BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Matteoli G, Gomez-Pinilla PJ, Nemethova A, Di Giovangiulio M, Cailotto C, van Bree SH, Michel K, Tracey KJ, Schemann M, Boesmans W. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut. 2014;63:938-948. [PMID: 23929694 DOI: 10.1136/gutjnl-2013-304676] [Cited by in Crossref: 204] [Cited by in F6Publishing: 211] [Article Influence: 25.5] [Reference Citation Analysis]
Number Citing Articles
1 Di Giovangiulio M, Bosmans G, Meroni E, Stakenborg N, Florens M, Farro G, Gomez-Pinilla PJ, Matteoli G, Boeckxstaens GE. Vagotomy affects the development of oral tolerance and increases susceptibility to develop colitis independently of the alpha-7 nicotinic receptor. Mol Med 2016;22:464-76. [PMID: 27341335 DOI: 10.2119/molmed.2016.00062] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
2 Levine YA, Faltys M, Chernoff D. Harnessing the Inflammatory Reflex for the Treatment of Inflammation-Mediated Diseases. Cold Spring Harb Perspect Med 2020;10:a034330. [PMID: 30833463 DOI: 10.1101/cshperspect.a034330] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
3 Benarroch EE. Autonomic nervous system and neuroimmune interactions: New insights and clinical implications. Neurology 2019;92:377-85. [DOI: 10.1212/wnl.0000000000006942] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
4 Brock C, Brock B, Aziz Q, Møller HJ, Pfeiffer Jensen M, Drewes AM, Farmer AD. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha. Neurogastroenterol Motil 2017;29. [PMID: 27957782 DOI: 10.1111/nmo.12999] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 6.6] [Reference Citation Analysis]
5 Bosmans G, Appeltans I, Stakenborg N, Gomez-Pinilla PJ, Florens MV, Aguilera-Lizarraga J, Matteoli G, Boeckxstaens GE. Vagus nerve stimulation dampens intestinal inflammation in a murine model of experimental food allergy. Allergy 2019;74:1748-59. [PMID: 30897213 DOI: 10.1111/all.13790] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
6 Santisteban MM, Kim S, Pepine CJ, Raizada MK. Brain-Gut-Bone Marrow Axis: Implications for Hypertension and Related Therapeutics. Circ Res 2016;118:1327-36. [PMID: 27081113 DOI: 10.1161/CIRCRESAHA.116.307709] [Cited by in Crossref: 58] [Cited by in F6Publishing: 39] [Article Influence: 11.6] [Reference Citation Analysis]
7 Tanaka S, Abe C, Abbott SBG, Zheng S, Yamaoka Y, Lipsey JE, Skrypnyk NI, Yao J, Inoue T, Nash WT, Stornetta DS, Rosin DL, Stornetta RL, Guyenet PG, Okusa MD. Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc Natl Acad Sci U S A 2021;118:e2021758118. [PMID: 33737395 DOI: 10.1073/pnas.2021758118] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
8 Assas BM, Miyan JA, Pennock JL. Cross-talk between neural and immune receptors provides a potential mechanism of homeostatic regulation in the gut mucosa. Mucosal Immunol 2014;7:1283-9. [PMID: 25183366 DOI: 10.1038/mi.2014.80] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
9 Meroni E, Stakenborg N, Gomez-Pinilla PJ, Stakenborg M, Aguilera-Lizarraga J, Florens M, Delfini M, de Simone V, De Hertogh G, Goverse G, Matteoli G, Boeckxstaens GE. Vagus Nerve Stimulation Promotes Epithelial Proliferation and Controls Colon Monocyte Infiltration During DSS-Induced Colitis. Front Med (Lausanne) 2021;8:694268. [PMID: 34307422 DOI: 10.3389/fmed.2021.694268] [Reference Citation Analysis]
10 Southwell BR. Electro‐Neuromodulation for Colonic Disorders—Review of Meta‐Analyses, Systematic Reviews, and RCTs. Neuromodulation: Technology at the Neural Interface 2020;23:1061-81. [DOI: 10.1111/ner.13099] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
11 Dudi-Venkata NN, Kroon HM, Bedrikovetski S, Traeger L, Lewis M, Lawrence MJ, Hunter RA, Moore JW, Thomas ML, Sammour T. PyRICo-Pilot: pyridostigmine to reduce the duration of postoperative ileus after colorectal surgery - a phase II study. Colorectal Dis 2021;23:2154-60. [PMID: 34021689 DOI: 10.1111/codi.15748] [Reference Citation Analysis]
12 Carnevale L, Perrotta M, Lembo G. A Focused Review of Neural Recording and Stimulation Techniques With Immune-Modulatory Targets. Front Immunol 2021;12:689344. [PMID: 34646261 DOI: 10.3389/fimmu.2021.689344] [Reference Citation Analysis]
13 Mogilevski T, Burgell R, Aziz Q, Gibson PR. Review article: the role of the autonomic nervous system in the pathogenesis and therapy of IBD. Aliment Pharmacol Ther 2019;50:720-37. [DOI: 10.1111/apt.15433] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
14 Chiaranunt P, Tai SL, Ngai L, Mortha A. Beyond Immunity: Underappreciated Functions of Intestinal Macrophages. Front Immunol 2021;12:749708. [PMID: 34650568 DOI: 10.3389/fimmu.2021.749708] [Reference Citation Analysis]
15 Inoue T, Abe C, Kohro T, Tanaka S, Huang L, Yao J, Zheng S, Ye H, Inagi R, Stornetta RL, Rosin DL, Nangaku M, Wada Y, Okusa MD. Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney. Kidney Int 2019;95:563-76. [PMID: 30670317 DOI: 10.1016/j.kint.2018.09.020] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
16 Maldonado-Ruiz R, Montalvo-Martínez L, Fuentes-Mera L, Camacho A. Microglia activation due to obesity programs metabolic failure leading to type two diabetes. Nutr Diabetes 2017;7:e254. [PMID: 28319103 DOI: 10.1038/nutd.2017.10] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
17 Cakir M, Ahiskalioglu A, Karadeniz E, Aydin MD, Malcok UA, Soyalp C, Calikoglu C, Sengul G, Sipal S, Yayik AM. A new described mechanisms of intestinal glandular atrophy induced by vagal nerve/Auerbach network degeneration following subarachnoid hemorrhage: The first experimental study. J Clin Neurosci 2019;59:305-9. [PMID: 30327219 DOI: 10.1016/j.jocn.2018.10.009] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Kulkarni S, Kurapati S, Bogunovic M. Neuro-innate immune interactions in gut mucosal immunity. Curr Opin Immunol 2021;68:64-71. [PMID: 33130386 DOI: 10.1016/j.coi.2020.09.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Munyaka P, Rabbi MF, Pavlov VA, Tracey KJ, Khafipour E, Ghia JE. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis. PLoS One. 2014;9:e109272. [PMID: 25295619 DOI: 10.1371/journal.pone.0109272] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 7.6] [Reference Citation Analysis]
20 Morishita K, Coimbra R, Langness S, Eliceiri BP, Costantini TW. Neuroenteric axis modulates the balance of regulatory T cells and T-helper 17 cells in the mesenteric lymph node following trauma/hemorrhagic shock. American Journal of Physiology-Gastrointestinal and Liver Physiology 2015;309:G202-8. [DOI: 10.1152/ajpgi.00097.2015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
21 Mastitskaya S, Thompson N, Holder D. Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease. Front Neurosci 2021;15:667036. [PMID: 33927594 DOI: 10.3389/fnins.2021.667036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
22 Shi Y, Li S, Zhang H, Zhu J, Che T, Yan B, Li J, Liu C. The effect of macrophage polarization on the expression of the oxytocin signalling system in enteric neurons. J Neuroinflammation 2021;18:261. [PMID: 34749758 DOI: 10.1186/s12974-021-02313-w] [Reference Citation Analysis]
23 Quadri M, Stokes C, Gulsevin A, Felts ACJ, Abboud KA, Papke RL, Horenstein NA. Sulfonium as a Surrogate for Ammonium: A New α7 Nicotinic Acetylcholine Receptor Partial Agonist with Desensitizing Activity. J Med Chem 2017;60:7928-34. [PMID: 28885019 DOI: 10.1021/acs.jmedchem.7b00875] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
24 Zubcevic J, Santisteban MM, Pitts T, Baekey DM, Perez PD, Bolser DC, Febo M, Raizada MK. Functional neural-bone marrow pathways: implications in hypertension and cardiovascular disease. Hypertension 2014;63:e129-39. [PMID: 24688127 DOI: 10.1161/HYPERTENSIONAHA.114.02440] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
25 Li DJ, Tong J, Zeng FY, Guo M, Li YH, Wang H, Wang P. Nicotinic ACh receptor α7 inhibits PDGF-induced migration of vascular smooth muscle cells by activating mitochondrial deacetylase sirtuin 3. Br J Pharmacol 2019;176:4388-401. [PMID: 30270436 DOI: 10.1111/bph.14506] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 6.7] [Reference Citation Analysis]
26 Rasmussen SE, Pfeiffer-Jensen M, Drewes AM, Farmer AD, Deleuran BW, Stengaard-Pedersen K, Brock B, Brock C. Vagal influences in rheumatoid arthritis. Scand J Rheumatol 2018;47:1-11. [PMID: 28766392 DOI: 10.1080/03009742.2017.1314001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
27 Lomax AE, Pradhananga S, Bertrand PP. Plasticity of neuroeffector transmission during bowel inflammation1. Am J Physiol Gastrointest Liver Physiol 2017;312:G165-70. [PMID: 28082285 DOI: 10.1152/ajpgi.00365.2016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
28 Lisowski ZM, Pirie RS, Blikslager AT, Lefebvre D, Hume DA, Hudson NPH. An update on equine post-operative ileus: Definitions, pathophysiology and management. Equine Vet J 2018;50:292-303. [DOI: 10.1111/evj.12801] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
29 Eberhardson M, Hedin CRH, Carlson M, Tarnawski L, Levine YA, Olofsson PS. Towards improved control of inflammatory bowel disease. Scand J Immunol 2019;89:e12745. [DOI: 10.1111/sji.12745] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
30 Fornai M, van den Wijngaard RM, Antonioli L, Pellegrini C, Blandizzi C, de Jonge WJ. Neuronal regulation of intestinal immune functions in health and disease. Neurogastroenterol Motil 2018;30:e13406. [PMID: 30058092 DOI: 10.1111/nmo.13406] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
31 Bosmans G, Shimizu Bassi G, Florens M, Gonzalez-Dominguez E, Matteoli G, Boeckxstaens GE. Cholinergic Modulation of Type 2 Immune Responses. Front Immunol 2017;8:1873. [PMID: 29312347 DOI: 10.3389/fimmu.2017.01873] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
32 Shea-donohue T, Urban JF. Neuroimmune Modulation of Gut Function. In: Greenwood-van Meerveld B, editor. Gastrointestinal Pharmacology. Cham: Springer International Publishing; 2017. pp. 247-67. [DOI: 10.1007/164_2016_109] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
33 Farro G, Stakenborg M, Gomez-Pinilla PJ, Labeeuw E, Goverse G, Di Giovangiulio M, Stakenborg N, Meroni E, D'Errico F, Elkrim Y, Laoui D, Lisowski ZM, Sauter KA, Hume DA, Van Ginderachter JA, Boeckxstaens GE, Matteoli G. CCR2-dependent monocyte-derived macrophages resolve inflammation and restore gut motility in postoperative ileus. Gut 2017;66:2098-109. [PMID: 28615302 DOI: 10.1136/gutjnl-2016-313144] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 9.5] [Reference Citation Analysis]
34 Huh JR, Veiga-fernandes H. Neuroimmune circuits in inter-organ communication. Nat Rev Immunol 2020;20:217-28. [DOI: 10.1038/s41577-019-0247-z] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 14.5] [Reference Citation Analysis]
35 Zhang L, Wu Z, Tong Z, Yao Q, Wang Z, Li W. Vagus Nerve Stimulation Decreases Pancreatitis Severity in Mice. Front Immunol 2020;11:595957. [PMID: 33519809 DOI: 10.3389/fimmu.2020.595957] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Thanou A, Stavrakis S, Dyer JW, Munroe ME, James JA, Merrill JT. Impact of heart rate variability, a marker for cardiac health, on lupus disease activity. Arthritis Res Ther 2016;18:197. [PMID: 27590046 DOI: 10.1186/s13075-016-1087-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
37 Ward CG, Eckenhoff RG. Neurocognitive Adverse Effects of Anesthesia in Adults and Children: Gaps in Knowledge. Drug Saf 2016;39:613-26. [PMID: 27098249 DOI: 10.1007/s40264-016-0415-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
38 Mukaetova-Ladinska EB, Kronenberg G, Raha-Chowdhury R. COVID-19 and neurocognitive disorders. Curr Opin Psychiatry 2021;34:149-56. [PMID: 33395101 DOI: 10.1097/YCO.0000000000000687] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 Schiller M, Ben-Shaanan TL, Rolls A. Neuronal regulation of immunity: why, how and where? Nat Rev Immunol 2021;21:20-36. [PMID: 32811994 DOI: 10.1038/s41577-020-0387-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
40 Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 2021;127:37-53. [PMID: 33894241 DOI: 10.1016/j.neubiorev.2021.04.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Costantini TW, Dang X, Coimbra R, Eliceiri BP, Baird A. CHRFAM7A, a human-specific and partially duplicated α7-nicotinic acetylcholine receptor gene with the potential to specify a human-specific inflammatory response to injury. J Leukoc Biol 2015;97:247-57. [PMID: 25473097 DOI: 10.1189/jlb.4RU0814-381R] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 4.9] [Reference Citation Analysis]
42 Falvey A, Metz CN, Tracey KJ, Pavlov VA. Peripheral nerve stimulation and immunity: the expanding opportunities for providing mechanistic insight and therapeutic intervention. Int Immunol 2021:dxab068. [PMID: 34498051 DOI: 10.1093/intimm/dxab068] [Reference Citation Analysis]
43 Hosic S, Lake W, Stas E, Koppes R, Breault DT, Murthy SK, Koppes AN. Cholinergic Activation of Primary Human Derived Intestinal Epithelium Does Not Ameliorate TNF-α Induced Injury. Cell Mol Bioeng 2020;13:487-505. [PMID: 33184579 DOI: 10.1007/s12195-020-00633-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Farro G, Gomez-pinilla PJ, Di Giovangiulio M, Stakenborg N, Auteri M, Thijs T, Depoortere I, Matteoli G, Boeckxstaens GE. Smooth muscle and neural dysfunction contribute to different phases of murine postoperative ileus. Neurogastroenterol Motil 2016;28:934-47. [DOI: 10.1111/nmo.12796] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
45 McLean LP, Smith A, Cheung L, Sun R, Grinchuk V, Vanuytsel T, Desai N, Urban JF, Zhao A, Raufman JP, Shea-Donohue T. Type 3 Muscarinic Receptors Contribute to Clearance of Citrobacter rodentium. Inflamm Bowel Dis. 2015;21:1860-1871. [PMID: 25985244 DOI: 10.1097/mib.0000000000000408] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
46 Cailotto C, Gomez-Pinilla PJ, Costes LM, van der Vliet J, Di Giovangiulio M, Némethova A, Matteoli G, Boeckxstaens GE. Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS One. 2014;9:e87785. [PMID: 24489965 DOI: 10.1371/journal.pone.0087785] [Cited by in Crossref: 63] [Cited by in F6Publishing: 63] [Article Influence: 9.0] [Reference Citation Analysis]
47 Chavan SS, Tracey KJ. Essential Neuroscience in Immunology. J Immunol 2017;198:3389-97. [PMID: 28416717 DOI: 10.4049/jimmunol.1601613] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 16.3] [Reference Citation Analysis]
48 Gomez-pinilla PJ, Binda MM, Lissens A, Di Giovangiulio M, van Bree SH, Nemethova A, Stakenborg N, Farro G, Bosmans G, Matteoli G, Deprest J, Boeckxstaens GE. Absence of intestinal inflammation and postoperative ileus in a mouse model of laparoscopic surgery. Neurogastroenterol Motil 2014;26:1238-47. [DOI: 10.1111/nmo.12376] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
49 Friedman SL, Quigley EM, Sharkey KA, Sung JJ, Whitcomb DC. The past 10 years of gastroenterology and hepatology-reflections and predictions. Nat Rev Gastroenterol Hepatol 2014;11:692-700. [PMID: 25291429 DOI: 10.1038/nrgastro.2014.167] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
50 Sharkey KA, Savidge TC. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci. 2014;181:94-106. [PMID: 24412639 DOI: 10.1016/j.autneu.2013.12.006] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
51 Mihara T, Otsubo W, Horiguchi K, Mikawa S, Kaji N, Iino S, Ozaki H, Hori M. The anti-inflammatory pathway regulated via nicotinic acetylcholine receptors in rat intestinal mesothelial cells. J Vet Med Sci 2017;79:1795-802. [PMID: 28931778 DOI: 10.1292/jvms.17-0304] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
52 Cervi AL, Lukewich MK, Lomax AE. Neural regulation of gastrointestinal inflammation: role of the sympathetic nervous system. Auton Neurosci 2014;182:83-8. [PMID: 24412637 DOI: 10.1016/j.autneu.2013.12.003] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 4.5] [Reference Citation Analysis]
53 Endo M, Hori M, Ozaki H, Oikawa T, Odaguchi H, Hanawa T. Possible anti-inflammatory role of Zingiberis processum rhizoma, one component of the Kampo formula daikenchuto, against neutrophil infiltration through muscarinic acetylcholine receptor activation. J Pharmacol Sci 2018;137:379-86. [PMID: 30145033 DOI: 10.1016/j.jphs.2018.08.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Stakenborg N, Viola MF, Boeckxstaens GE. Intestinal neuro-immune interactions: focus on macrophages, mast cells and innate lymphoid cells. Curr Opin Neurobiol 2020;62:68-75. [PMID: 31862627 DOI: 10.1016/j.conb.2019.11.020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
55 Morales JY, Young-Stubbs CM, Shimoura CG, Kem WR, Uteshev VV, Mathis KW. Systemic Administration of α7-Nicotinic Acetylcholine Receptor Ligands Does Not Improve Renal Injury or Behavior in Mice With Advanced Systemic Lupus Erythematosus. Front Med (Lausanne) 2021;8:642960. [PMID: 33928103 DOI: 10.3389/fmed.2021.642960] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Sharkey KA, Savidge TC. Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci. 2014;182:70-82. [PMID: 24674836 DOI: 10.1016/j.autneu.2014.03.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
57 Lopes F, Graepel R, Reyes JL, Wang A, Petri B, McDougall JJ, Sharkey KA, McKay DM. Involvement of Mast Cells in α7 Nicotinic Receptor Agonist Exacerbation of Freund's Complete Adjuvant-Induced Monoarthritis in Mice. Arthritis Rheumatol 2016;68:542-52. [PMID: 26314943 DOI: 10.1002/art.39411] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
58 Viola MF, Boeckxstaens G. Niche-specific functional heterogeneity of intestinal resident macrophages. Gut 2021;70:1383-95. [PMID: 33384336 DOI: 10.1136/gutjnl-2020-323121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Verheijden S, Boeckxstaens GE. Neuroimmune interaction and the regulation of intestinal immune homeostasis. Am J Physiol Gastrointest Liver Physiol 2018;314:G75-80. [PMID: 28912251 DOI: 10.1152/ajpgi.00425.2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
60 Boesmans W, Hao MM, Vanden Berghe P. Optical Tools to Investigate Cellular Activity in the Intestinal Wall. J Neurogastroenterol Motil 2015;21:337-51. [PMID: 26130630 DOI: 10.5056/jnm15096] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
61 Di Giovangiulio M, Verheijden S, Bosmans G, Stakenborg N, Boeckxstaens GE, Matteoli G. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease. Front Immunol. 2015;6:590. [PMID: 26635804 DOI: 10.3389/fimmu.2015.00590] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
62 Vieira C, Ferreirinha F, Magalhães-Cardoso MT, Silva I, Marques P, Correia-de-Sá P. Post-inflammatory Ileitis Induces Non-neuronal Purinergic Signaling Adjustments of Cholinergic Neurotransmission in the Myenteric Plexus. Front Pharmacol 2017;8:811. [PMID: 29167643 DOI: 10.3389/fphar.2017.00811] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
63 Kanashiro A, Shimizu Bassi G, de Queiróz Cunha F, Ulloa L. From neuroimunomodulation to bioelectronic treatment of rheumatoid arthritis. Bioelectron Med (Lond) 2018;1:151-65. [PMID: 30740246 DOI: 10.2217/bem-2018-0001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
64 Yang NN, Yang JW, Ye Y, Huang J, Wang L, Wang Y, Su XT, Lin Y, Yu FT, Ma SM, Qi LY, Lin LL, Wang LQ, Shi GX, Li HP, Liu CZ. Electroacupuncture ameliorates intestinal inflammation by activating α7nAChR-mediated JAK2/STAT3 signaling pathway in postoperative ileus. Theranostics 2021;11:4078-89. [PMID: 33754049 DOI: 10.7150/thno.52574] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
65 Stakenborg N, Boeckxstaens GE. Bioelectronics in the brain-gut axis: focus on inflammatory bowel disease (IBD). Int Immunol 2021;33:337-48. [PMID: 33788920 DOI: 10.1093/intimm/dxab014] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Chu C, Artis D, Chiu IM. Neuro-immune Interactions in the Tissues. Immunity 2020;52:464-74. [DOI: 10.1016/j.immuni.2020.02.017] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 33.0] [Reference Citation Analysis]
67 Camilleri M, Atieh J. New Developments in Prokinetic Therapy for Gastric Motility Disorders. Front Pharmacol 2021;12:711500. [PMID: 34504426 DOI: 10.3389/fphar.2021.711500] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Meroni E, Stakenborg N, Viola MF, Boeckxstaens GE. Intestinal macrophages and their interaction with the enteric nervous system in health and inflammatory bowel disease. Acta Physiol (Oxf) 2019;225:e13163. [PMID: 29998613 DOI: 10.1111/apha.13163] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
69 Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther 2017;179:1-16. [PMID: 28529069 DOI: 10.1016/j.pharmthera.2017.05.002] [Cited by in Crossref: 101] [Cited by in F6Publishing: 97] [Article Influence: 25.3] [Reference Citation Analysis]
70 Pereira MR, Leite PEC. The Involvement of Parasympathetic and Sympathetic Nerve in the Inflammatory Reflex: VAGUS AND SPLENIC NERVE ON INFLAMMATION. J Cell Physiol 2016;231:1862-9. [DOI: 10.1002/jcp.25307] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 9.6] [Reference Citation Analysis]
71 Chapman SJ, Naylor M, Czoski Murray CJ, Tolan D, Stocken DD, Jayne DG. Non-invasive, vagus nerve stimulation to reduce ileus after colorectal surgery: protocol for a feasibility trial with nested mechanistic studies. BMJ Open 2021;11:e046313. [PMID: 34290065 DOI: 10.1136/bmjopen-2020-046313] [Reference Citation Analysis]
72 Sinniger V, Pellissier S, Fauvelle F, Trocmé C, Hoffmann D, Vercueil L, Cracowski J, David O, Bonaz B. A 12‐month pilot study outcomes of vagus nerve stimulation in Crohn's disease. Neurogastroenterology & Motility 2020;32. [DOI: 10.1111/nmo.13911] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
73 Dhawan S, Hiemstra IH, Verseijden C, Hilbers FW, Te Velde AA, Willemsen LE, Stap J, den Haan JM, de Jonge WJ. Cholinergic receptor activation on epithelia protects against cytokine-induced barrier dysfunction. Acta Physiol (Oxf). 2015;213:846-859. [PMID: 25683465 DOI: 10.1111/apha.12469] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
74 Berthoud HR, Neuhuber WL. Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann N Y Acad Sci 2019;1454:42-55. [PMID: 31268181 DOI: 10.1111/nyas.14182] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
75 Tanaka S, Okusa MD. Crosstalk between the nervous system and the kidney. Kidney Int 2020;97:466-76. [PMID: 32001065 DOI: 10.1016/j.kint.2019.10.032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
76 Gundersen V. Parkinson's Disease: Can Targeting Inflammation Be an Effective Neuroprotective Strategy? Front Neurosci 2020;14:580311. [PMID: 33716638 DOI: 10.3389/fnins.2020.580311] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Ruffle JK, Hyare H, Howard MA, Farmer AD, Apkarian AV, Williams SCR, Aziz Q, Nachev P. The autonomic brain: Multi-dimensional generative hierarchical modelling of the autonomic connectome. Cortex 2021;143:164-79. [PMID: 34438298 DOI: 10.1016/j.cortex.2021.06.012] [Reference Citation Analysis]
78 Lyte JM. Eating for 3.8 × 1013: Examining the Impact of Diet and Nutrition on the Microbiota-Gut-Brain Axis Through the Lens of Microbial Endocrinology. Front Endocrinol (Lausanne) 2018;9:796. [PMID: 30761092 DOI: 10.3389/fendo.2018.00796] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
79 Karmali S, Jenkins N, Sciusco A, John J, Haddad F, Ackland G. Randomized controlled trial of vagal modulation by sham feeding in elective non-gastrointestinal (orthopaedic) surgery. British Journal of Anaesthesia 2015;115:727-35. [DOI: 10.1093/bja/aev283] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
80 Levine YA, Koopman F, Faltys M, Zitnik R, Tak P. Neurostimulation of the Cholinergic Antiinflammatory Pathway in Rheumatoid Arthritis and Inflammatory Bowel Disease. Bioelectron Med 2014;1:34-43. [DOI: 10.15424/bioelectronmed.2014.00008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
81 Stavely R, Abalo R, Nurgali K. Targeting Enteric Neurons and Plexitis for the Management of Inflammatory Bowel Disease. Curr Drug Targets 2020;21:1428-39. [PMID: 32416686 DOI: 10.2174/1389450121666200516173242] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
82 Ramirez V, Swain S, Murray K, Reardon C. Neural Immune Communication in the Control of Host-Bacterial Pathogen Interactions in the Gastrointestinal Tract. Infect Immun 2020;88:e00928-19. [PMID: 32341116 DOI: 10.1128/IAI.00928-19] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
83 Yuan PQ, Taché Y. Abdominal surgery induced gastric ileus and activation of M1-like macrophages in the gastric myenteric plexus: prevention by central vagal activation in rats. Am J Physiol Gastrointest Liver Physiol 2017;313:G320-9. [PMID: 28684460 DOI: 10.1152/ajpgi.00121.2017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
84 Liu B, Wanders A, Wirdefeldt K, Sjölander A, Sachs MC, Eberhardson M, Ye W, Ekbom A, Olén O, Ludvigsson JF. Vagotomy and subsequent risk of inflammatory bowel disease: a nationwide register-based matched cohort study. Aliment Pharmacol Ther 2020;51:1022-30. [PMID: 32319125 DOI: 10.1111/apt.15715] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
85 Stakenborg N, Gomez-Pinilla PJ, Verlinden TJM, Wolthuis AM, D'Hoore A, Farré R, Herijgers P, Matteoli G, Boeckxstaens GE. Comparison between the cervical and abdominal vagus nerves in mice, pigs, and humans. Neurogastroenterol Motil 2020;32:e13889. [PMID: 32476229 DOI: 10.1111/nmo.13889] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
86 Endo M, Hori M, Mihara T, Ozaki H, Oikawa T, Odaguchi H, Hanawa T. Zingiberis Siccatum Rhizoma, the active component of the Kampo formula Daikenchuto, induces anti-inflammatory actions through α7 nicotinic acetylcholine receptor activation. Neurogastroenterol Motil 2017;29:e13139. [DOI: 10.1111/nmo.13139] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
87 Langness S, Kojima M, Coimbra R, Eliceiri BP, Costantini TW. Enteric glia cells are critical to limiting the intestinal inflammatory response after injury. Am J Physiol Gastrointest Liver Physiol 2017;312:G274-82. [PMID: 28082286 DOI: 10.1152/ajpgi.00371.2016] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
88 Shouman K, Benarroch EE. Peripheral neuroimmune interactions: selected review and some clinical implications. Clin Auton Res 2021;31:477-89. [PMID: 33641054 DOI: 10.1007/s10286-021-00787-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
89 Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J Intern Med. 2017;282:46-63. [PMID: 28421634 DOI: 10.1111/joim.12611] [Cited by in Crossref: 72] [Cited by in F6Publishing: 67] [Article Influence: 18.0] [Reference Citation Analysis]
90 Stakenborg N, Labeeuw E, Gomez-Pinilla PJ, De Schepper S, Aerts R, Goverse G, Farro G, Appeltans I, Meroni E, Stakenborg M, Viola MF, Gonzalez-Dominguez E, Bosmans G, Alpizar YA, Wolthuis A, D'Hoore A, Van Beek K, Verheijden S, Verhaegen M, Derua R, Waelkens E, Moretti M, Gotti C, Augustijns P, Talavera K, Vanden Berghe P, Matteoli G, Boeckxstaens GE. Preoperative administration of the 5-HT4 receptor agonist prucalopride reduces intestinal inflammation and shortens postoperative ileus via cholinergic enteric neurons. Gut 2019;68:1406-16. [PMID: 30472681 DOI: 10.1136/gutjnl-2018-317263] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
91 Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res 2018;11:203-13. [PMID: 29844694 DOI: 10.2147/JIR.S163248] [Cited by in Crossref: 147] [Cited by in F6Publishing: 66] [Article Influence: 49.0] [Reference Citation Analysis]
92 Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Šarolić A, Lechner S, Klonowski W, Varoneckas G, Széles JC. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci 2019;13:854. [PMID: 31447643 DOI: 10.3389/fnins.2019.00854] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 22.0] [Reference Citation Analysis]
93 Botha C, Farmer AD, Nilsson M, Brock C, Gavrila AD, Drewes AM, Knowles CH, Aziz Q. Preliminary report: modulation of parasympathetic nervous system tone influences oesophageal pain hypersensitivity. Gut 2015;64:611-7. [PMID: 24870622 DOI: 10.1136/gutjnl-2013-306698] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 6.6] [Reference Citation Analysis]
94 Zhang B, Xu F, Hu P, Zhang M, Tong K, Ma G, Xu Y, Zhu L, Chen JDZ. Needleless Transcutaneous Electrical Acustimulation: A Pilot Study Evaluating Improvement in Post-Operative Recovery. American Journal of Gastroenterology 2018;113:1026-35. [DOI: 10.1038/s41395-018-0156-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
95 Drewes AM, Brock C, Rasmussen SE, Møller HJ, Brock B, Deleuran BW, Farmer AD, Pfeiffer-Jensen M. Short-term transcutaneous non-invasive vagus nerve stimulation may reduce disease activity and pro-inflammatory cytokines in rheumatoid arthritis: results of a pilot study. Scand J Rheumatol 2021;50:20-7. [PMID: 33047630 DOI: 10.1080/03009742.2020.1764617] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
96 Hasegawa S, Inoue T, Inagi R. Neuroimmune interactions and kidney disease. Kidney Res Clin Pract 2019;38:282-94. [PMID: 31422643 DOI: 10.23876/j.krcp.19.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
97 Cheng J, Shen H, Chowdhury R, Abdi T, Selaru F, Chen JDZ. Potential of Electrical Neuromodulation for Inflammatory Bowel Disease. Inflammatory Bowel Diseases 2020;26:1119-30. [DOI: 10.1093/ibd/izz289] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
98 Robinson-Papp J, Nmashie A, Pedowitz E, George MC, Sharma S, Murray J, Benn EKT, Lawrence SA, Machac J, Heiba S, Kim-Schulze S, Navis A, Roland BC, Morgello S. The effect of pyridostigmine on small intestinal bacterial overgrowth (SIBO) and plasma inflammatory biomarkers in HIV-associated autonomic neuropathies. J Neurovirol 2019;25:551-9. [PMID: 31098925 DOI: 10.1007/s13365-019-00756-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
99 Fang JF, Fang JQ, Shao XM, Du JY, Liang Y, Wang W, Liu Z. Electroacupuncture treatment partly promotes the recovery time of postoperative ileus by activating the vagus nerve but not regulating local inflammation. Sci Rep. 2017;7:39801. [PMID: 28051128 DOI: 10.1038/srep39801] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
100 Mikkelsen HB, Huizinga JD, Larsen JO, Kirkeby S. Ionized calcium-binding adaptor molecule 1 positive macrophages and HO-1 up-regulation in intestinal muscularis resident macrophages. Anat Rec (Hoboken) 2017;300:1114-22. [PMID: 27860408 DOI: 10.1002/ar.23517] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
101 Cronin O, Molloy MG, Shanahan F. Exercise, fitness, and the gut. Curr Opin Gastroenterol 2016;32:67-73. [PMID: 26839963 DOI: 10.1097/MOG.0000000000000240] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
102 Mikami Y, Tsunoda J, Kiyohara H, Taniki N, Teratani T, Kanai T. Vagus nerve-mediated intestinal immune regulation: therapeutic implications for inflammatory bowel diseases. Int Immunol 2021:dxab039. [PMID: 34240133 DOI: 10.1093/intimm/dxab039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Zhang B, Zhu K, Hu P, Xu F, Zhu L, Chen JDZ. Needleless Transcutaneous Neuromodulation Accelerates Postoperative Recovery Mediated via Autonomic and Immuno‐Cytokine Mechanisms in Patients With Cholecystolithiasis. Neuromodulation: Technology at the Neural Interface 2018;22:546-54. [DOI: 10.1111/ner.12856] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
104 Marshall R, Taylor I, Lahr C, Abell TL, Espinoza I, Gupta NK, Gomez CR. Bioelectrical Stimulation for the Reduction of Inflammation in Inflammatory Bowel Disease. Clin Med Insights Gastroenterol 2015;8:55-9. [PMID: 26692766 DOI: 10.4137/CGast.S31779] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
105 Vanner S, Greenwood-Van Meerveld B, Mawe G, Shea-Donohue T, Verdu EF, Wood J, Grundy D. Fundamentals of Neurogastroenterology: Basic Science. Gastroenterology. 2016;150:1280-1291. [PMID: 27144618 DOI: 10.1053/j.gastro.2016.02.018] [Cited by in Crossref: 65] [Cited by in F6Publishing: 35] [Article Influence: 13.0] [Reference Citation Analysis]
106 Robinette ML, Colonna M. GI motility: microbiota and macrophages join forces. Cell 2014;158:239-40. [PMID: 25036623 DOI: 10.1016/j.cell.2014.06.040] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
107 Hoff DA, Brock C, Farmer AD, Dickman R, Ruffle JK, Shaker A, Drewes AM. Pharmacological and other treatment modalities for esophageal pain. Ann N Y Acad Sci 2016;1380:58-66. [PMID: 27442914 DOI: 10.1111/nyas.13151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
108 Olofsson PS, Levine YA, Caravaca A, Chavan SS, Pavlov VA, Faltys M, Tracey KJ. Single-Pulse and Unidirectional Electrical Activation of the Cervical Vagus Nerve Reduces Tumor Necrosis Factor in Endotoxemia. Bioelectron Med 2015;2:37-42. [DOI: 10.15424/bioelectronmed.2015.00006] [Cited by in Crossref: 45] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
109 Hajiasgharzadeh K, Baradaran B. Cholinergic Anti-Inflammatory Pathway and the Liver. Adv Pharm Bull 2017;7:507-13. [PMID: 29399541 DOI: 10.15171/apb.2017.063] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
110 De Schepper S, Stakenborg N, Matteoli G, Verheijden S, Boeckxstaens GE. Muscularis macrophages: Key players in intestinal homeostasis and disease. Cell Immunol 2018;330:142-50. [PMID: 29291892 DOI: 10.1016/j.cellimm.2017.12.009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
111 Bonaz B, Sinniger V, Pellissier S. Targeting the cholinergic anti-inflammatory pathway with vagus nerve stimulation in patients with Covid-19? Bioelectron Med 2020;6:15. [PMID: 32743022 DOI: 10.1186/s42234-020-00051-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
112 Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Invest 2021;131:143777. [PMID: 34128471 DOI: 10.1172/JCI143777] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
113 Becker L, Nguyen L, Gill J, Kulkarni S, Pasricha PJ, Habtezion A. Age-dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system. Gut 2018;67:827-36. [PMID: 28228489 DOI: 10.1136/gutjnl-2016-312940] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 10.5] [Reference Citation Analysis]
114 Foong JP, Hirst CS, Hao MM, McKeown SJ, Boesmans W, Young HM, Bornstein JC, Vanden Berghe P. Changes in Nicotinic Neurotransmission during Enteric Nervous System Development. J Neurosci. 2015;35:7106-7115. [PMID: 25948261 DOI: 10.1523/jneurosci.4175-14.2015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
115 Murakami H, Li S, Foreman R, Yin J, Hirai T, Chen JDZ. Ameliorating Effects of Electroacupuncture on Dysmotility, Inflammation, and Pain Mediated via the Autonomic Mechanism in a Rat Model of Postoperative Ileus. J Neurogastroenterol Motil 2019;25:286-99. [PMID: 30827069 DOI: 10.5056/jnm18094] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
116 Wu H, Li L, Su X. Vagus nerve through α7 nAChR modulates lung infection and inflammation: models, cells, and signals. Biomed Res Int 2014;2014:283525. [PMID: 25136575 DOI: 10.1155/2014/283525] [Cited by in Crossref: 18] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
117 Pohl CS, Lennon EM, Li Y, DeWilde MP, Moeser AJ. S. Typhimurium challenge in juvenile pigs modulates the expression and localization of enteric cholinergic proteins and correlates with mucosal injury and inflammation. Auton Neurosci 2018;213:51-9. [PMID: 30005740 DOI: 10.1016/j.autneu.2018.05.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
118 Zhang N, Zhang H, Jiang L, Zhang S, Yin J, Schramm L, Pasricha PP, Chen JDZ. A novel method of sacral nerve stimulation for colonic inflammation. Neurogastroenterol Motil 2020;32:e13825. [PMID: 32115817 DOI: 10.1111/nmo.13825] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
119 Buchmann Godinho D, da Silva Fiorin F, Schneider Oliveira M, Furian AF, Rechia Fighera M, Freire Royes LF. The immunological influence of physical exercise on TBI-induced pathophysiology: Crosstalk between the spleen, gut, and brain. Neurosci Biobehav Rev 2021;130:15-30. [PMID: 34400178 DOI: 10.1016/j.neubiorev.2021.08.006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
120 Mazzotta E, Villalobos-Hernandez EC, Fiorda-Diaz J, Harzman A, Christofi FL. Postoperative Ileus and Postoperative Gastrointestinal Tract Dysfunction: Pathogenic Mechanisms and Novel Treatment Strategies Beyond Colorectal Enhanced Recovery After Surgery Protocols. Front Pharmacol 2020;11:583422. [PMID: 33390950 DOI: 10.3389/fphar.2020.583422] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
121 Lu Z, Xie P, Zhang D, Sun P, Yang H, Ye J, Cao H, Huo C, Zhou H, Chen Y, Ye W, Yu L, Liu J. 3-Dehydroandrographolide protects against lipopolysaccharide-induced inflammation through the cholinergic anti-inflammatory pathway. Biochem Pharmacol 2018;158:305-17. [PMID: 30391477 DOI: 10.1016/j.bcp.2018.10.034] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
122 Tanaka S, Okusa MD. AKI and the Neuroimmune Axis. Semin Nephrol 2019;39:85-95. [PMID: 30606410 DOI: 10.1016/j.semnephrol.2018.10.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
123 Toner A, Jenkins N, Ackland G. Baroreflex impairment and morbidity after major surgery. British Journal of Anaesthesia 2016;117:324-31. [DOI: 10.1093/bja/aew257] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
124 Holland AM, Bon-Frauches AC, Keszthelyi D, Melotte V, Boesmans W. The enteric nervous system in gastrointestinal disease etiology. Cell Mol Life Sci 2021;78:4713-33. [PMID: 33770200 DOI: 10.1007/s00018-021-03812-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
125 Goverse G, Stakenborg M, Matteoli G. The intestinal cholinergic anti-inflammatory pathway. J Physiol 2016;594:5771-80. [PMID: 26959627 DOI: 10.1113/JP271537] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 8.2] [Reference Citation Analysis]
126 Levine YA, Faltys M, Zitnik R. Activation of the Inflammatory Reflex in Rheumatoid Arthritis and Inflammatory Bowel Disease; Preclinical Evidence. Neuromodulation. Elsevier; 2018. pp. 1493-502. [DOI: 10.1016/b978-0-12-805353-9.00126-1] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
127 Nunes NS, Chandran P, Sundby M, Visioli F, da Costa Gonçalves F, Burks SR, Paz AH, Frank JA. Therapeutic ultrasound attenuates DSS-induced colitis through the cholinergic anti-inflammatory pathway. EBioMedicine 2019;45:495-510. [PMID: 31253515 DOI: 10.1016/j.ebiom.2019.06.033] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
128 Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 2018;11:3-20. [DOI: 10.1038/mi.2017.73] [Cited by in Crossref: 79] [Cited by in F6Publishing: 79] [Article Influence: 19.8] [Reference Citation Analysis]
129 Payne SC, Furness JB, Stebbing MJ. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol 2019;16:89-105. [PMID: 30390018 DOI: 10.1038/s41575-018-0078-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 30] [Article Influence: 21.0] [Reference Citation Analysis]
130 Xie DP, Zhou GB, Chen RL, Qin XL, Du JD, Zhang Y, Weng YN, Mai ST, Lai F, Han Y. Effect of Electroacupuncture at Zusanli (ST36) on Sepsis Induced by Cecal Ligation Puncture and Its Relevance to Spleen. Evid Based Complement Alternat Med 2020;2020:1914031. [PMID: 33082818 DOI: 10.1155/2020/1914031] [Reference Citation Analysis]
131 Costantini TW, Dang X, Yurchyshyna MV, Coimbra R, Eliceiri BP, Baird A. A Human-Specific α7-Nicotinic Acetylcholine Receptor Gene in Human Leukocytes: Identification, Regulation and the Consequences of CHRFAM7A Expression. Mol Med 2015;21:323-36. [PMID: 25860877 DOI: 10.2119/molmed.2015.00018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
132 Han B, Li X, Hao J. The cholinergic anti-inflammatory pathway: An innovative treatment strategy for neurological diseases. Neurosci Biobehav Rev. 2017;77:358-368. [PMID: 28392244 DOI: 10.1016/j.neubiorev.2017.04.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
133 Dhawan S, De Palma G, Willemze RA, Hilbers FW, Verseijden C, Luyer MD, Nuding S, Wehkamp J, Souwer Y, de Jong EC, Seppen J, van den Wijngaard RM, Wehner S, Verdu E, Bercik P, de Jonge WJ. Acetylcholine-producing T cells in the intestine regulate antimicrobial peptide expression and microbial diversity. Am J Physiol Gastrointest Liver Physiol 2016;311:G920-33. [PMID: 27514477 DOI: 10.1152/ajpgi.00114.2016] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
134 Wazea SA, Wadie W, Bahgat AK, El-Abhar HS. Galantamine anti-colitic effect: Role of alpha-7 nicotinic acetylcholine receptor in modulating Jak/STAT3, NF-κB/HMGB1/RAGE and p-AKT/Bcl-2 pathways. Sci Rep 2018;8:5110. [PMID: 29572553 DOI: 10.1038/s41598-018-23359-6] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 12.7] [Reference Citation Analysis]
135 Farmer AD, Albu-soda A, Aziz Q. Vagus nerve stimulation in clinical practice. British Journal of Hospital Medicine 2016;77:645-51. [DOI: 10.12968/hmed.2016.77.11.645] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
136 Yip JLK, Balasuriya GK, Spencer SJ, Hill-Yardin EL. The Role of Intestinal Macrophages in Gastrointestinal Homeostasis: Heterogeneity and Implications in Disease. Cell Mol Gastroenterol Hepatol 2021;12:1701-18. [PMID: 34506953 DOI: 10.1016/j.jcmgh.2021.08.021] [Reference Citation Analysis]
137 Jakob MO, Murugan S, Klose CSN. Neuro-Immune Circuits Regulate Immune Responses in Tissues and Organ Homeostasis. Front Immunol 2020;11:308. [PMID: 32265899 DOI: 10.3389/fimmu.2020.00308] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
138 Han T, Tang Y, Li J, Xue B, Gong L, Li J, Yu X, Liu C. Nitric oxide donor protects against acetic acid-induced gastric ulcer in rats via S-nitrosylation of TRPV1 on vagus nerve. Sci Rep 2017;7:2063. [PMID: 28522805 DOI: 10.1038/s41598-017-02275-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
139 Ruffle JK, Coen SJ, Giampietro V, Williams SCR, Apkarian AV, Farmer AD, Aziz Q. Morphology of subcortical brain nuclei is associated with autonomic function in healthy humans. Hum Brain Mapp 2018;39:381-92. [PMID: 29080228 DOI: 10.1002/hbm.23850] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
140 Kulkarni S, Ganz J, Bayrer J, Becker L, Bogunovic M, Rao M. Advances in Enteric Neurobiology: The "Brain" in the Gut in Health and Disease. J Neurosci 2018;38:9346-54. [PMID: 30381426 DOI: 10.1523/JNEUROSCI.1663-18.2018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
141 Wu XJ, Yang XM, Song XM, Xu Y, Li JG, Wang YL, Zhang ZZ, Le LL, Liang H, Zhang Y. The Role of Erbin in GTS-21 Regulating Inflammtory Responses in MDP-Stimulated Macrophages. Shock 2017;47:653-7. [PMID: 28410331 DOI: 10.1097/SHK.0000000000000785] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
142 Nemethova A, Michel K, Gomez-Pinilla PJ, Boeckxstaens GE, Schemann M. Nicotine attenuates activation of tissue resident macrophages in the mouse stomach through the β2 nicotinic acetylcholine receptor. PLoS One 2013;8:e79264. [PMID: 24223920 DOI: 10.1371/journal.pone.0079264] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
143 Eberhardson M, Tarnawski L, Centa M, Olofsson PS. Neural Control of Inflammation: Bioelectronic Medicine in Treatment of Chronic Inflammatory Disease. Cold Spring Harb Perspect Med 2020;10:a034181. [PMID: 31358521 DOI: 10.1101/cshperspect.a034181] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
144 Kimura H, Yoneya Y, Mikawa S, Kaji N, Ito H, Tsuchida Y, Komatsu H, Murata T, Ozaki H, Uchida R, Nishida K, Hori M. A new zinc chelator, IPZ-010 ameliorates postoperative ileus. Biomed Pharmacother 2020;123:109773. [PMID: 31862476 DOI: 10.1016/j.biopha.2019.109773] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
145 Cotero V, Kao TJ, Graf J, Ashe J, Morton C, Chavan SS, Zanos S, Tracey KJ, Puleo CM. Evidence of Long-range nerve pathways connecting and coordinating activity in secondary lymph organs. Bioelectron Med 2020;6:21. [PMID: 33110929 DOI: 10.1186/s42234-020-00056-2] [Reference Citation Analysis]
146 Nakanishi S, Mantani Y, Haruta T, Yokoyama T, Hoshi N. Three-dimensional analysis of neural connectivity with cells in rat ileal mucosa by serial block-face scanning electron microscopy. J Vet Med Sci 2020;82:990-9. [PMID: 32493889 DOI: 10.1292/jvms.20-0175] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
147 Stakenborg N, Gomez-Pinilla PJ, Boeckxstaens GE. Postoperative Ileus: Pathophysiology, Current Therapeutic Approaches. Handb Exp Pharmacol 2017;239:39-57. [PMID: 27999957 DOI: 10.1007/164_2016_108] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
148 Inoue T, Tanaka S, Okusa MD. Neuroimmune Interactions in Inflammation and Acute Kidney Injury. Front Immunol 2017;8:945. [PMID: 28848551 DOI: 10.3389/fimmu.2017.00945] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
149 Sundman E, Olofsson PS. Neural control of the immune system. Adv Physiol Educ 2014;38:135-9. [PMID: 25039084 DOI: 10.1152/advan.00094.2013] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
150 Hanes WM, Olofsson PS, Talbot S, Tsaava T, Ochani M, Imperato GH, Levine YA, Roth J, Pascal MA, Foster SL, Wang P, Woolf C, Chavan SS, Tracey KJ. Neuronal Circuits Modulate Antigen Flow Through Lymph Nodes. Bioelectron Med 2016;3:18-28. [PMID: 33145374 DOI: 10.15424/bioelectronmed.2016.00001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
151 Bassi GS, Ulloa L, Santos VR, Del Vecchio F, Delfino-Pereira P, Rodrigues GJ, Castania JA, Cunha FQ, Salgado HC, Cunha TM, Garcia-Cairasco N, Kanashiro A. Cortical stimulation in conscious rats controls joint inflammation. Prog Neuropsychopharmacol Biol Psychiatry 2018;84:201-13. [PMID: 29522782 DOI: 10.1016/j.pnpbp.2018.02.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
152 Viola MF, Boeckxstaens G. Intestinal resident macrophages: Multitaskers of the gut. Neurogastroenterol Motil 2020;32:e13843. [PMID: 32222060 DOI: 10.1111/nmo.13843] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
153 Shi X, Hu Y, Zhang B, Li W, Chen JD, Liu F. Ameliorating effects and mechanisms of transcutaneous auricular vagal nerve stimulation on abdominal pain and constipation. JCI Insight 2021;6:150052. [PMID: 34138761 DOI: 10.1172/jci.insight.150052] [Reference Citation Analysis]
154 Saxena S, Maze M. Impact on the brain of the inflammatory response to surgery. Presse Med 2018;47:e73-81. [PMID: 29656802 DOI: 10.1016/j.lpm.2018.03.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
155 Hellstrom EA, Ziegler AL, Blikslager AT. Postoperative Ileus: Comparative Pathophysiology and Future Therapies. Front Vet Sci 2021;8:714800. [PMID: 34589533 DOI: 10.3389/fvets.2021.714800] [Reference Citation Analysis]
156 Yagi M, Morishita K, Ueno A, Nakamura H, Akabori H, Senda A, Kojima M, Aiboshi J, Costantini T, Coimbra R, Otomo Y. Electrical stimulation of the vagus nerve improves intestinal blood flow after trauma and hemorrhagic shock. Surgery 2020;167:638-45. [PMID: 31759624 DOI: 10.1016/j.surg.2019.09.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
157 Hurst RE, Greenwood-Van Meerveld B, Wisniewski AB, VanGordon S, Lin H, Kropp BP, Towner RA. Increased bladder permeability in interstitial cystitis/painful bladder syndrome. Transl Androl Urol 2015;4:563-71. [PMID: 26751576 DOI: 10.3978/j.issn.2223-4683.2015.10.03] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
158 Liu Y, Xu F, Liu S, Liu G, Yang X, Gao W, Fan K, Zhao H, Ma J. Significance of gastrointestinal tract in the therapeutic mechanisms of exercise in depression: Synchronism between brain and intestine through GBA. Prog Neuropsychopharmacol Biol Psychiatry 2020;103:109971. [PMID: 32445660 DOI: 10.1016/j.pnpbp.2020.109971] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
159 Holzer P, Hassan AM, Jain P, Reichmann F, Farzi A. Neuroimmune pharmacological approaches. Curr Opin Pharmacol 2015;25:13-22. [PMID: 26426677 DOI: 10.1016/j.coph.2015.09.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
160 Keck S, Galati-Fournier V, Kym U, Moesch M, Usemann J, Müller I, Subotic U, Tharakan SJ, Krebs T, Stathopoulos E, Schmittenbecher P, Cholewa D, Romero P, Reingruber B, Bruder E, Group NS, Holland-Cunz S. Lack of Mucosal Cholinergic Innervation Is Associated With Increased Risk of Enterocolitis in Hirschsprung's Disease. Cell Mol Gastroenterol Hepatol 2021;12:507-45. [PMID: 33741501 DOI: 10.1016/j.jcmgh.2021.03.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
161 Grau V, Richter K, Hone AJ, McIntosh JM. Conopeptides [V11L;V16D]ArIB and RgIA4: Powerful Tools for the Identification of Novel Nicotinic Acetylcholine Receptors in Monocytes. Front Pharmacol 2018;9:1499. [PMID: 30687084 DOI: 10.3389/fphar.2018.01499] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
162 Lu J, Wu W. Cholinergic modulation of the immune system - A novel therapeutic target for myocardial inflammation. Int Immunopharmacol 2021;93:107391. [PMID: 33548577 DOI: 10.1016/j.intimp.2021.107391] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
163 Spear ET, Mawe GM. Enteric neuroplasticity and dysmotility in inflammatory disease: key players and possible therapeutic targets. Am J Physiol Gastrointest Liver Physiol 2019;317:G853-61. [PMID: 31604034 DOI: 10.1152/ajpgi.00206.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
164 van Beekum CJ, Willis MA, von Websky MW, Sommer NP, Kalff JC, Wehner S, Vilz TO. Electrical vagus nerve stimulation as a prophylaxis for SIRS and postoperative ileus. Auton Neurosci 2021;235:102857. [PMID: 34343825 DOI: 10.1016/j.autneu.2021.102857] [Reference Citation Analysis]
165 Phillips BE, Geletzke AK, Smith PB, Podany AB, Chacon A, Kelleher SL, Patterson AD, Soybel DI. Impaired recovery from peritoneal inflammation in a mouse model of mild dietary zinc restriction. Mol Nutr Food Res 2016;60:672-81. [DOI: 10.1002/mnfr.201500688] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
166 Fan H, Wang A, Wang Y, Sun Y, Han J, Chen W, Wang S, Wu Y, Lu Y. Innate Lymphoid Cells: Regulators of Gut Barrier Function and Immune Homeostasis. J Immunol Res 2019;2019:2525984. [PMID: 31930146 DOI: 10.1155/2019/2525984] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
167 Reardon C, Murray K, Lomax AE. Neuroimmune Communication in Health and Disease. Physiol Rev 2018;98:2287-316. [PMID: 30109819 DOI: 10.1152/physrev.00035.2017] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 19.0] [Reference Citation Analysis]
168 Quadri M, Papke RL, Horenstein NA. Dissection of N,N-diethyl-N'-phenylpiperazines as α7 nicotinic receptor silent agonists. Bioorg Med Chem 2016;24:286-93. [PMID: 26707847 DOI: 10.1016/j.bmc.2015.12.017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
169 Takahashi A, Flanigan ME, McEwen BS, Russo SJ. Aggression, Social Stress, and the Immune System in Humans and Animal Models. Front Behav Neurosci 2018;12:56. [PMID: 29623033 DOI: 10.3389/fnbeh.2018.00056] [Cited by in Crossref: 65] [Cited by in F6Publishing: 54] [Article Influence: 21.7] [Reference Citation Analysis]
170 Klose CSN, Veiga-Fernandes H. Neuroimmune interactions in peripheral tissues. Eur J Immunol 2021;51:1602-14. [PMID: 33895990 DOI: 10.1002/eji.202048812] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
171 Hua S. Neuroimmune Interaction in the Regulation of Peripheral Opioid-Mediated Analgesia in Inflammation. Front Immunol 2016;7:293. [PMID: 27532001 DOI: 10.3389/fimmu.2016.00293] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
172 Malagelada C, Malagelada JR. Small Bowel Motility. Curr Gastroenterol Rep 2017;19. [DOI: 10.1007/s11894-017-0565-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
173 Brinkman DJ, Ten Hove AS, Vervoordeldonk MJ, Luyer MD, de Jonge WJ. Neuroimmune Interactions in the Gut and Their Significance for Intestinal Immunity. Cells. 2019;8. [PMID: 31269754 DOI: 10.3390/cells8070670] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
174 Stakenborg N, Wolthuis AM, Gomez-pinilla PJ, Farro G, Di Giovangiulio M, Bosmans G, Labeeuw E, Verhaegen M, Depoortere I, D'hoore A, Matteoli G, Boeckxstaens GE. Abdominal vagus nerve stimulation as a new therapeutic approach to prevent postoperative ileus. Neurogastroenterol Motil 2017;29:e13075. [DOI: 10.1111/nmo.13075] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 12.5] [Reference Citation Analysis]
175 Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020;11:509681. [PMID: 33262709 DOI: 10.3389/fpsyt.2020.509681] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 You XY, Zhang HY, Han X, Wang F, Zhuang PW, Zhang YJ. Intestinal Mucosal Barrier Is Regulated by Intestinal Tract Neuro-Immune Interplay. Front Pharmacol 2021;12:659716. [PMID: 34135754 DOI: 10.3389/fphar.2021.659716] [Reference Citation Analysis]
177 Sharkey KA, Beck PL, McKay DM. Neuroimmunophysiology of the gut: advances and emerging concepts focusing on the epithelium. Nat Rev Gastroenterol Hepatol 2018;15:765-84. [PMID: 30069036 DOI: 10.1038/s41575-018-0051-4] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
178 Assas MB, Wakid MH, Zakai HA, Miyan JA, Pennock JL. Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis. Immunology 2016;147:292-304. [PMID: 26643862 DOI: 10.1111/imm.12562] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
179 Willemze RA, Luyer MD, Buurman WA, de Jonge WJ. Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy. Nat Rev Gastroenterol Hepatol 2015;12:353-62. [PMID: 25963513 DOI: 10.1038/nrgastro.2015.56] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 5.2] [Reference Citation Analysis]
180 Zi SF, Li JH, Liu L, Deng C, Ao X, Chen DD, Wu SZ. Dexmedetomidine-mediated protection against septic liver injury depends on TLR4/MyD88/NF-κB signaling downregulation partly via cholinergic anti-inflammatory mechanisms. Int Immunopharmacol 2019;76:105898. [PMID: 31520992 DOI: 10.1016/j.intimp.2019.105898] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
181 Wehner S, Engel DR. Resident macrophages in the healthy and inflamed intestinal muscularis externa. Pflugers Arch. 2017;469:541-552. [PMID: 28236119 DOI: 10.1007/s00424-017-1948-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
182 McLean LP, Smith A, Cheung L, Urban JF, Sun R, Grinchuk V, Desai N, Zhao A, Raufman JP, Shea-Donohue T. Type 3 muscarinic receptors contribute to intestinal mucosal homeostasis and clearance of Nippostrongylus brasiliensis through induction of TH2 cytokines. Am J Physiol Gastrointest Liver Physiol. 2016;311:G130-G141. [PMID: 27173511 DOI: 10.1152/ajpgi.00461.2014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
183 Somann JP, Wasilczuk KM, Neihouser KV, Sturgis J, Albors GO, Robinson JP, Powley TL, Irazoqui PP. Characterization of plasma cytokine response to intraperitoneally administered LPS & subdiaphragmatic branch vagus nerve stimulation in rat model. PLoS One 2019;14:e0214317. [PMID: 30921373 DOI: 10.1371/journal.pone.0214317] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
184 任玉萍, 熊艳, 刘小彭, 白爱平. 胆碱能抗炎通路与胃肠病的研究进展. 世界华人消化杂志 2015; 23(18): 2854-2859 [DOI: 10.11569/wcjd.v23.i18.2854] [Reference Citation Analysis]
185 Bhatti S, Jaafar I, Hassan H, Atassi H, Stocker A, Hughes M, Pinkston C, Dryden G, Abell T. Effects of Gastric Neuromodulation on Crohn's Disease in Patients With Coexisting Symptoms of Gastroparesis. Neuromodulation: Technology at the Neural Interface 2020;23:1196-200. [DOI: 10.1111/ner.13118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
186 Kimura H, Imura YK, Tomiyasu H, Mihara T, Kaji N, Ohno K, Unno T, Tanahashi Y, Jan TR, Tsubone H, Ozaki H, Hori M. Neural anti-inflammatory action mediated by two types of acetylcholine receptors in the small intestine. Sci Rep 2019;9:5887. [PMID: 30971711 DOI: 10.1038/s41598-019-41698-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
187 Avetisyan M, Rood JE, Huerta Lopez S, Sengupta R, Wright-Jin E, Dougherty JD, Behrens EM, Heuckeroth RO. Muscularis macrophage development in the absence of an enteric nervous system. Proc Natl Acad Sci U S A 2018;115:4696-701. [PMID: 29666241 DOI: 10.1073/pnas.1802490115] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 11.7] [Reference Citation Analysis]
188 Pellegrini C, Fornai M, Colucci R, Tirotta E, Blandini F, Levandis G, Cerri S, Segnani C, Ippolito C, Bernardini N, Cseri K, Blandizzi C, Haskó G, Antonioli L. Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. J Neuroinflammation 2016;13:146. [PMID: 27295950 DOI: 10.1186/s12974-016-0608-5] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 8.2] [Reference Citation Analysis]
189 Chapman SJ, Helliwell JA, Naylor M, Tassinari C, Corrigan N, Jayne DG. Noninvasive vagus nerve stimulation to reduce ileus after major colorectal surgery: early development study. Colorectal Dis 2021;23:1225-32. [PMID: 33539637 DOI: 10.1111/codi.15561] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
190 Gao Y, Tang Y, Zhang H, Chu X, Yan B, Li J, Liu C. Vincristine leads to colonic myenteric neurons injury via pro-inflammatory macrophages activation. Biochem Pharmacol 2021;186:114479. [PMID: 33617842 DOI: 10.1016/j.bcp.2021.114479] [Reference Citation Analysis]
191 Duan H, Cai X, Luan Y, Yang S, Yang J, Dong H, Zeng H, Shao L. Regulation of the Autonomic Nervous System on Intestine. Front Physiol 2021;12:700129. [PMID: 34335306 DOI: 10.3389/fphys.2021.700129] [Reference Citation Analysis]
192 Yuan H, Silberstein SD. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part III. Headache 2016;56:479-90. [PMID: 26364805 DOI: 10.1111/head.12649] [Cited by in Crossref: 56] [Cited by in F6Publishing: 49] [Article Influence: 9.3] [Reference Citation Analysis]
193 Albaghdadi M, Garcia-Polite F, Zani B, Keating J, Melidone R, Spognardi A, Markham P, Tzafriri A. Splenic artery denervation: target micro-anatomy, feasibility, and early preclinical experience. Transl Res 2019;213:100-11. [PMID: 31415732 DOI: 10.1016/j.trsl.2019.07.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
194 Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol 2016;594:5781-90. [PMID: 27059884 DOI: 10.1113/JP271539] [Cited by in Crossref: 152] [Cited by in F6Publishing: 75] [Article Influence: 30.4] [Reference Citation Analysis]
195 Browning KN, Verheijden S, Boeckxstaens GE. The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation. Gastroenterology. 2017;152:730-744. [PMID: 27988382 DOI: 10.1053/j.gastro.2016.10.046] [Cited by in Crossref: 105] [Cited by in F6Publishing: 99] [Article Influence: 21.0] [Reference Citation Analysis]
196 Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, Cole-Jeffrey CT, Lobaton GO, Stewart DC, Rubiano A, Simmons CS, Garcia-Pereira F, Johnson RD, Pepine CJ, Raizada MK. Hypertension-Linked Pathophysiological Alterations in the Gut. Circ Res 2017;120:312-23. [PMID: 27799253 DOI: 10.1161/CIRCRESAHA.116.309006] [Cited by in Crossref: 209] [Cited by in F6Publishing: 124] [Article Influence: 41.8] [Reference Citation Analysis]
197 Bassi GS, Dias DPM, Franchin M, Talbot J, Reis DG, Menezes GB, Castania JA, Garcia-Cairasco N, Resstel LBM, Salgado HC, Cunha FQ, Cunha TM, Ulloa L, Kanashiro A. Modulation of experimental arthritis by vagal sensory and central brain stimulation. Brain Behav Immun 2017;64:330-43. [PMID: 28392428 DOI: 10.1016/j.bbi.2017.04.003] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 10.5] [Reference Citation Analysis]
198 Downs A, Bond C, Hoover D. Localization of α7 nicotinic acetylcholine receptor mRNA and protein within the cholinergic anti-inflammatory pathway. Neuroscience 2014;266:178-85. [DOI: 10.1016/j.neuroscience.2014.02.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
199 Johnson AC, Greenwood-Van Meerveld B. Critical Evaluation of Animal Models of Gastrointestinal Disorders. Handb Exp Pharmacol 2017;239:289-317. [PMID: 28176046 DOI: 10.1007/164_2016_120] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
200 Verheijden S, De Schepper S, Boeckxstaens GE. Neuron-macrophage crosstalk in the intestine: a "microglia" perspective. Front Cell Neurosci 2015;9:403. [PMID: 26528133 DOI: 10.3389/fncel.2015.00403] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
201 Margolis KG, Gershon MD, Bogunovic M. Cellular Organization of Neuroimmune Interactions in the Gastrointestinal Tract. Trends Immunol 2016;37:487-501. [PMID: 27289177 DOI: 10.1016/j.it.2016.05.003] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 7.6] [Reference Citation Analysis]
202 Cipriani G, Gibbons SJ, Kashyap PC, Farrugia G. Intrinsic Gastrointestinal Macrophages: Their Phenotype and Role in Gastrointestinal Motility. Cell Mol Gastroenterol Hepatol. 2016;2:120-130.e1. [PMID: 27047989 DOI: 10.1016/j.jcmgh.2016.01.003] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 7.4] [Reference Citation Analysis]
203 Wolthuis AM, Stakenborg N, D’hoore A, Boeckxstaens GE. The pig as preclinical model for laparoscopic vagus nerve stimulation. Int J Colorectal Dis 2016;31:211-5. [DOI: 10.1007/s00384-015-2435-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
204 Hanscom M, Loane DJ, Aubretch T, Leser J, Molesworth K, Hedgekar N, Ritzel RM, Abulwerdi G, Shea-Donohue T, Faden AI. Acute colitis during chronic experimental traumatic brain injury in mice induces dysautonomia and persistent extraintestinal, systemic, and CNS inflammation with exacerbated neurological deficits. J Neuroinflammation 2021;18:24. [PMID: 33461596 DOI: 10.1186/s12974-020-02067-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
205 Chow AK, Gulbransen BD. Potential roles of enteric glia in bridging neuroimmune communication in the gut. Am J Physiol Gastrointest Liver Physiol 2017;312:G145-52. [PMID: 28039160 DOI: 10.1152/ajpgi.00384.2016] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
206 Prakash MD, Tangalakis K, Antonipillai J, Stojanovska L, Nurgali K, Apostolopoulos V. Methamphetamine: Effects on the brain, gut and immune system. Pharmacological Research 2017;120:60-7. [DOI: 10.1016/j.phrs.2017.03.009] [Cited by in Crossref: 61] [Cited by in F6Publishing: 49] [Article Influence: 15.3] [Reference Citation Analysis]
207 Bernardazzi C, Pêgo B, de Souza HS. Neuroimmunomodulation in the Gut: Focus on Inflammatory Bowel Disease. Mediators Inflamm 2016;2016:1363818. [PMID: 27471349 DOI: 10.1155/2016/1363818] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
208 Olofsson PS. A Stimulating Concept: Bioelectronic Medicine in Inflammatory Disease. Bioelectron Med 2014;1:30-3. [DOI: 10.15424/bioelectronmed.2014.00007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
209 Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020;77:4505-22. [PMID: 32424438 DOI: 10.1007/s00018-020-03543-6] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 29.0] [Reference Citation Analysis]
210 Endres K, Schäfer KH. Influence of Commensal Microbiota on the Enteric Nervous System and Its Role in Neurodegenerative Diseases. J Innate Immun 2018;10:172-80. [PMID: 29742516 DOI: 10.1159/000488629] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
211 Murray K, Barboza M, Rude KM, Brust-Mascher I, Reardon C. Functional circuitry of neuro-immune communication in the mesenteric lymph node and spleen. Brain Behav Immun 2019;82:214-23. [PMID: 31445965 DOI: 10.1016/j.bbi.2019.08.188] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]