BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ehrlich A, Duche D, Ouedraogo G, Nahmias Y. Challenges and Opportunities in the Design of Liver-on-Chip Microdevices. Annu Rev Biomed Eng 2019;21:219-39. [PMID: 31167098 DOI: 10.1146/annurev-bioeng-060418-052305] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Chapman CM. CelLock TM: an innovative standardized cell-block preparation procedure. J Histotechnol 2022;:1-11. [PMID: 35266436 DOI: 10.1080/01478885.2022.2046683] [Reference Citation Analysis]
2 Özkan A, Stolley D, Cressman ENK, McMillin M, DeMorrow S, Yankeelov TE, Rylander MN. The Influence of Chronic Liver Diseases on Hepatic Vasculature: A Liver-on-a-chip Review. Micromachines (Basel) 2020;11:E487. [PMID: 32397454 DOI: 10.3390/mi11050487] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
3 Ai L, Wang Q, Cheng K. Key genes in the liver fibrosis process are mined based on single-cell transcriptomics. Biochemical and Biophysical Research Communications 2022;598:131-7. [DOI: 10.1016/j.bbrc.2022.01.094] [Reference Citation Analysis]
4 Shoemaker JT, Zhang W, Atlas SI, Bryan RA, Inman SW, Vukasinovic J. A 3D Cell Culture Organ-on-a-Chip Platform With a Breathable Hemoglobin Analogue Augments and Extends Primary Human Hepatocyte Functions in vitro. Front Mol Biosci 2020;7:568777. [PMID: 33195413 DOI: 10.3389/fmolb.2020.568777] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021;18:252-68. [PMID: 33335282 DOI: 10.1038/s41575-020-00386-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
6 Chethikkattuveli Salih AR, Hyun K, Asif A, Soomro AM, Farooqi HMU, Kim YS, Kim KH, Lee JW, Huh D, Choi KH. Extracellular Matrix Optimization for Enhanced Physiological Relevance in Hepatic Tissue-Chips. Polymers (Basel) 2021;13:3016. [PMID: 34503056 DOI: 10.3390/polym13173016] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Ya S, Ding W, Li S, Du K, Zhang Y, Li C, Liu J, Li F, Li P, Luo T, He L, Xu A, Gao D, Qiu B. On-Chip Construction of Liver Lobules with Self-Assembled Perfusable Hepatic Sinusoid Networks. ACS Appl Mater Interfaces 2021;13:32640-52. [PMID: 34225454 DOI: 10.1021/acsami.1c00794] [Reference Citation Analysis]
8 Ramadan Q, Fardous RS, Hazaymeh R, Alshmmari S, Zourob M. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME. Adv Biol (Weinh) 2021;:e2100775. [PMID: 34323392 DOI: 10.1002/adbi.202100775] [Reference Citation Analysis]
9 Sphabmixay P, Raredon MSB, Wang AJ, Lee H, Hammond PT, Fang NX, Griffith LG. High resolution stereolithography fabrication of perfusable scaffolds to enable long-term meso-scale hepatic culture for disease modeling. Biofabrication 2021;13. [PMID: 34479229 DOI: 10.1088/1758-5090/ac23aa] [Reference Citation Analysis]
10 Aravalli RN. Generating liver using blastocyst complementation: Opportunities and challenges. Xenotransplantation 2021;28:e12668. [PMID: 33372360 DOI: 10.1111/xen.12668] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Nitsche KS, Müller I, Malcomber S, Carmichael PL, Bouwmeester H. Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review. Arch Toxicol 2022. [PMID: 35103818 DOI: 10.1007/s00204-022-03234-0] [Reference Citation Analysis]
12 Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater 2020;116:67-83. [PMID: 32890749 DOI: 10.1016/j.actbio.2020.08.041] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
13 Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 2021;93:167-83. [PMID: 33174738 DOI: 10.1021/acs.analchem.0c04378] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
14 Lee SY, Kim D, Lee SH, Sung JH. Microtechnology-based in vitro models: Mimicking liver function and pathophysiology. APL Bioeng 2021;5:041505. [PMID: 34703969 DOI: 10.1063/5.0061896] [Reference Citation Analysis]
15 Cavero I, Guillon J, Holzgrefe HH. Human organotypic bioconstructs from organ-on-chip devices for human-predictive biological insights on drug candidates. Expert Opinion on Drug Safety 2019;18:651-77. [DOI: 10.1080/14740338.2019.1634689] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
16 Kulsharova G, Kurmangaliyeva A, Darbayeva E, Rojas-Solórzano L, Toxeitova G. Development of a Hybrid Polymer-Based Microfluidic Platform for Culturing Hepatocytes towards Liver-on-a-Chip Applications. Polymers (Basel) 2021;13:3215. [PMID: 34641031 DOI: 10.3390/polym13193215] [Reference Citation Analysis]
17 Xiao RR, Lv T, Tu X, Li P, Wang T, Dong H, Tu P, Ai X. An integrated biomimetic array chip for establishment of collagen-based 3D primary human hepatocyte model for prediction of clinical drug-induced liver injury. Biotechnol Bioeng 2021;118:4687-98. [PMID: 34478150 DOI: 10.1002/bit.27931] [Reference Citation Analysis]
18 Sasikumar S, Chameettachal S, Kingshott P, Cromer B, Pati F. 3D hepatic mimics - the need for a multicentric approach. Biomed Mater 2020;15:052002. [PMID: 32460259 DOI: 10.1088/1748-605X/ab971c] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Lorvellec M, Pellegata AF, Maestri A, Turchetta C, Alvarez Mediavilla E, Shibuya S, Jones B, Scottoni F, Perocheau DP, Cozmescu AC, Delhove JM, Kysh D, Gjinovci A, Counsell JR, Heywood WE, Mills K, McKay TR, De Coppi P, Gissen P. An In Vitro Whole-Organ Liver Engineering for Testing of Genetic Therapies. iScience 2020;23:101808. [PMID: 33305175 DOI: 10.1016/j.isci.2020.101808] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Radhakrishnan J, Varadaraj S, Dash SK, Sharma A, Verma RS. Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips. Drug Discovery Today 2020;25:879-90. [DOI: 10.1016/j.drudis.2020.03.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
21 Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M. Liver Tissue Engineering as an Emerging Alternative for Liver Disease Treatment. Tissue Eng Part B Rev 2020;26:145-63. [PMID: 31797731 DOI: 10.1089/ten.TEB.2019.0233] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
22 Vinken M. Primary hepatocyte cultures for liver disease modeling. Current Opinion in Toxicology 2021;25:1-5. [DOI: 10.1016/j.cotox.2020.08.003] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Kanabekova P, Kadyrova A, Kulsharova G. Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. Micromachines 2022;13:428. [DOI: 10.3390/mi13030428] [Reference Citation Analysis]
24 Eckstrum K, Striz A, Ferguson M, Zhao Y, Sprando R. Evaluation of the utility of the Beta Human Liver Emulation System (BHLES) for CFSAN's regulatory toxicology program. Food Chem Toxicol 2022;:112828. [PMID: 35066125 DOI: 10.1016/j.fct.2022.112828] [Reference Citation Analysis]
25 Kohl Y, Biehl M, Spring S, Hesler M, Ogourtsov V, Todorovic M, Owen J, Elje E, Kopecka K, Moriones OH, Bastús NG, Simon P, Dubaj T, Rundén-Pran E, Puntes V, William N, von Briesen H, Wagner S, Kapur N, Mariussen E, Nelson A, Gabelova A, Dusinska M, Velten T, Knoll T. Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening. Small 2021;17:e2006012. [PMID: 33458959 DOI: 10.1002/smll.202006012] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Elvira KS. Microfluidic technologies for drug discovery and development: friend or foe? Trends Pharmacol Sci 2021;42:518-26. [PMID: 33994176 DOI: 10.1016/j.tips.2021.04.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Wang J, Huang D, Yu H, Cheng Y, Ren H, Zhao Y. Developing tissue engineering strategies for liver regeneration. Engineered Regeneration 2022. [DOI: 10.1016/j.engreg.2022.02.003] [Reference Citation Analysis]
28 Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros‐mendez S. Physically Active Bioreactors for Tissue Engineering Applications. Adv Biosys 2020;4:2000125. [DOI: 10.1002/adbi.202000125] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
29 Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021;13:3651. [PMID: 34359553 DOI: 10.3390/cancers13153651] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Tajeddin A, Mustafaoglu N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. Micromachines (Basel) 2021;12:1443. [PMID: 34945293 DOI: 10.3390/mi12121443] [Reference Citation Analysis]
31 Allwardt V, Ainscough AJ, Viswanathan P, Sherrod SD, McLean JA, Haddrick M, Pensabene V. Translational Roadmap for the Organs-on-a-Chip Industry toward Broad Adoption. Bioengineering (Basel) 2020;7:E112. [PMID: 32947816 DOI: 10.3390/bioengineering7030112] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
32 Liu W, Tang D, Xu XX, Liu YJ, Jiu Y. How Physical Factors Coordinate Virus Infection: A Perspective From Mechanobiology. Front Bioeng Biotechnol 2021;9:764516. [PMID: 34778236 DOI: 10.3389/fbioe.2021.764516] [Reference Citation Analysis]
33 Telles-silva KA, Pacheco L, Komatsu S, Chianca F, Caires-júnior LC, Araujo BHS, Goulart E, Zatz M. Applied Hepatic Bioengineering: Modeling the Human Liver Using Organoid and Liver-on-a-Chip Technologies. Front Bioeng Biotechnol 2022;10:845360. [DOI: 10.3389/fbioe.2022.845360] [Reference Citation Analysis]
34 Jin IS, Yoon MS, Park C, Hong JT, Chung YB, Kim J, Shin DH. Replacement techniques to reduce animal experiments in drug and nanoparticle development. J Pharm Investig 2020;50:327-35. [DOI: 10.1007/s40005-020-00487-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Eckstrum K, Striz A, Ferguson M, Zhao Y, Welch B, Solomotis N, Olejnik N, Sprando R. Utilization of a model hepatotoxic compound, diglycolic acid, to evaluate liver Organ-Chip performance and in vitro to in vivo concordance. Food and Chemical Toxicology 2020;146:111850. [DOI: 10.1016/j.fct.2020.111850] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
36 Polidoro MA, Ferrari E, Marzorati S, Lleo A, Rasponi M. Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Liver Int 2021;41:1744-61. [PMID: 33966344 DOI: 10.1111/liv.14942] [Reference Citation Analysis]