BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hennacy JH, Jonikas MC. Prospects for Engineering Biophysical CO2 Concentrating Mechanisms into Land Plants to Enhance Yields. Annu Rev Plant Biol 2020;71:461-85. [PMID: 32151155 DOI: 10.1146/annurev-arplant-081519-040100] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 19.5] [Reference Citation Analysis]
Number Citing Articles
1 da Fonseca-Pereira P, Siqueira JA, Monteiro-Batista RC, Vaz MGMV, Nunes-Nesi A, Araújo WL. Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022;359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Reference Citation Analysis]
2 Metskas LA, Ortega D, Oltrogge LM, Blikstad C, Lovejoy DR, Laughlin TG, Savage DF, Jensen GJ. Rubisco forms a lattice inside alpha-carboxysomes. Nat Commun 2022;13:4863. [PMID: 35982043 DOI: 10.1038/s41467-022-32584-7] [Reference Citation Analysis]
3 Johnson SL. A Year at the Forefront of Engineering Photosynthesis. Biol Open 2022;11:bio059335. [PMID: 35876381 DOI: 10.1242/bio.059335] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Yang M, Wenner N, Dykes GF, Li Y, Zhu X, Sun Y, Huang F, Hinton JCD, Liu LN. Biogenesis of a bacterial metabolosome for propanediol utilization. Nat Commun 2022;13:2920. [PMID: 35614058 DOI: 10.1038/s41467-022-30608-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Tang J, Zhou H, Yao D, Riaz S, You D, Klepacz-Smółka A, Daroch M. Comparative Genomic Analysis Revealed Distinct Molecular Components and Organization of CO2-Concentrating Mechanism in Thermophilic Cyanobacteria. Front Microbiol 2022;13:876272. [PMID: 35602029 DOI: 10.3389/fmicb.2022.876272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Fei C, Wilson AT, Mangan NM, Wingreen NS, Jonikas MC. Modelling the pyrenoid-based CO2-concentrating mechanism provides insights into its operating principles and a roadmap for its engineering into crops. Nat Plants 2022;8:583-95. [PMID: 35596080 DOI: 10.1038/s41477-022-01153-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
7 Rokitta SD, Kranz SA, Rost B. Inorganic Carbon Acquisition by Aquatic Primary Producers. Blue Planet, Red and Green Photosynthesis. Wiley; 2022. pp. 81-132. [DOI: 10.1002/9781119986782.ch4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhang N, Mattoon EM, McHargue W, Venn B, Zimmer D, Pecani K, Jeong J, Anderson CM, Chen C, Berry JC, Xia M, Tzeng SC, Becker E, Pazouki L, Evans B, Cross F, Cheng J, Czymmek KJ, Schroda M, Mühlhaus T, Zhang R. Systems-wide analysis revealed shared and unique responses to moderate and acute high temperatures in the green alga Chlamydomonas reinhardtii. Commun Biol 2022;5:460. [PMID: 35562408 DOI: 10.1038/s42003-022-03359-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Burlacot A, Dao O, Auroy P, Cuiné S, Li-Beisson Y, Peltier G. Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism. Nature 2022;605:366-71. [PMID: 35477755 DOI: 10.1038/s41586-022-04662-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
10 Sun Y, Harman VM, Johnson JR, Brownridge PJ, Chen T, Dykes GF, Lin Y, Beynon RJ, Liu LN. Decoding the Absolute Stoichiometric Composition and Structural Plasticity of α-Carboxysomes. mBio 2022;:e0362921. [PMID: 35343789 DOI: 10.1128/mbio.03629-21] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
11 Neofotis P, Temple J, Tessmer OL, Bibik J, Norris N, Pollner E, Lucker B, Weraduwage SM, Withrow A, Sears B, Mogos G, Frame M, Hall D, Weissman J, Kramer DM. The induction of pyrenoid synthesis by hyperoxia and its implications for the natural diversity of photosynthetic responses in Chlamydomonas. Elife 2021;10:e67565. [PMID: 34936552 DOI: 10.7554/eLife.67565] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021;:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Choi BY, Kim H, Shim D, Jang S, Yamaoka Y, Shin S, Yamano T, Kajikawa M, Jin E, Fukuzawa H, Lee Y. The Chlamydomonas bZIP transcription factor BLZ8 confers oxidative stress tolerance by inducing the carbon-concentrating mechanism. Plant Cell 2021:koab293. [PMID: 34893905 DOI: 10.1093/plcell/koab293] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Liu LN. Advances in the bacterial organelles for CO2 fixation. Trends Microbiol 2021:S0966-842X(21)00259-6. [PMID: 34802870 DOI: 10.1016/j.tim.2021.10.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
15 Yamano T, Toyokawa C, Shimamura D, Matsuoka T, Fukuzawa H. CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhadtii. Plant Physiol 2021:kiab528. [PMID: 34791500 DOI: 10.1093/plphys/kiab528] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Zang K, Wang H, Hartl FU, Hayer-Hartl M. Scaffolding protein CcmM directs multiprotein phase separation in β-carboxysome biogenesis. Nat Struct Mol Biol 2021;28:909-22. [PMID: 34759380 DOI: 10.1038/s41594-021-00676-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
17 Rottet S, Förster B, Hee WY, Rourke LM, Price GD, Long BM. Engineered Accumulation of Bicarbonate in Plant Chloroplasts: Known Knowns and Known Unknowns. Front Plant Sci 2021;12:727118. [PMID: 34531888 DOI: 10.3389/fpls.2021.727118] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Wang L, Jonikas MC. The pyrenoid. Curr Biol 2020;30:R456-8. [PMID: 32428480 DOI: 10.1016/j.cub.2020.02.051] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
19 Liu LN, Yang M, Sun Y, Yang J. Protein stoichiometry, structural plasticity and regulation of bacterial microcompartments. Curr Opin Microbiol 2021;63:133-41. [PMID: 34340100 DOI: 10.1016/j.mib.2021.07.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
20 Araus JL, Sanchez-Bragado R, Vicente R. Improving crop yield and resilience through optimization of photosynthesis: panacea or pipe dream? J Exp Bot 2021;72:3936-55. [PMID: 33640973 DOI: 10.1093/jxb/erab097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
21 Santhanagopalan I, Wong R, Mathur T, Griffiths H. Orchestral manoeuvres in the light: crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. J Exp Bot 2021;72:4604-24. [PMID: 33893473 DOI: 10.1093/jxb/erab169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
22 Roell MS, Schada von Borzykowski L, Westhoff P, Plett A, Paczia N, Claus P, Urte S, Erb TJ, Weber APM. A synthetic C4 shuttle via the β-hydroxyaspartate cycle in C3 plants. Proc Natl Acad Sci U S A 2021;118:e2022307118. [PMID: 34001608 DOI: 10.1073/pnas.2022307118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
23 Fang S, Huang X, Zhang X, Zhang M, Hao Y, Guo H, Liu LN, Yu F, Zhang P. Molecular mechanism underlying transport and allosteric inhibition of bicarbonate transporter SbtA. Proc Natl Acad Sci U S A 2021;118:e2101632118. [PMID: 34031249 DOI: 10.1073/pnas.2101632118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
24 Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J Exp Bot 2021;72:2822-44. [PMID: 33619527 DOI: 10.1093/jxb/erab090] [Cited by in Crossref: 4] [Cited by in F6Publishing: 39] [Article Influence: 4.0] [Reference Citation Analysis]
25 Koester RP, Pignon CP, Kesler DC, Willison RS, Kang M, Shen Y, Priest HD, Begemann MB, Cook KA, Bannon GA, Oufattole M. Transgenic insertion of the cyanobacterial membrane protein ictB increases grain yield in Zea mays through increased photosynthesis and carbohydrate production. PLoS One 2021;16:e0246359. [PMID: 33539477 DOI: 10.1371/journal.pone.0246359] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
26 Naduthodi MIS, Claassens NJ, D'Adamo S, van der Oost J, Barbosa MJ. Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol 2021:S0167-7799(21)00004-4. [PMID: 33541719 DOI: 10.1016/j.tibtech.2020.12.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
27 Copolovici L, Popitanu AC, Copolovici D. Volatile organic compound emission and residual substances from plants in light of the globally increasing CO2 level. Current Opinion in Environmental Science & Health 2021;19:100216. [DOI: 10.1016/j.coesh.2020.10.004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Islam S, Zhang J, Zhao Y, She M, Ma W. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. Plant Sci 2021;303:110759. [PMID: 33487345 DOI: 10.1016/j.plantsci.2020.110759] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
29 Barrett J, Girr P, Mackinder LCM. Pyrenoids: CO2-fixing phase separated liquid organelles. Biochim Biophys Acta Mol Cell Res 2021;1868:118949. [PMID: 33421532 DOI: 10.1016/j.bbamcr.2021.118949] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
30 Li S, Chang L, Zhang J. Advancing organelle genome transformation and editing for crop improvement. Plant Commun 2021;2:100141. [PMID: 33898977 DOI: 10.1016/j.xplc.2021.100141] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
31 Wang Y, Uchida M, Waghwani HK, Douglas T. Synthetic Virus-like Particles for Glutathione Biosynthesis. ACS Synth Biol 2020;9:3298-310. [PMID: 33232156 DOI: 10.1021/acssynbio.0c00368] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
32 Yang X, Medford JI, Markel K, Shih PM, De Paoli HC, Trinh CT, Mccormick AJ, Ployet R, Hussey SG, Myburg AA, Jensen PE, Hassan MM, Zhang J, Muchero W, Kalluri UC, Yin H, Zhuo R, Abraham PE, Chen J, Weston DJ, Yang Y, Liu D, Li Y, Labbe J, Yang B, Lee JH, Cottingham RW, Martin S, Lu M, Tschaplinski TJ, Yuan G, Lu H, Ranjan P, Mitchell JC, Wullschleger SD, Tuskan GA. Plant Biosystems Design Research Roadmap 1.0. BioDesign Research 2020;2020:1-38. [DOI: 10.34133/2020/8051764] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
33 Franklin E, Jonikas M. Increasing the uptake of carbon dioxide. Elife 2020;9:e64380. [PMID: 33270556 DOI: 10.7554/eLife.64380] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Meyer MT, Itakura AK, Patena W, Wang L, He S, Emrich-Mills T, Lau CS, Yates G, Mackinder LCM, Jonikas MC. Assembly of the algal CO2-fixing organelle, the pyrenoid, is guided by a Rubisco-binding motif. Sci Adv 2020;6:eabd2408. [PMID: 33177094 DOI: 10.1126/sciadv.abd2408] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
35 Flecken M, Wang H, Popilka L, Hartl FU, Bracher A, Hayer-Hartl M. Dual Functions of a Rubisco Activase in Metabolic Repair and Recruitment to Carboxysomes. Cell 2020;183:457-473.e20. [PMID: 32979320 DOI: 10.1016/j.cell.2020.09.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
36 Mallikarjuna K, Narendra K, Ragalatha R, Rao BJ. Elucidation and genetic intervention of CO2 concentration mechanism in Chlamydomonas reinhardtii for increased plant primary productivity. J Biosci 2020;45. [DOI: 10.1007/s12038-020-00080-z] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Wunder T, Mueller-Cajar O. Biomolecular condensates in photosynthesis and metabolism. Curr Opin Plant Biol 2020;58:1-7. [PMID: 32966943 DOI: 10.1016/j.pbi.2020.08.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
38 Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020;8:914. [PMID: 33014997 DOI: 10.3389/fbioe.2020.00914] [Cited by in Crossref: 12] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
39 Hayer-hartl M, Hartl FU. Chaperone Machineries of Rubisco – The Most Abundant Enzyme. Trends in Biochemical Sciences 2020;45:748-63. [DOI: 10.1016/j.tibs.2020.05.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
40 Sun Y, Huang F, Dykes GF, Liu LN. Diurnal Regulation of In Vivo Localization and CO2-Fixing Activity of Carboxysomes in Synechococcus elongatus PCC 7942. Life (Basel) 2020;10:E169. [PMID: 32872408 DOI: 10.3390/life10090169] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Jobe TO, Rahimzadeh Karvansara P, Zenzen I, Kopriva S. Ensuring Nutritious Food Under Elevated CO2 Conditions: A Case for Improved C4 Crops. Front Plant Sci 2020;11:1267. [PMID: 33013946 DOI: 10.3389/fpls.2020.01267] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
42 von Caemmerer S. Rubisco carboxylase/oxygenase: From the enzyme to the globe: A gas exchange perspective. J Plant Physiol 2020;252:153240. [PMID: 32707452 DOI: 10.1016/j.jplph.2020.153240] [Cited by in Crossref: 13] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
43 Huang F, Kong WW, Sun Y, Chen T, Dykes GF, Jiang YL, Liu LN. Rubisco accumulation factor 1 (Raf1) plays essential roles in mediating Rubisco assembly and carboxysome biogenesis. Proc Natl Acad Sci U S A 2020;117:17418-28. [PMID: 32636267 DOI: 10.1073/pnas.2007990117] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 6.5] [Reference Citation Analysis]
44 Maron L. Structure and function of an inorganic carbon transporter that captures CO2 in green algae. Plant J 2020;102:1105-6. [PMID: 32557968 DOI: 10.1111/tpj.14859] [Reference Citation Analysis]
45 Sui N, Huang F, Liu LN. Photosynthesis in Phytoplankton: Insights from the Newly Discovered Biological Inorganic Carbon Pumps. Mol Plant 2020;13:949-51. [PMID: 32416266 DOI: 10.1016/j.molp.2020.05.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]