [Article Influence: 5.0] [Reference Citation Analysis]
69 Abdel-karim R, Reda Y, Abdel-fattah A. Review—Nanostructured Materials-Based Nanosensors. J Electrochem Soc 2020;167:037554. [DOI: 10.1149/1945-7111/ab67aa] [Cited by in Crossref: 50] [Cited by in F6Publishing: 6] [Article Influence: 25.0] [Reference Citation Analysis]
70 Şenocak A, Korkmaz E, Khataee A, Demirbas E. A facile and synergetic strategy for electrochemical sensing of rutin antioxidant by Ce–Cr doped magnetite@rGO. Materials Chemistry and Physics 2022;275:125298. [DOI: 10.1016/j.matchemphys.2021.125298] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
71 Negut Cioates C. Review—Electrochemical Sensors Used in the Determination of Riboflavin. J Electrochem Soc 2020;167:037558. [DOI: 10.1149/1945-7111/ab6e5e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
72 Nabok A, Abu-ali H, Takita S, Smith DP. Electrochemical Detection of Prostate Cancer Biomarker PCA3 Using Specific RNA-Based Aptamer Labelled with Ferrocene. Chemosensors 2021;9:59. [DOI: 10.3390/chemosensors9040059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
73 Hassasi S, Hassaninejad-darzi SK, Vahid A. Production of copper-graphene nanocomposite as a voltammetric sensor for determination of anti-diabetic metformin using response surface methodology. Microchemical Journal 2022;172:106877. [DOI: 10.1016/j.microc.2021.106877] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
74 Ansari SA, Lopa NS, Parveen N, Shaikh AA, Rahman MM. A highly sensitive poly(chrysoidine G)–gold nanoparticle composite based nitrite sensor for food safety applications. Anal Methods 2020;12:5562-71. [DOI: 10.1039/d0ay01761b] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Liu J, Sun L, Li G, Hu J, He Q. Ultrasensitive detection of dopamine via electrochemical route on spindle-like α-Fe2O3 Mesocrystals/rGO modified GCE. Materials Research Bulletin 2021;133:111050. [DOI: 10.1016/j.materresbull.2020.111050] [Cited by in Crossref: 18] [Cited by in F6Publishing: 2] [Article Influence: 18.0] [Reference Citation Analysis]
76 Elgazzar E, Abdel-raoof AM, El-attar AM, Ashmawy AM, Abdulla SA. An extremely sensitive carbon paste electrode modified with Prussian blue analogue (PbA @CPE) for the electrochemical determination of Tetramisole HCl anthelmintic drug as a food contaminant in beef cuts and infant formula milk powder. Microchemical Journal 2022;178:107413. [DOI: 10.1016/j.microc.2022.107413] [Reference Citation Analysis]
77 Singh M, Bhardiya SR, Asati A, Sheshma H, Rai A, Rai VK. Design of a Sensitive Electrochemical Sensor Based on Ferrocene‐reduced Graphene Oxide/Mn‐spinel for Hydrazine Detection. Electroanalysis 2021;33:464-72. [DOI: 10.1002/elan.202060345] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
78 Riahifar V, Haghnazari N, Keshavarzi F, Nasri F. Design a high sensitive electrochemical sensor based on immobilized cysteine on Fe3O4@Au core-shell nanoparticles and reduced graphene oxide nanocomposite for nitrite monitoring. Microchemical Journal 2021;166:106217. [DOI: 10.1016/j.microc.2021.106217] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
79 Tavakol H, Momeni MM, Mohammadi B. Low‐temperature preparation and photoelectrochemical properties of TiO 2 nanotubes‐graphene‐CNT hybrid structure. Environ Prog Sustainable Energy 2021;40. [DOI: 10.1002/ep.13613] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]