BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, Fields RC, DeNardo DG, Hawkins WG, Goedegebuure P, Linehan DC. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 2018;67:1112-23. [PMID: 29196437 DOI: 10.1136/gutjnl-2017-313738] [Cited by in Crossref: 202] [Cited by in F6Publishing: 171] [Article Influence: 50.5] [Reference Citation Analysis]
Number Citing Articles
1 Ohms M, Möller S, Laskay T. An Attempt to Polarize Human Neutrophils Toward N1 and N2 Phenotypes in vitro. Front Immunol 2020;11:532. [PMID: 32411122 DOI: 10.3389/fimmu.2020.00532] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
2 Li C, Xu X, Wei S, Jiang P, Xue L, Wang J; Senior Correspondence. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer 2021;9:e001341. [PMID: 33504575 DOI: 10.1136/jitc-2020-001341] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Melzer MK, Arnold F, Stifter K, Zengerling F, Azoitei N, Seufferlein T, Bolenz C, Kleger A. An Immunological Glance on Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020;21:E3345. [PMID: 32397303 DOI: 10.3390/ijms21093345] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Ye J, Mills BN, Zhao T, Han BJ, Murphy JD, Patel AP, Johnston CJ, Lord EM, Belt BA, Linehan DC, Gerber SA. Assessing the Magnitude of Immunogenic Cell Death Following Chemotherapy and Irradiation Reveals a New Strategy to Treat Pancreatic Cancer. Cancer Immunol Res 2020;8:94-107. [PMID: 31719057 DOI: 10.1158/2326-6066.CIR-19-0373] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
5 Xun Y, Yang H, Li J, Wu F, Liu F. CXC Chemokine Receptors in the Tumor Microenvironment and an Update of Antagonist Development. Rev Physiol Biochem Pharmacol 2020;178:1-40. [PMID: 32816229 DOI: 10.1007/112_2020_35] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Siolas D, Morrissey C, Oberstein PE. The Achilles' Heel of Pancreatic Cancer: Targeting pancreatic cancer's unique immunologic characteristics and metabolic dependencies in clinical trials. J Pancreatol 2020;3:121-31. [PMID: 33133736 DOI: 10.1097/JP9.0000000000000052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ferguson LP, Diaz E, Reya T. The Role of the Microenvironment and Immune System in Regulating Stem Cell Fate in Cancer. Trends Cancer 2021;7:624-34. [PMID: 33509688 DOI: 10.1016/j.trecan.2020.12.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Mejia I, Bodapati S, Chen KT, Díaz B. Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines 2020;8:E401. [PMID: 33050151 DOI: 10.3390/biomedicines8100401] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ware MB, El-Rayes BF, Lesinski GB. Mirage or long-awaited oasis: reinvigorating T-cell responses in pancreatic cancer. J Immunother Cancer 2020;8:e001100. [PMID: 32843336 DOI: 10.1136/jitc-2020-001100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Opitz FV, Haeberle L, Daum A, Esposito I. Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers 2021;13:6188. [DOI: 10.3390/cancers13246188] [Reference Citation Analysis]
11 Malinova A, Veghini L, Real FX, Corbo V. Cell Lineage Infidelity in PDAC Progression and Therapy Resistance. Front Cell Dev Biol 2021;9:795251. [PMID: 34926472 DOI: 10.3389/fcell.2021.795251] [Reference Citation Analysis]
12 Sangaletti S, Ferrara R, Tripodo C, Garassino MC, Colombo MP. Myeloid cell heterogeneity in lung cancer: implication for immunotherapy. Cancer Immunol Immunother 2021;70:2429-38. [PMID: 33797567 DOI: 10.1007/s00262-021-02916-5] [Reference Citation Analysis]
13 Wu X, Singh R, Hsu DK, Zhou Y, Yu S, Han D, Shi Z, Huynh M, Campbell JJ, Hwang ST. A Small Molecule CCR2 Antagonist Depletes Tumor Macrophages and Synergizes with Anti–PD-1 in a Murine Model of Cutaneous T-Cell Lymphoma (CTCL). Journal of Investigative Dermatology 2020;140:1390-1400.e4. [DOI: 10.1016/j.jid.2019.11.018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
14 Zhang J, Ji C, Li W, Mao Z, Shi Y, Shi H, Ji R, Qian H, Xu W, Zhang X. Tumor-Educated Neutrophils Activate Mesenchymal Stem Cells to Promote Gastric Cancer Growth and Metastasis. Front Cell Dev Biol 2020;8:788. [PMID: 32903528 DOI: 10.3389/fcell.2020.00788] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
15 Grauers Wiktorin H, Aydin E, Hellstrand K, Martner A. NOX2-Derived Reactive Oxygen Species in Cancer. Oxid Med Cell Longev 2020;2020:7095902. [PMID: 33312338 DOI: 10.1155/2020/7095902] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Bazzichetto C, Conciatori F, Luchini C, Simionato F, Santoro R, Vaccaro V, Corbo V, Falcone I, Ferretti G, Cognetti F, Melisi D, Scarpa A, Ciuffreda L, Milella M. From Genetic Alterations to Tumor Microenvironment: The Ariadne's String in Pancreatic Cancer. Cells 2020;9:E309. [PMID: 32012917 DOI: 10.3390/cells9020309] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
17 Carpenter E, Nelson S, Bednar F, Cho C, Nathan H, Sahai V, di Magliano MP, Frankel TL. Immunotherapy for pancreatic ductal adenocarcinoma. J Surg Oncol 2021;123:751-9. [PMID: 33595893 DOI: 10.1002/jso.26312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Kim SI, Cassella CR, Byrne KT. Tumor Burden and Immunotherapy: Impact on Immune Infiltration and Therapeutic Outcomes. Front Immunol 2020;11:629722. [PMID: 33597954 DOI: 10.3389/fimmu.2020.629722] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
19 Li Y, Guo C, Chen Q, Su Y, Guo H, Liu R, Sun C, Mi S, Wang J, Chen D. Improvement of pneumonia by curcumin-loaded bionanosystems based on platycodon grandiflorum polysaccharides via calming cytokine storm. Int J Biol Macromol 2022;202:691-706. [PMID: 35124019 DOI: 10.1016/j.ijbiomac.2022.01.194] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Lindemann O, Rossaint J, Najder K, Schimmelpfennig S, Hofschröer V, Wälte M, Fels B, Oberleithner H, Zarbock A, Schwab A. Intravascular adhesion and recruitment of neutrophils in response to CXCL1 depends on their TRPC6 channels. J Mol Med (Berl) 2020;98:349-60. [PMID: 31950205 DOI: 10.1007/s00109-020-01872-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
21 Velasco RM, García AG, Sánchez PJ, Sellart IM, Sánchez-Arévalo Lobo VJ. Tumour microenvironment and heterotypic interactions in pancreatic cancer. J Physiol Biochem 2022. [PMID: 35102531 DOI: 10.1007/s13105-022-00875-8] [Reference Citation Analysis]
22 Poh AR, Ernst M. Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Therapeutic Opportunities and Clinical Challenges. Cancers (Basel) 2021;13:2860. [PMID: 34201127 DOI: 10.3390/cancers13122860] [Reference Citation Analysis]
23 Storz P, Crawford HC. Carcinogenesis of Pancreatic Ductal Adenocarcinoma. Gastroenterology 2020;158:2072-81. [PMID: 32199881 DOI: 10.1053/j.gastro.2020.02.059] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
24 Miyazawa M, Katsuda M, Kawai M, Hirono S, Okada KI, Kitahata Y, Yamaue H. Advances in immunotherapy for pancreatic ductal adenocarcinoma. J Hepatobiliary Pancreat Sci 2021;28:419-30. [PMID: 33742512 DOI: 10.1002/jhbp.944] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. Neutrophil dynamics in the tumor microenvironment. J Clin Invest 2021;131:143759. [PMID: 33720040 DOI: 10.1172/JCI143759] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Steele NG, Carpenter ES, Kemp SB, Sirihorachai V, The S, Delrosario L, Lazarus J, Amir ED, Gunchick V, Espinoza C, Bell S, Harris L, Lima F, Irizarry-Negron V, Paglia D, Macchia J, Chu AKY, Schofield H, Wamsteker EJ, Kwon R, Schulman A, Prabhu A, Law R, Sondhi A, Yu J, Patel A, Donahue K, Nathan H, Cho C, Anderson MA, Sahai V, Lyssiotis CA, Zou W, Allen BL, Rao A, Crawford HC, Bednar F, Frankel TL, Pasca di Magliano M. Multimodal Mapping of the Tumor and Peripheral Blood Immune Landscape in Human Pancreatic Cancer. Nat Cancer 2020;1:1097-112. [PMID: 34296197 DOI: 10.1038/s43018-020-00121-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 13.5] [Reference Citation Analysis]
27 Tu M, Klein L, Espinet E, Georgomanolis T, Wegwitz F, Li X, Urbach L, Danieli-Mackay A, Küffer S, Bojarczuk K, Mizi A, Günesdogan U, Chapuy B, Gu Z, Neesse A, Kishore U, Ströbel P, Hessmann E, Hahn SA, Trumpp A, Papantonis A, Ellenrieder V, Singh SK. TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. Nat Cancer 2021;2:1185-203. [PMID: 35122059 DOI: 10.1038/s43018-021-00258-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Lee SWL, Seager RJ, Litvak F, Spill F, Sieow JL, Leong PH, Kumar D, Tan ASM, Wong SC, Adriani G, Zaman MH, Kamm ARD. Integrated in silico and 3D in vitro model of macrophage migration in response to physical and chemical factors in the tumor microenvironment. Integr Biol (Camb) 2020;12:90-108. [PMID: 32248236 DOI: 10.1093/intbio/zyaa007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
29 Zhang X, Detering L, Sultan D, Luehmann H, Li L, Heo GS, Zhang X, Lou L, Grierson PM, Greco S, Ruzinova M, Laforest R, Dehdashti F, Lim KH, Liu Y. CC Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma. ACS Nano 2021;15:1186-98. [PMID: 33406361 DOI: 10.1021/acsnano.0c08185] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
30 Zhao BN, Campbell JJ, Salanga CL, Ertl LS, Wang Y, Yau S, Dang T, Zeng Y, McMahon JP, Krasinski A, Zhang P, Kufareva I, Handel TM, Charo IF, Singh R, Schall TJ. CCR2-Mediated Uptake of Constitutively Produced CCL2: A Mechanism for Regulating Chemokine Levels in the Blood. J Immunol 2019;203:3157-65. [PMID: 31676674 DOI: 10.4049/jimmunol.1900961] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
31 Kadiyala P, Elhossiny AM, Carpenter ES. Using Single Cell Transcriptomics to Elucidate the Myeloid Compartment in Pancreatic Cancer. Front Oncol 2022;12:881871. [DOI: 10.3389/fonc.2022.881871] [Reference Citation Analysis]
32 Hilmi M, Bartholin L, Neuzillet C. Immune therapies in pancreatic ductal adenocarcinoma: Where are we now? World J Gastroenterol 2018; 24(20): 2137-2151 [PMID: 29853732 DOI: 10.3748/wjg.v24.i20.2137] [Cited by in CrossRef: 63] [Cited by in F6Publishing: 54] [Article Influence: 15.8] [Reference Citation Analysis]
33 Leinwand J, Miller G. Regulation and modulation of antitumor immunity in pancreatic cancer. Nat Immunol 2020;21:1152-9. [PMID: 32807942 DOI: 10.1038/s41590-020-0761-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
34 Bhutiani N, Li Y, Zheng Q, Pandit H, Shi X, Chen Y, Yu Y, Pulliam ZR, Tan M, Martin RCG. Electrochemotherapy with Irreversible Electroporation and FOLFIRINOX Improves Survival in Murine Models of Pancreatic Adenocarcinoma. Ann Surg Oncol 2020;27:4348-59. [DOI: 10.1245/s10434-020-08782-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
35 Ramos RN, Couto SCF, Oliveira TGM, Klinger P, Braga TT, Rego EM, Barbuto JAM, Rocha V. Myeloid Immune Cells CARrying a New Weapon Against Cancer. Front Cell Dev Biol 2021;9:784421. [PMID: 34977027 DOI: 10.3389/fcell.2021.784421] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity. 2019;51:27-41. [PMID: 31315034 DOI: 10.1016/j.immuni.2019.06.025] [Cited by in Crossref: 335] [Cited by in F6Publishing: 347] [Article Influence: 111.7] [Reference Citation Analysis]
37 Kim J, Hong J, Lee J, Fakhraei Lahiji S, Kim Y. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. Journal of Controlled Release 2021;332:109-26. [DOI: 10.1016/j.jconrel.2021.02.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Raftopoulou S, Valadez-Cosmes P, Mihalic ZN, Schicho R, Kargl J. Tumor-Mediated Neutrophil Polarization and Therapeutic Implications. Int J Mol Sci 2022;23:3218. [PMID: 35328639 DOI: 10.3390/ijms23063218] [Reference Citation Analysis]
39 Liu X, Xu J, Zhang B, Liu J, Liang C, Meng Q, Hua J, Yu X, Shi S. The reciprocal regulation between host tissue and immune cells in pancreatic ductal adenocarcinoma: new insights and therapeutic implications. Mol Cancer 2019;18:184. [PMID: 31831007 DOI: 10.1186/s12943-019-1117-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
40 Li M, Chen P, Zhao Y, Feng X, Gao S, Qi Y, Guo X. Immune Infiltration Represents Potential Diagnostic and Prognostic Biomarkers for Esophageal Squamous Cell Carcinoma. BioMed Research International 2022;2022:1-15. [DOI: 10.1155/2022/9009269] [Reference Citation Analysis]
41 Neesse A, Bauer CA, Öhlund D, Lauth M, Buchholz M, Michl P, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut 2019;68:159-71. [PMID: 30177543 DOI: 10.1136/gutjnl-2018-316451] [Cited by in Crossref: 149] [Cited by in F6Publishing: 131] [Article Influence: 49.7] [Reference Citation Analysis]
42 Jeong J, Suh Y, Jung K. Context Drives Diversification of Monocytes and Neutrophils in Orchestrating the Tumor Microenvironment. Front Immunol 2019;10:1817. [PMID: 31474975 DOI: 10.3389/fimmu.2019.01817] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
43 Wattenberg MM, Beatty GL. Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Semin Cancer Biol 2020;65:38-50. [PMID: 31954172 DOI: 10.1016/j.semcancer.2020.01.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
44 Huang Y, Nieh MP, Chen W, Lei Y. Outer membrane vesicles (OMVs) enabled bio-applications: A critical review. Biotechnol Bioeng 2022;119:34-47. [PMID: 34698385 DOI: 10.1002/bit.27965] [Reference Citation Analysis]
45 Cheng Y, Mo F, Li Q, Han X, Shi H, Chen S, Wei Y, Wei X. Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol Cancer 2021;20:62. [PMID: 33814009 DOI: 10.1186/s12943-021-01355-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Maryamchik E, Gallagher KME, Preffer FI, Kadauke S, Maus MV. New directions in chimeric antigen receptor T cell [CAR-T] therapy and related flow cytometry. Cytometry B Clin Cytom 2020;98:299-327. [PMID: 32352629 DOI: 10.1002/cyto.b.21880] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
47 Zhang Y, Guoqiang L, Sun M, Lu X. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol Med 2020;17:32-43. [PMID: 32296575 DOI: 10.20892/j.issn.2095-3941.2019.0372] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
48 Lankadasari MB, Mukhopadhyay P, Mohammed S, Harikumar KB. TAMing pancreatic cancer: combat with a double edged sword. Mol Cancer 2019;18:48. [PMID: 30925924 DOI: 10.1186/s12943-019-0966-6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
49 Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiological Reviews 2020;100:1707-51. [DOI: 10.1152/physrev.00042.2019] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
50 Ahmad RS, Eubank TD, Lukomski S, Boone BA. Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer. Biomolecules 2021;11:901. [PMID: 34204306 DOI: 10.3390/biom11060901] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Ismail NFB, Foth M, Yousef ARE, Cui N, Leach JD, Jamieson T, Karim SA, Salmond JM, Morton JP, Iwata T. Loss of Cxcr2 in Myeloid Cells Promotes Tumour Progression and T Cell Infiltration in Invasive Bladder Cancer. BLC 2022. [DOI: 10.3233/blc-211645] [Reference Citation Analysis]
52 Mojsilovic SS, Mojsilovic S, Villar VH, Santibanez JF. The Metabolic Features of Tumor-Associated Macrophages: Opportunities for Immunotherapy? Anal Cell Pathol (Amst) 2021;2021:5523055. [PMID: 34476174 DOI: 10.1155/2021/5523055] [Reference Citation Analysis]
53 Naso JR, Topham JT, Karasinska JM, Lee MKC, Kalloger SE, Wong HL, Nelson J, Moore RA, Mungall AJ, Jones SJM, Laskin J, Marra MA, Renouf DJ, Schaeffer DF. Tumor infiltrating neutrophils and gland formation predict overall survival and molecular subgroups in pancreatic ductal adenocarcinoma. Cancer Med 2021;10:1155-65. [PMID: 33372414 DOI: 10.1002/cam4.3695] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
54 Liu G, Rui W, Zhao X, Lin X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol 2021;18:1085-95. [PMID: 33785843 DOI: 10.1038/s41423-021-00655-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
55 Bastea LI, Liou GY, Pandey V, Fleming AK, von Roemeling CA, Doeppler H, Li Z, Qiu Y, Edenfield B, Copland JA, Tun HW, Storz P. Pomalidomide Alters Pancreatic Macrophage Populations to Generate an Immune-Responsive Environment at Precancerous and Cancerous Lesions. Cancer Res. 2019;79:1535-1548. [PMID: 30696657 DOI: 10.1158/0008-5472.can-18-1153] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
56 SenGupta S, Subramanian BC, Parent CA. Getting TANned: How the tumor microenvironment drives neutrophil recruitment. J Leukoc Biol 2019;105:449-62. [PMID: 30549315 DOI: 10.1002/JLB.3RI0718-282R] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
57 De Sanctis F, Lamolinara A, Boschi F, Musiu C, Caligola S, Trovato R, Fiore A, Frusteri C, Anselmi C, Poffe O, Cestari T, Canè S, Sartoris S, Giugno R, Del Rosario G, Zappacosta B, Del Pizzo F, Fassan M, Dugnani E, Piemonti L, Bottani E, Decimo I, Paiella S, Salvia R, Lawlor RT, Corbo V, Park Y, Tuveson DA, Bassi C, Scarpa A, Iezzi M, Ugel S, Bronte V. Interrupting the nitrosative stress fuels tumor-specific cytotoxic T lymphocytes in pancreatic cancer. J Immunother Cancer 2022;10:e003549. [PMID: 35022194 DOI: 10.1136/jitc-2021-003549] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Wolfsberger J, Sakil HAM, Zhou L, van Bree N, Baldisseri E, de Souza Ferreira S, Zubillaga V, Stantic M, Fritz N, Hartman J, Rolny C, Wilhelm MT. TAp73 represses NF-κB-mediated recruitment of tumor-associated macrophages in breast cancer. Proc Natl Acad Sci U S A 2021;118:e2017089118. [PMID: 33649219 DOI: 10.1073/pnas.2017089118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
59 Heumann T, Azad N. Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance. Cancer Metastasis Rev 2021;40:837-62. [PMID: 34591243 DOI: 10.1007/s10555-021-09981-3] [Reference Citation Analysis]
60 Stump CT, Roehle K, Manjarrez Orduno N, Dougan SK. Radiation combines with immune checkpoint blockade to enhance T cell priming in a murine model of poorly immunogenic pancreatic cancer. Open Biol 2021;11:210245. [PMID: 34784792 DOI: 10.1098/rsob.210245] [Reference Citation Analysis]
61 Noel M, O'Reilly EM, Wolpin BM, Ryan DP, Bullock AJ, Britten CD, Linehan DC, Belt BA, Gamelin EC, Ganguly B, Yin D, Joh T, Jacobs IA, Taylor CT, Lowery MA. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest New Drugs 2020;38:800-11. [PMID: 31297636 DOI: 10.1007/s10637-019-00830-3] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 11.3] [Reference Citation Analysis]
62 Tomás-Bort E, Kieler M, Sharma S, Candido JB, Loessner D. 3D approaches to model the tumor microenvironment of pancreatic cancer. Theranostics 2020;10:5074-89. [PMID: 32308769 DOI: 10.7150/thno.42441] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 18.5] [Reference Citation Analysis]
63 Krog RT, de Miranda NFCC, Vahrmeijer AL, Kooreman NG. The Potential of Induced Pluripotent Stem Cells to Advance the Treatment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021;13:5789. [PMID: 34830945 DOI: 10.3390/cancers13225789] [Reference Citation Analysis]
64 Li X, Su X, Liu R, Pan Y, Fang J, Cao L, Feng C, Shang Q, Chen Y, Shao C, Shi Y. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene 2021;40:1836-50. [PMID: 33564072 DOI: 10.1038/s41388-020-01636-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
65 Ni Y, Zhou X, Yang J, Shi H, Li H, Zhao X, Ma X. The Role of Tumor-Stroma Interactions in Drug Resistance Within Tumor Microenvironment. Front Cell Dev Biol 2021;9:637675. [PMID: 34095111 DOI: 10.3389/fcell.2021.637675] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
66 Charles Jacob HK, Charles Richard JL, Signorelli R, Kashuv T, Lavania S, Vaish U, Boopathy R, Middleton A, Boone MM, Sundaram R, Dudeja V, Saluja AK. Modulation of Early Neutrophil Granulation: The Circulating Tumor Cell-Extravesicular Connection in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021;13:2727. [PMID: 34072942 DOI: 10.3390/cancers13112727] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 2021;6:75. [PMID: 33619259 DOI: 10.1038/s41392-021-00484-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
68 Yang T, Li J, Li R, Yang C, Zhang W, Qiu Y, Yang C, Rong R. Correlation between MDSC and Immune Tolerance in Transplantation: Cytokines, Pathways and Cell-cell Interaction. Curr Gene Ther 2019;19:81-92. [PMID: 31237207 DOI: 10.2174/1566523219666190618093707] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
69 Cole CL, Bachman JF, Ye J, Murphy J, Gerber SA, Beck CA, Boyce BF, Muthukrishnan G, Chakkalakal JV, Schwarz EM, Linehan D. Increased myocellular lipid and IGFBP-3 expression in a pre-clinical model of pancreatic cancer-related skeletal muscle wasting. J Cachexia Sarcopenia Muscle 2021;12:731-45. [PMID: 33960737 DOI: 10.1002/jcsm.12699] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
70 Zheng Y, Han Y, Sun Q, Li Z. Harnessing anti‐tumor and tumor‐tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration. [DOI: 10.1002/exp.20210166] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
71 Li S, Wang Q, Shen Y, Hassan M, Shen J, Jiang W, Su Y, Chen J, Bai L, Zhou W, Wang Y. Pseudoneutrophil Cytokine Sponges Disrupt Myeloid Expansion and Tumor Trafficking to Improve Cancer Immunotherapy. Nano Lett 2020;20:242-51. [DOI: 10.1021/acs.nanolett.9b03753] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
72 Kemp SB, Pasca di Magliano M, Crawford HC. Myeloid Cell Mediated Immune Suppression in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 2021:S2352-345X(21)00151-X. [PMID: 34303882 DOI: 10.1016/j.jcmgh.2021.07.006] [Reference Citation Analysis]
73 Narayanan S, Vicent S, Ponz-sarvisé M. PDAC as an Immune Evasive Disease: Can 3D Model Systems Aid to Tackle This Clinical Problem? Front Cell Dev Biol 2021;9:787249. [DOI: 10.3389/fcell.2021.787249] [Reference Citation Analysis]
74 Cole CL, Beck CA, Robinson D, Ye J, Mills B, Gerber SA, Schwarz EM, Linehan D. Dual Energy X-ray Absorptiometry (DEXA) as a longitudinal outcome measure of cancer-related muscle wasting in mice. PLoS One 2020;15:e0230695. [PMID: 32559188 DOI: 10.1371/journal.pone.0230695] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Sunami Y, Kleeff J. Immunotherapy of pancreatic cancer. Prog Mol Biol Transl Sci 2019;164:189-216. [PMID: 31383405 DOI: 10.1016/bs.pmbts.2019.03.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
76 Panni RZ, Lopez-Aguiar AG, Liu J, Poultsides GA, Rocha FG, Hawkins WG, Strasberg SM, Trikalinos NA, Maithel S, Fields RC; and other members of US-NETSG. Association of preoperative monocyte-to-lymphocyte and neutrophil-to-lymphocyte ratio with recurrence-free and overall survival after resection of pancreatic neuroendocrine tumors (US-NETSG). J Surg Oncol 2019;120:632-8. [PMID: 31339198 DOI: 10.1002/jso.25629] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
77 Masugi Y, Abe T, Ueno A, Fujii-Nishimura Y, Ojima H, Endo Y, Fujita Y, Kitago M, Shinoda M, Kitagawa Y, Sakamoto M. Characterization of spatial distribution of tumor-infiltrating CD8+ T cells refines their prognostic utility for pancreatic cancer survival. Mod Pathol 2019;32:1495-507. [PMID: 31186528 DOI: 10.1038/s41379-019-0291-z] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
78 Xu X, Ma J, Yu G, Qiu Q, Zhang W, Cao F. Effective Predictor of Colorectal Cancer Survival Based on Exclusive Expression Pattern Among Different Immune Cell Infiltration. J Histochem Cytochem 2021;69:271-86. [PMID: 33550891 DOI: 10.1369/0022155421991938] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Singel KL, Emmons TR, Khan ANH, Mayor PC, Shen S, Wong JT, Morrell K, Eng KH, Mark J, Bankert RB, Matsuzaki J, Koya RC, Blom AM, McLeish KR, Qu J, Ram S, Moysich KB, Abrams SI, Odunsi K, Zsiros E, Segal BH. Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment. JCI Insight 2019;4:122311. [PMID: 30730851 DOI: 10.1172/jci.insight.122311] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 16.0] [Reference Citation Analysis]
80 Ji H, Ren M, Liu T, Sun Y. Prognostic and Immunological Significance of CXCR2 in Ovarian Cancer: A Promising Target for Survival Outcome and Immunotherapeutic Response Assessment. Dis Markers 2021;2021:5350232. [PMID: 34840630 DOI: 10.1155/2021/5350232] [Reference Citation Analysis]
81 Groth C, Arpinati L, Shaul ME, Winkler N, Diester K, Gengenbacher N, Weber R, Arkhypov I, Lasser S, Petrova V, Augustin HG, Altevogt P, Utikal J, Fridlender ZG, Umansky V. Blocking Migration of Polymorphonuclear Myeloid-Derived Suppressor Cells Inhibits Mouse Melanoma Progression. Cancers (Basel) 2021;13:726. [PMID: 33578808 DOI: 10.3390/cancers13040726] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
82 Mehla K, Singh PK. Metabolic Regulation of Macrophage Polarization in Cancer. Trends Cancer. 2019;5:822-834. [PMID: 31813459 DOI: 10.1016/j.trecan.2019.10.007] [Cited by in Crossref: 54] [Cited by in F6Publishing: 61] [Article Influence: 18.0] [Reference Citation Analysis]
83 Bhatia R, Bhyravbhatla N, Kisling A, Li X, Batra SK, Kumar S. Cytokines Chattering in Pancreatic Ductal Adenocarcinoma Tumor Microenvironment. Semin Cancer Biol 2022:S1044-579X(22)00077-3. [PMID: 35346801 DOI: 10.1016/j.semcancer.2022.03.021] [Reference Citation Analysis]
84 Mizuno R, Kawada K, Itatani Y, Ogawa R, Kiyasu Y, Sakai Y. The Role of Tumor-Associated Neutrophils in Colorectal Cancer. Int J Mol Sci 2019;20:E529. [PMID: 30691207 DOI: 10.3390/ijms20030529] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 17.3] [Reference Citation Analysis]
85 Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol 2020;17:527-40. [PMID: 32398706 DOI: 10.1038/s41571-020-0363-5] [Cited by in Crossref: 82] [Cited by in F6Publishing: 97] [Article Influence: 41.0] [Reference Citation Analysis]
86 Wu M, Ma M, Tan Z, Zheng H, Liu X. Neutrophil: A New Player in Metastatic Cancers. Front Immunol 2020;11:565165. [PMID: 33101283 DOI: 10.3389/fimmu.2020.565165] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
87 Fels B, Bulk E, Pethő Z, Schwab A. The Role of TRP Channels in the Metastatic Cascade. Pharmaceuticals (Basel) 2018;11:E48. [PMID: 29772843 DOI: 10.3390/ph11020048] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 8.8] [Reference Citation Analysis]
88 Tian M, Liu W, Tao C, Tang Z, Zhou Y, Song S, Jin L, Wang H, Jiang X, Zhou P, Fang Y, Qu W, Ding Z, Peng Y, Fu X, Qiu S, Zhou J, Fan J, Shi Y. Prediction of overall survival in resectable intrahepatic cholangiocarcinoma: ISICC -applied prediction model. Cancer Sci 2020;111:1084-92. [PMID: 31971309 DOI: 10.1111/cas.14315] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
89 Dang Y, Yu J, Zhao S, Jin L, Cao X, Wang Q. GOLM1 Drives Colorectal Cancer Metastasis by Regulating Myeloid-derived Suppressor Cells. J Cancer 2021;12:7158-66. [PMID: 34729117 DOI: 10.7150/jca.61567] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Tang D, Zhang D, Heng Y, Zhu X, Lin H, Zhou J, Tao L, Lu L. Tumor-Infiltrating PD-L1+ Neutrophils Induced by GM-CSF Suppress T Cell Function in Laryngeal Squamous Cell Carcinoma and Predict Unfavorable Prognosis. JIR 2022;Volume 15:1079-97. [DOI: 10.2147/jir.s347777] [Reference Citation Analysis]
91 SenGupta S, Hein LE, Parent CA. The Recruitment of Neutrophils to the Tumor Microenvironment Is Regulated by Multiple Mediators. Front Immunol 2021;12:734188. [PMID: 34567000 DOI: 10.3389/fimmu.2021.734188] [Reference Citation Analysis]
92 Principe DR, Cataneo JL, Timbers KE, Koch RM, Valyi-Nagy K, Mellgren A, Rana A, Gantt G. Leukocyte subtyping predicts for treatment failure and poor survival in anal squamous cell carcinoma. BMC Cancer 2022;22:697. [PMID: 35751111 DOI: 10.1186/s12885-022-09742-7] [Reference Citation Analysis]
93 Jiang J, Zhou H, Ni C, Hu X, Mou Y, Huang D, Yang L. Immunotherapy in pancreatic cancer: New hope or mission impossible? Cancer Letters 2019;445:57-64. [DOI: 10.1016/j.canlet.2018.10.045] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
94 Nielsen SR, Strøbech JE, Horton ER, Jackstadt R, Laitala A, Bravo MC, Maltese G, Jensen ARD, Reuten R, Rafaeva M, Karim SA, Hwang CI, Arnes L, Tuveson DA, Sansom OJ, Morton JP, Erler JT. Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nat Commun 2021;12:3414. [PMID: 34099731 DOI: 10.1038/s41467-021-23731-7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
95 Siwicki M, Pittet MJ. Versatile neutrophil functions in cancer. Semin Immunol 2021;:101538. [PMID: 34876331 DOI: 10.1016/j.smim.2021.101538] [Reference Citation Analysis]
96 Su Y, Gao J, Kaur P, Wang Z. Neutrophils and Macrophages as Targets for Development of Nanotherapeutics in Inflammatory Diseases. Pharmaceutics 2020;12:E1222. [PMID: 33348630 DOI: 10.3390/pharmaceutics12121222] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
97 Bear AS, Vonderheide RH, O'Hara MH. Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell 2020;38:788-802. [PMID: 32946773 DOI: 10.1016/j.ccell.2020.08.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
98 Herting CJ, Karpovsky I, Lesinski GB. The tumor microenvironment in pancreatic ductal adenocarcinoma: current perspectives and future directions. Cancer Metastasis Rev 2021;40:675-89. [PMID: 34591240 DOI: 10.1007/s10555-021-09988-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Najder K, Musset B, Lindemann O, Bulk E, Schwab A, Fels B. The function of TRP channels in neutrophil granulocytes. Pflugers Arch 2018;470:1017-33. [PMID: 29717355 DOI: 10.1007/s00424-018-2146-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
100 Wattenberg MM, Herrera VM, Giannone MA, Gladney WL, Carpenter EL, Beatty GL. Systemic inflammation is a determinant of outcomes of CD40 agonist-based therapy in pancreatic cancer patients. JCI Insight 2021;6:145389. [PMID: 33497362 DOI: 10.1172/jci.insight.145389] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
101 Zhang XZ, Chen MJ, Fan PM, Jiang W, Liang SX. BTG2 Serves as a Potential Prognostic Marker and Correlates with Immune Infiltration in Lung Adenocarcinoma. IJGM 2022;Volume 15:2727-45. [DOI: 10.2147/ijgm.s340565] [Reference Citation Analysis]
102 Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, Wang X, Peng C, Zhou C, Zhou L, Li X, Shi H, Wu W, Long X, Wu C, Liao W. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun 2019;10:5421. [PMID: 31780645 DOI: 10.1038/s41467-019-13204-3] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 12.7] [Reference Citation Analysis]
103 Du W, Pasca di Magliano M, Zhang Y. Therapeutic Potential of Targeting Stromal Crosstalk-Mediated Immune Suppression in Pancreatic Cancer. Front Oncol 2021;11:682217. [PMID: 34290984 DOI: 10.3389/fonc.2021.682217] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
104 Stone ML, Beatty GL. Cellular determinants and therapeutic implications of inflammation in pancreatic cancer. Pharmacol Ther. 2019;201:202-213. [PMID: 31158393 DOI: 10.1016/j.pharmthera.2019.05.012] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
105 Arora S, Khan S, Zaki A, Tabassum G, Mohsin M, Bhutto HN, Ahmad T, Fatma T, Syed MA. Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.03.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
106 Yang X, Lin J, Wang G, Xu D. Targeting Proliferating Tumor-Infiltrating Macrophages Facilitates Spatial Redistribution of CD8+ T Cells in Pancreatic Cancer. Cancers (Basel) 2022;14:1474. [PMID: 35326625 DOI: 10.3390/cancers14061474] [Reference Citation Analysis]
107 Ge Z, Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front Oncol 2020;10:590941. [PMID: 33224886 DOI: 10.3389/fonc.2020.590941] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
108 Wu L, Saxena S, Awaji M, Singh RK. Tumor-Associated Neutrophils in Cancer: Going Pro. Cancers (Basel) 2019;11:E564. [PMID: 31010242 DOI: 10.3390/cancers11040564] [Cited by in Crossref: 96] [Cited by in F6Publishing: 90] [Article Influence: 32.0] [Reference Citation Analysis]
109 Filimon A, Preda IA, Boloca AF, Negroiu G. Interleukin-8 in Melanoma Pathogenesis, Prognosis and Therapy-An Integrated View into Other Neoplasms and Chemokine Networks. Cells 2021;11:120. [PMID: 35011682 DOI: 10.3390/cells11010120] [Reference Citation Analysis]
110 Guo Q, Huang F, Goncalves C, Del Rincón SV, Miller WH Jr. Translation of cancer immunotherapy from the bench to the bedside. Adv Cancer Res 2019;143:1-62. [PMID: 31202357 DOI: 10.1016/bs.acr.2019.03.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
111 Jin L, Kim HS, Shi J. Neutrophil in the Pancreatic Tumor Microenvironment. Biomolecules 2021;11:1170. [PMID: 34439836 DOI: 10.3390/biom11081170] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Yu L, Yang X, Xu C, Sun J, Fang Z, Pan H, Han W. Comprehensive analysis of the expression and prognostic value of CXC chemokines in colorectal cancer. Int Immunopharmacol 2020;89:107077. [PMID: 33068862 DOI: 10.1016/j.intimp.2020.107077] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
113 Yang H, Zhang Q, Xu M, Wang L, Chen X, Feng Y, Li Y, Zhang X, Cui W, Jia X. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer 2020;19:41. [PMID: 32103760 DOI: 10.1186/s12943-020-01165-x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 44] [Article Influence: 17.0] [Reference Citation Analysis]
114 Gleeson FC, Levy MJ, Jackson RA, Murphy SJ, Halling KC, Kipp BR, Graham RP, Zhang L. Endoscopic ultrasound may be used to deliver gene expression signatures using digital mRNA detection methods to immunophenotype pancreatic ductal adenocarcinoma to facilitate personalized immunotherapy. Pancreatology 2020;20:229-38. [DOI: 10.1016/j.pan.2019.12.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
115 Bullock K, Richmond A. Suppressing MDSC Recruitment to the Tumor Microenvironment by Antagonizing CXCR2 to Enhance the Efficacy of Immunotherapy. Cancers (Basel) 2021;13:6293. [PMID: 34944914 DOI: 10.3390/cancers13246293] [Reference Citation Analysis]
116 Metzger P, Kirchleitner SV, Kluge M, Koenig LM, Hörth C, Rambuscheck CA, Böhmer D, Ahlfeld J, Kobold S, Friedel CC, Endres S, Schnurr M, Duewell P. Immunostimulatory RNA leads to functional reprogramming of myeloid-derived suppressor cells in pancreatic cancer. J Immunother Cancer 2019;7:288. [PMID: 31694706 DOI: 10.1186/s40425-019-0778-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
117 Li Y, Wang J, Wang H, Zhang S, Wei Y, Liu S. The Interplay Between Inflammation and Stromal Components in Pancreatic Cancer. Front Immunol 2022;13:850093. [DOI: 10.3389/fimmu.2022.850093] [Reference Citation Analysis]
118 Kishimoto T, Fujimoto N, Ebara T, Omori T, Oguri T, Niimi A, Yokoyama T, Kato M, Usami I, Nishio M, Yoshikawa K, Tokuyama T, Tamura M, Yokoyama Y, Tsuboi K, Matsuo Y, Xu J, Takahashi S, Abdelgied M, Alexander WT, Alexander DB, Tsuda H. Serum levels of the chemokine CCL2 are elevated in malignant pleural mesothelioma patients. BMC Cancer 2019;19:1204. [PMID: 31823764 DOI: 10.1186/s12885-019-6419-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
119 Wattenberg MM, Reiss KA. Determinants of Homologous Recombination Deficiency in Pancreatic Cancer. Cancers (Basel) 2021;13:4716. [PMID: 34572943 DOI: 10.3390/cancers13184716] [Reference Citation Analysis]
120 Mehrabi M, Amini F, Mehrabi S. Kill and Clearance in HCC: An Approach Based on NK Cells and Macrophages. Front Oncol 2021;11:693076. [PMID: 34557407 DOI: 10.3389/fonc.2021.693076] [Reference Citation Analysis]
121 Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, Hughes CCW, Fields RC, George SC. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev 2021;175:113798. [PMID: 34015419 DOI: 10.1016/j.addr.2021.05.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
122 Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020;8:351. [PMID: 32509781 DOI: 10.3389/fcell.2020.00351] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
123 Susek KH, Karvouni M, Alici E, Lundqvist A. The Role of CXC Chemokine Receptors 1-4 on Immune Cells in the Tumor Microenvironment. Front Immunol. 2018;9:2159. [PMID: 30319622 DOI: 10.3389/fimmu.2018.02159] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 19.5] [Reference Citation Analysis]
124 Sliker BH, Campbell PM. Fibroblasts Influence the Efficacy, Resistance, and Future Use of Vaccines and Immunotherapy in Cancer Treatment. Vaccines (Basel) 2021;9:634. [PMID: 34200702 DOI: 10.3390/vaccines9060634] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
125 Li M, Li S, Zhou H, Tang X, Wu Y, Jiang W, Tian Z, Zhou X, Yang X, Wang Y. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat Commun 2020;11:1126. [PMID: 32111847 DOI: 10.1038/s41467-020-14963-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 18.5] [Reference Citation Analysis]
126 DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 2019;19:369-82. [PMID: 30718830 DOI: 10.1038/s41577-019-0127-6] [Cited by in Crossref: 375] [Cited by in F6Publishing: 389] [Article Influence: 187.5] [Reference Citation Analysis]
127 Pratt HG, Steinberger KJ, Mihalik NE, Ott S, Whalley T, Szomolay B, Boone BA, Eubank TD. Macrophage and Neutrophil Interactions in the Pancreatic Tumor Microenvironment Drive the Pathogenesis of Pancreatic Cancer. Cancers (Basel) 2021;14:194. [PMID: 35008355 DOI: 10.3390/cancers14010194] [Reference Citation Analysis]
128 Zhang Y, Chandra V, Riquelme Sanchez E, Dutta P, Quesada PR, Rakoski A, Zoltan M, Arora N, Baydogan S, Horne W, Burks J, Xu H, Hussain P, Wang H, Gupta S, Maitra A, Bailey JM, Moghaddam SJ, Banerjee S, Sahin I, Bhattacharya P, McAllister F. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer.J Exp Med. 2020;217:e20190354. [PMID: 32860704 DOI: 10.1084/jem.20190354] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 27.0] [Reference Citation Analysis]
129 Do TT, Yeh CC, Wu GW, Hsu CC, Chang HC, Chen HC. TRIM37 Promotes Pancreatic Cancer Progression through Modulation of Cell Growth, Migration, Invasion, and Tumor Immune Microenvironment. Int J Mol Sci 2022;23:1176. [PMID: 35163097 DOI: 10.3390/ijms23031176] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Höpken UE, Rehm A. Targeting the Tumor Microenvironment of Leukemia and Lymphoma. Trends in Cancer 2019;5:351-64. [DOI: 10.1016/j.trecan.2019.05.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
131 Russo M, Nastasi C. Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Front Oncol 2022;12:871513. [DOI: 10.3389/fonc.2022.871513] [Reference Citation Analysis]
132 Mollica Poeta V, Massara M, Capucetti A, Bonecchi R. Chemokines and Chemokine Receptors: New Targets for Cancer Immunotherapy. Front Immunol. 2019;10:379. [PMID: 30894861 DOI: 10.3389/fimmu.2019.00379] [Cited by in Crossref: 130] [Cited by in F6Publishing: 126] [Article Influence: 43.3] [Reference Citation Analysis]
133 Gumberger P, Bjornsson B, Sandström P, Bojmar L, Zambirinis CP. The Liver Pre-Metastatic Niche in Pancreatic Cancer: A Potential Opportunity for Intervention. Cancers (Basel) 2022;14:3028. [PMID: 35740692 DOI: 10.3390/cancers14123028] [Reference Citation Analysis]
134 Jain A, Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities. World J Gastroenterol 2021; 27(39): 6527-6550 [PMID: 34754151 DOI: 10.3748/wjg.v27.i39.6527] [Reference Citation Analysis]
135 Xiong J, Wang H, Wang Q. Suppressive Myeloid Cells Shape the Tumor Immune Microenvironment. Adv Biol (Weinh) 2021;5:e1900311. [PMID: 33729699 DOI: 10.1002/adbi.201900311] [Reference Citation Analysis]
136 Robatel S, Schenk M. Current Limitations and Novel Perspectives in Pancreatic Cancer Treatment. Cancers 2022;14:985. [DOI: 10.3390/cancers14040985] [Reference Citation Analysis]
137 Tie Y, Tang F, Wei YQ, Wei XW. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol 2022;15:61. [PMID: 35585567 DOI: 10.1186/s13045-022-01282-8] [Reference Citation Analysis]
138 Balachandran VP, Beatty GL, Dougan SK. Broadening the Impact of Immunotherapy to Pancreatic Cancer: Challenges and Opportunities. Gastroenterology 2019;156:2056-72. [PMID: 30660727 DOI: 10.1053/j.gastro.2018.12.038] [Cited by in Crossref: 95] [Cited by in F6Publishing: 95] [Article Influence: 31.7] [Reference Citation Analysis]
139 Ruffolo LI, Jackson KM, Kuhlers PC, Dale BS, Figueroa Guilliani NM, Ullman NA, Burchard PR, Qin SS, Juviler PG, Keilson JM, Morrison AB, Georger M, Jewell R, Calvi LM, Nywening TM, O'Dell MR, Hezel AF, De Las Casas L, Lesinski GB, Yeh JJ, Hernandez-Alejandro R, Belt BA, Linehan DC. GM-CSF drives myelopoiesis, recruitment and polarisation of tumour-associated macrophages in cholangiocarcinoma and systemic blockade facilitates antitumour immunity. Gut 2022;71:1386-98. [PMID: 34413131 DOI: 10.1136/gutjnl-2021-324109] [Reference Citation Analysis]
140 Miyabayashi K, Nakagawa H, Koike K. Molecular and Phenotypic Profiling for Precision Medicine in Pancreatic Cancer: Current Advances and Future Perspectives. Front Oncol 2021;11:682872. [PMID: 34249730 DOI: 10.3389/fonc.2021.682872] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
141 Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther 2021;6:127. [PMID: 33767177 DOI: 10.1038/s41392-021-00506-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
142 Salvagno C, Ciampricotti M, Tuit S, Hau CS, van Weverwijk A, Coffelt SB, Kersten K, Vrijland K, Kos K, Ulas T, Song JY, Ooi CH, Rüttinger D, Cassier PA, Jonkers J, Schultze JL, Ries CH, de Visser KE. Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat Cell Biol 2019;21:511-21. [PMID: 30886344 DOI: 10.1038/s41556-019-0298-1] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 19.3] [Reference Citation Analysis]
143 Huber M, Brehm CU, Gress TM, Buchholz M, Alashkar Alhamwe B, von Strandmann EP, Slater EP, Bartsch JW, Bauer C, Lauth M. The Immune Microenvironment in Pancreatic Cancer. Int J Mol Sci 2020;21:E7307. [PMID: 33022971 DOI: 10.3390/ijms21197307] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
144 Zhou K, Cheng T, Zhan J, Peng X, Zhang Y, Wen J, Chen X, Ying M. Targeting tumor-associated macrophages in the tumor microenvironment. Oncol Lett 2020;20:234. [PMID: 32968456 DOI: 10.3892/ol.2020.12097] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
145 Michl P, Krug S. Overcoming immune evasion in pancreatic cancer: the combination matters. Gut 2018;67:997-9. [PMID: 29217750 DOI: 10.1136/gutjnl-2017-315443] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
146 Roehle K, Qiang L, Ventre KS, Heid D, Ali LR, Lenehan P, Heckler M, Crowley SJ, Stump CT, Ro G, Godicelj A, Bhuiyan AM, Yang A, Quiles Del Rey M, Biary T, Luoma AM, Bruck PT, Tegethoff JF, Nopper SL, Li J, Byrne KT, Pelletier M, Wucherpfennig KW, Stanger BZ, Akin JJ, Mancias JD, Agudo J, Dougan M, Dougan SK. cIAP1/2 antagonism eliminates MHC class I-negative tumors through T cell-dependent reprogramming of mononuclear phagocytes. Sci Transl Med 2021;13:eabf5058. [PMID: 34011631 DOI: 10.1126/scitranslmed.abf5058] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
147 Batista S, Gregório AC, Hanada Otake A, Couto N, Costa-Silva B. The Gastrointestinal Tumor Microenvironment: An Updated Biological and Clinical Perspective. J Oncol 2019;2019:6240505. [PMID: 31885581 DOI: 10.1155/2019/6240505] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
148 Laplagne C, Domagala M, Le Naour A, Quemerais C, Hamel D, Fournié JJ, Couderc B, Bousquet C, Ferrand A, Poupot M. Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression. Int J Mol Sci 2019;20:E4719. [PMID: 31547627 DOI: 10.3390/ijms20194719] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
149 Lu LC, Chang CJ, Hsu CH. Targeting myeloid-derived suppressor cells in the treatment of hepatocellular carcinoma: current state and future perspectives. J Hepatocell Carcinoma. 2019;6:71-84. [PMID: 31123667 DOI: 10.2147/jhc.s159693] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
150 Hussain S, Peng B, Cherian M, Song JW, Ahirwar DK, Ganju RK. The Roles of Stroma-Derived Chemokine in Different Stages of Cancer Metastases. Front Immunol 2020;11:598532. [PMID: 33414786 DOI: 10.3389/fimmu.2020.598532] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
151 Bai RL, Wang NY, Zhao LL, Zhang YF, Cui JW. Diverse and precision therapies open new horizons for patients with advanced pancreatic ductal adenocarcinoma. Hepatobiliary Pancreat Dis Int 2021:S1499-3872(21)00169-7. [PMID: 34538570 DOI: 10.1016/j.hbpd.2021.08.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
152 Xu M, Wang Y, Xia R, Wei Y, Wei X. Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Prolif 2021;54:e13115. [PMID: 34464477 DOI: 10.1111/cpr.13115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Yumimoto K, Sugiyama S, Mimori K, Nakayama KI. Potentials of C-C motif chemokine 2-C-C chemokine receptor type 2 blockers including propagermanium as anticancer agents. Cancer Sci 2019;110:2090-9. [PMID: 31111571 DOI: 10.1111/cas.14075] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
154 Shahnazari M, Samadi P, Pourjafar M, Jalali A. Cell-based immunotherapy approaches for colorectal cancer: main achievements and challenges. Future Oncol 2021;17:3253-70. [PMID: 34156258 DOI: 10.2217/fon-2020-1218] [Reference Citation Analysis]
155 Awad RM, De Vlaeminck Y, Maebe J, Goyvaerts C, Breckpot K. Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression. Front Immunol 2018;9:1977. [PMID: 30233579 DOI: 10.3389/fimmu.2018.01977] [Cited by in Crossref: 64] [Cited by in F6Publishing: 62] [Article Influence: 16.0] [Reference Citation Analysis]
156 Wong W, Alouani E, Wei A, Ryu YK, Chabot JA, Manji GA. Future of immunotherapy in pancreas cancer and the trials, tribulations and successes thus far. Semin Oncol 2021:S0093-7754(21)00013-0. [PMID: 33965249 DOI: 10.1053/j.seminoncol.2021.02.007] [Reference Citation Analysis]
157 Chang RB, Beatty GL. The interplay between innate and adaptive immunity in cancer shapes the productivity of cancer immunosurveillance. J Leukoc Biol. 2020;108:363-376. [PMID: 32272502 DOI: 10.1002/jlb.3mir0320-475r] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
158 Hegde S. Pancreatic Cancer Immuno-oncology in the Era of Precision Medicine. Indian J Surg Oncol 2021;12:118-27. [PMID: 33994737 DOI: 10.1007/s13193-020-01192-6] [Reference Citation Analysis]
159 Segal BH, Fridlender Z. Editorial: Neutrophils in Cancer. Front Immunol 2022;13:862257. [DOI: 10.3389/fimmu.2022.862257] [Reference Citation Analysis]
160 Li KY, Yuan JL, Trafton D, Wang JX, Niu N, Yuan CH, Liu XB, Zheng L. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis Transl Med 2020;6:6-17. [PMID: 32226930 DOI: 10.1016/j.cdtm.2020.01.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
161 Hosein AN, Dougan SK, Aguirre AJ, Maitra A. Translational advances in pancreatic ductal adenocarcinoma therapy. Nat Cancer 2022;3:272-86. [PMID: 35352061 DOI: 10.1038/s43018-022-00349-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
162 Crawford HC, Pasca di Magliano M, Banerjee S. Signaling Networks That Control Cellular Plasticity in Pancreatic Tumorigenesis, Progression, and Metastasis. Gastroenterology. 2019;156:2073-2084. [PMID: 30716326 DOI: 10.1053/j.gastro.2018.12.042] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
163 DeNardo DG, Galkin A, Dupont J, Zhou L, Bendell J. GB1275, a first-in-class CD11b modulator: rationale for immunotherapeutic combinations in solid tumors. J Immunother Cancer 2021;9:e003005. [PMID: 34452928 DOI: 10.1136/jitc-2021-003005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
164 Seliger B, Massa C. Immune Therapy Resistance and Immune Escape of Tumors. Cancers (Basel) 2021;13:551. [PMID: 33535559 DOI: 10.3390/cancers13030551] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Kaltenmeier C, Simmons RL, Tohme S, Yazdani HO. Neutrophil Extracellular Traps (NETs) in Cancer Metastasis. Cancers (Basel) 2021;13:6131. [PMID: 34885240 DOI: 10.3390/cancers13236131] [Reference Citation Analysis]
166 Jahchan NS, Mujal AM, Pollack JL, Binnewies M, Sriram V, Reyno L, Krummel MF. Tuning the Tumor Myeloid Microenvironment to Fight Cancer. Front Immunol 2019;10:1611. [PMID: 31402908 DOI: 10.3389/fimmu.2019.01611] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 13.3] [Reference Citation Analysis]
167 Beatty GL, Werba G, Lyssiotis CA, Simeone DM. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev 2021;35:940-62. [PMID: 34117095 DOI: 10.1101/gad.348523.121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
168 Mengos AE, Gastineau DA, Gustafson MP. The CD14+HLA-DRlo/neg Monocyte: An Immunosuppressive Phenotype That Restrains Responses to Cancer Immunotherapy. Front Immunol 2019;10:1147. [PMID: 31191529 DOI: 10.3389/fimmu.2019.01147] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 14.0] [Reference Citation Analysis]
169 Gorchs L, Kaipe H. Interactions between Cancer-Associated Fibroblasts and T Cells in the Pancreatic Tumor Microenvironment and the Role of Chemokines. Cancers (Basel) 2021;13:2995. [PMID: 34203869 DOI: 10.3390/cancers13122995] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
170 Cattolico C, Bailey P, Barry ST. Modulation of Type I Interferon Responses to Influence Tumor-Immune Cross Talk in PDAC. Front Cell Dev Biol 2022;10:816517. [PMID: 35273962 DOI: 10.3389/fcell.2022.816517] [Reference Citation Analysis]
171 Vonderheide RH, Bear AS. Tumor-Derived Myeloid Cell Chemoattractants and T Cell Exclusion in Pancreatic Cancer. Front Immunol 2020;11:605619. [PMID: 33304355 DOI: 10.3389/fimmu.2020.605619] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
172 Ohara Y, Valenzuela P, Hussain SP. The interactive role of inflammatory mediators and metabolic reprogramming in pancreatic cancer. Trends Cancer 2022:S2405-8033(22)00070-X. [PMID: 35525794 DOI: 10.1016/j.trecan.2022.03.004] [Reference Citation Analysis]
173 Vilgelm AE, Richmond A. Chemokines Modulate Immune Surveillance in Tumorigenesis, Metastasis, and Response to Immunotherapy. Front Immunol 2019;10:333. [PMID: 30873179 DOI: 10.3389/fimmu.2019.00333] [Cited by in Crossref: 77] [Cited by in F6Publishing: 85] [Article Influence: 25.7] [Reference Citation Analysis]
174 Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2020;11:586599. [PMID: 33841132 DOI: 10.3389/fphar.2020.586599] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
175 Burfeind KG, Zhu X, Norgard MA, Levasseur PR, Huisman C, Buenafe AC, Olson B, Michaelis KA, Torres ER, Jeng S, McWeeney S, Raber J, Marks DL. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. Elife 2020;9:e54095. [PMID: 32391790 DOI: 10.7554/eLife.54095] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
176 Siolas D, Vucic E, Kurz E, Hajdu C, Bar-Sagi D. Gain-of-function p53R172H mutation drives accumulation of neutrophils in pancreatic tumors, promoting resistance to immunotherapy. Cell Rep 2021;36:109578. [PMID: 34433022 DOI: 10.1016/j.celrep.2021.109578] [Reference Citation Analysis]
177 Dang MT, Gonzalez MV, Gaonkar KS, Rathi KS, Young P, Arif S, Zhai L, Alam Z, Devalaraja S, To TKJ, Folkert IW, Raman P, Rokita JL, Martinez D, Taroni JN, Shapiro JA, Greene CS, Savonen C, Mafra F, Hakonarson H, Curran T, Haldar M. Macrophages in SHH subgroup medulloblastoma display dynamic heterogeneity that varies with treatment modality. Cell Rep 2021;34:108917. [PMID: 33789113 DOI: 10.1016/j.celrep.2021.108917] [Reference Citation Analysis]
178 Panni RZ, Herndon JM, Zuo C, Hegde S, Hogg GD, Knolhoff BL, Breden MA, Li X, Krisnawan VE, Khan SQ, Schwarz JK, Rogers BE, Fields RC, Hawkins WG, Gupta V, DeNardo DG. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci Transl Med 2019;11:eaau9240. [PMID: 31270275 DOI: 10.1126/scitranslmed.aau9240] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 28.0] [Reference Citation Analysis]
179 Innamarato P, Pilon-Thomas S. Reactive myelopoiesis and the onset of myeloid-mediated immune suppression: Implications for adoptive cell therapy. Cell Immunol 2021;361:104277. [PMID: 33476931 DOI: 10.1016/j.cellimm.2020.104277] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
180 Anderson EM, Thomassian S, Gong J, Hendifar A, Osipov A. Advances in Pancreatic Ductal Adenocarcinoma Treatment. Cancers (Basel) 2021;13:5510. [PMID: 34771675 DOI: 10.3390/cancers13215510] [Reference Citation Analysis]