BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Venglovecz V, Rakonczay Z, Ozsvári B, Takács T, Lonovics J, Varró A, Gray MA, Argent BE, Hegyi P. Effects of bile acids on pancreatic ductal bicarbonate secretion in guinea pig. Gut. 2008;57:1102-1112. [PMID: 18303091 DOI: 10.1136/gut.2007.134361] [Cited by in Crossref: 66] [Cited by in F6Publishing: 64] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Schnúr A, Hegyi P, Rousseau S, Lukacs GL, Veit G. Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016;2016:7596531. [PMID: 27382190 DOI: 10.1155/2016/7596531] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
2 Lee PJ, Papachristou GI. New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16:479-496. [PMID: 31138897 DOI: 10.1038/s41575-019-0158-2] [Cited by in Crossref: 82] [Cited by in F6Publishing: 73] [Article Influence: 41.0] [Reference Citation Analysis]
3 Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020;21:E4005. [PMID: 32503336 DOI: 10.3390/ijms21114005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
4 Lv JC, Wang G, Pan SH, Bai XW, Sun B. Lycopene protects pancreatic acinar cells against severe acute pancreatitis by abating the oxidative stress through JNK pathway. Free Radic Res 2015;49:151-63. [PMID: 25410533 DOI: 10.3109/10715762.2014.988150] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
5 Novak I, Haanes KA, Wang J. Acid-base transport in pancreas-new challenges. Front Physiol 2013;4:380. [PMID: 24391597 DOI: 10.3389/fphys.2013.00380] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
6 Pallagi P, Venglovecz V, Rakonczay Z Jr, Borka K, Korompay A, Ozsvári B, Judák L, Sahin-Tóth M, Geisz A, Schnúr A, Maléth J, Takács T, Gray MA, Argent BE, Mayerle J, Lerch MM, Wittmann T, Hegyi P. Trypsin reduces pancreatic ductal bicarbonate secretion by inhibiting CFTR Cl⁻ channels and luminal anion exchangers. Gastroenterology 2011;141:2228-2239.e6. [PMID: 21893120 DOI: 10.1053/j.gastro.2011.08.039] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 5.1] [Reference Citation Analysis]
7 Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 2012;92:39-74. [PMID: 22298651 DOI: 10.1152/physrev.00011.2011] [Cited by in Crossref: 235] [Cited by in F6Publishing: 181] [Article Influence: 26.1] [Reference Citation Analysis]
8 Hegyi P. Bile as a key aetiological factor of acute but not chronic pancreatitis: a possible theory revealed. J Physiol. 2016;594:6073-6074. [PMID: 27800624 DOI: 10.1113/jp273108] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
9 Sah RP, Saluja A. Molecular mechanisms of pancreatic injury. Curr Opin Gastroenterol 2011;27:444-51. [PMID: 21844752 DOI: 10.1097/MOG.0b013e328349e346] [Cited by in Crossref: 63] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
10 Wan MH, Huang W, Latawiec D, Jiang K, Booth DM, Elliott V, Mukherjee R, Xia Q. Review of experimental animal models of biliary acute pancreatitis and recent advances in basic research. HPB (Oxford). 2012;14:73-81. [PMID: 22221567 DOI: 10.1111/j.1477-2574.2011.00408.x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
11 Trapp S, Aghdassi AA, Glaubitz J, Sendler M, Weiss FU, Kühn JP, Kromrey ML, Mahajan UM, Pallagi P, Rakonczay Z Jr, Venglovecz V, Lerch MM, Hegyi P, Mayerle J. Pancreatitis severity in mice with impaired CFTR function but pancreatic sufficiency is mediated via ductal and inflammatory cells-Not acinar cells. J Cell Mol Med 2021;25:4658-70. [PMID: 33682322 DOI: 10.1111/jcmm.16404] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Hegyi P, Rakonczay Z. The role of pancreatic ducts in the pathogenesis of acute pancreatitis. Pancreatology. 2015;15:S13-S17. [PMID: 25921231 DOI: 10.1016/j.pan.2015.03.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
13 Tran QT, Tran VH, Sendler M, Doller J, Wiese M, Bolsmann R, Wilden A, Glaubitz J, Modenbach JM, Thiel FG, de Freitas Chama LL, Weiss FU, Lerch MM, Aghdassi AA. Role of Bile Acids and Bile Salts in Acute Pancreatitis: From the Experimental to Clinical Studies. Pancreas 2021;50:3-11. [PMID: 33370017 DOI: 10.1097/MPA.0000000000001706] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Stewart AK, Yamamoto A, Nakakuki M, Kondo T, Alper SL, Ishiguro H. Functional coupling of apical Cl-/HCO3- exchange with CFTR in stimulated HCO3- secretion by guinea pig interlobular pancreatic duct. Am J Physiol Gastrointest Liver Physiol 2009;296:G1307-17. [PMID: 19342507 DOI: 10.1152/ajpgi.90697.2008] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 3.9] [Reference Citation Analysis]
15 Laczkó D, Rosztóczy A, Birkás K, Katona M, Rakonczay Z, Tiszlavicz L, Róka R, Wittmann T, Hegyi P, Venglovecz V. Role of ion transporters in the bile acid-induced esophageal injury. American Journal of Physiology-Gastrointestinal and Liver Physiology 2016;311:G16-31. [DOI: 10.1152/ajpgi.00159.2015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
16 Habtezion A, Gukovskaya AS, Pandol SJ. Acute Pancreatitis: A Multifaceted Set of Organelle and Cellular Interactions. Gastroenterology 2019;156:1941-50. [PMID: 30660726 DOI: 10.1053/j.gastro.2018.11.082] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 24.0] [Reference Citation Analysis]
17 Judák L, Hegyi P, Rakonczay Z, Maléth J, Gray MA, Venglovecz V. Ethanol and its non-oxidative metabolites profoundly inhibit CFTR function in pancreatic epithelial cells which is prevented by ATP supplementation. Pflugers Arch. 2014;466:549-562. [PMID: 23948742 DOI: 10.1007/s00424-013-1333-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
18 Mosztbacher D, Farkas N, Solymár M, Pár G, Bajor J, Szűcs Á, Czimmer J, Márta K, Mikó A, Rumbus Z, Varjú P, Hegyi P, Párniczky A. Restoration of energy level in the early phase of acute pediatric pancreatitis. World J Gastroenterol 2017;23:957-63. [PMID: 28246469 DOI: 10.3748/wjg.v23.i6.957] [Cited by in CrossRef: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philos Trans R Soc Lond B Biol Sci. 2016;371:pii: 20150425. [PMID: 27377719 DOI: 10.1098/rstb.2015.0425] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
20 Maléth J, Hegyi P, Rakonczay Z, Venglovecz V. Breakdown of bioenergetics evoked by mitochondrial damage in acute pancreatitis: Mechanisms and consequences. Pancreatology. 2015;15:S18-S22. [PMID: 26162756 DOI: 10.1016/j.pan.2015.06.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
21 Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A, Botelho MF, Tralhão JG. Multifactorial Scores and Biomarkers of Prognosis of Acute Pancreatitis: Applications to Research and Practice. Int J Mol Sci 2020;21:E338. [PMID: 31947993 DOI: 10.3390/ijms21010338] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 17.0] [Reference Citation Analysis]
22 Maléth J, Hegyi P. Calcium signaling in pancreatic ductal epithelial cells: an old friend and a nasty enemy. Cell Calcium. 2014;55:337-345. [PMID: 24602604 DOI: 10.1016/j.ceca.2014.02.004] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
23 Petersen OH, Gerasimenko JV, Gerasimenko OV, Gryshchenko O, Peng S. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol Rev 2021;101:1691-744. [PMID: 33949875 DOI: 10.1152/physrev.00003.2021] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2017;74:93-115. [PMID: 27714410 DOI: 10.1007/s00018-016-2391-y] [Cited by in Crossref: 127] [Cited by in F6Publishing: 109] [Article Influence: 25.4] [Reference Citation Analysis]
25 Yang X, Yao L, Fu X, Mukherjee R, Xia Q, Jakubowska MA, Ferdek PE, Huang W. Experimental Acute Pancreatitis Models: History, Current Status, and Role in Translational Research. Front Physiol 2020;11:614591. [PMID: 33424638 DOI: 10.3389/fphys.2020.614591] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Ferdek PE, Jakubowska MA. Biology of pancreatic stellate cells-more than just pancreatic cancer. Pflugers Arch 2017;469:1039-50. [PMID: 28382480 DOI: 10.1007/s00424-017-1968-0] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 10.8] [Reference Citation Analysis]
27 Hegyi P, Rakonczay Z. Insufficiency of Electrolyte and Fluid Secretion by Pancreatic Ductal Cells Leads to Increased Patient Risk for Pancreatitis. American Journal of Gastroenterology 2010;105:2119-20. [DOI: 10.1038/ajg.2010.191] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
28 Hegyi P, Wilschanski M, Muallem S, Lukacs GL, Sahin-Tóth M, Uc A, Gray MA, Rakonczay Z, Maléth J. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. Rev Physiol Biochem Pharmacol. 2016;170:37-66. [PMID: 26856995 DOI: 10.1007/112_2015_5002] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
29 Goldman A, Shahidullah M, Goldman D, Khailova L, Watts G, Delamere N, Dvorak K. A novel mechanism of acid and bile acid-induced DNA damage involving Na+/H+ exchanger: implication for Barrett's oesophagus. Gut. 2010;59:1606-1616. [PMID: 20876775 DOI: 10.1136/gut.2010.213686] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
30 Pallagi P, Hegyi P, Rakonczay Z. The Physiology and Pathophysiology of Pancreatic Ductal Secretion: The Background for Clinicians. Pancreas 2015;44:1211-33. [DOI: 10.1097/mpa.0000000000000421] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
31 Katona M, Hegyi P, Kui B, Balla Z, Rakonczay Z Jr, Rázga Z, Tiszlavicz L, Maléth J, Venglovecz V. A novel, protective role of ursodeoxycholate in bile-induced pancreatic ductal injury. Am J Physiol Gastrointest Liver Physiol 2016;310:G193-204. [PMID: 26608189 DOI: 10.1152/ajpgi.00317.2015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
32 Kemény LV, Schnúr A, Czepán M, Rakonczay Z Jr, Gál E, Lonovics J, Lázár G, Simonka Z, Venglovecz V, Maléth J, Judák L, Németh IB, Szabó K, Almássy J, Virág L, Geisz A, Tiszlavicz L, Yule DI, Wittmann T, Varró A, Hegyi P. Na+/Ca2+ exchangers regulate the migration and proliferation of human gastric myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2013;305:G552-63. [PMID: 23907822 DOI: 10.1152/ajpgi.00394.2012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
33 Kunstár E, Hegyi P, Rakonczay Z Jr, Farkas K, Nagy F, Wittmann T, Molnár T. Is Bile Acid Malabsorption Really a Common Feature of Crohn's Disease or is It Simply a Consequence of Ileal Resection? Front Physiol 2011;2:28. [PMID: 21887144 DOI: 10.3389/fphys.2011.00028] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Fluhr G, Mayerle J, Weber E, Aghdassi A, Simon P, Gress T, Seufferlein T, Mössner J, Stallmach A, Rösch T. Pre-study protocol MagPEP: a multicentre randomized controlled trial of magnesium sulphate in the prevention of post-ERCP pancreatitis. BMC Gastroenterol. 2013;13:11. [PMID: 23320650 DOI: 10.1186/1471-230x-13-11] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
35 Kowal JM, Haanes KA, Christensen NM, Novak I. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells. Cell Commun Signal 2015;13:28. [PMID: 26050734 DOI: 10.1186/s12964-015-0107-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
36 Ferdek PE, Jakubowska MA, Gerasimenko JV, Gerasimenko OV, Petersen OH. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake. J Physiol 2016;594:6147-64. [PMID: 27406326 DOI: 10.1113/JP272774] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 4.4] [Reference Citation Analysis]
37 Steward MC, Ishiguro H. Molecular and cellular regulation of pancreatic duct cell function. Curr Opin Gastroenterol 2009;25:447-53. [PMID: 19571747 DOI: 10.1097/MOG.0b013e32832e06ce] [Cited by in Crossref: 38] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
38 Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2018;98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Cited by in Crossref: 81] [Cited by in F6Publishing: 62] [Article Influence: 40.5] [Reference Citation Analysis]
39 Hirota M, Shimosegawa T. Bile Acids and Pancreatic Disease. In: Tazuma S, Takikawa H, editors. Bile Acids in Gastroenterology. Tokyo: Springer Japan; 2017. pp. 169-76. [DOI: 10.1007/978-4-431-56062-3_12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Pallagi P, Balla Z, Singh AK, Dósa S, Iványi B, Kukor Z, Tóth A, Riederer B, Liu Y, Engelhardt R, Jármay K, Szabó A, Janovszky A, Perides G, Venglovecz V, Maléth J, Wittmann T, Takács T, Gray MA, Gácser A, Hegyi P, Seidler U, Rakonczay Z Jr. The role of pancreatic ductal secretion in protection against acute pancreatitis in mice*. Crit Care Med 2014;42:e177-88. [PMID: 24368347 DOI: 10.1097/CCM.0000000000000101] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
41 Hegyi P, Pandol S, Venglovecz V, Rakonczay Z. The acinar-ductal tango in the pathogenesis of acute pancreatitis. Gut. 2011;60:544-552. [PMID: 20876773 DOI: 10.1136/gut.2010.218461] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 5.8] [Reference Citation Analysis]
42 Petersen OH, Tepikin AV, Gerasimenko JV, Gerasimenko OV, Sutton R, Criddle DN. Fatty acids, alcohol and fatty acid ethyl esters: toxic Ca2+ signal generation and pancreatitis. Cell Calcium. 2009;45:634-642. [PMID: 19327825 DOI: 10.1016/j.ceca.2009.02.005] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 5.3] [Reference Citation Analysis]
43 Park HW, Lee MG. Transepithelial bicarbonate secretion: lessons from the pancreas. Cold Spring Harb Perspect Med 2012;2:a009571. [PMID: 23028131 DOI: 10.1101/cshperspect.a009571] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
44 Venglovecz V, Rakonczay Z Jr, Gray MA, Hegyi P. Potassium channels in pancreatic duct epithelial cells: their role, function and pathophysiological relevance. Pflugers Arch 2015;467:625-40. [PMID: 25074489 DOI: 10.1007/s00424-014-1585-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
45 Balázs A, Hegyi P. Cystic fibrosis-style changes in the early phase of pancreatitis. Clin Res Hepatol Gastroenterol 2015;39 Suppl 1:S12-7. [PMID: 26206571 DOI: 10.1016/j.clinre.2015.05.020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
46 Sah RP, Garg P, Saluja AK. Pathogenic mechanisms of acute pancreatitis. Curr Opin Gastroenterol. 2012;28:507-515. [PMID: 22885948 DOI: 10.1097/mog.0b013e3283567f52] [Cited by in Crossref: 93] [Cited by in F6Publishing: 43] [Article Influence: 11.6] [Reference Citation Analysis]
47 Hegyi P, Petersen OH. The Exocrine Pancreas: The Acinar-Ductal Tango in Physiology and Pathophysiology. In: Nilius B, Amara SG, Gudermann T, Jahn R, Lill R, Offermanns S, Petersen OH, editors. Reviews of Physiology, Biochemistry and Pharmacology, Vol. 165. Cham: Springer International Publishing; 2013. pp. 1-30. [DOI: 10.1007/112_2013_14] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 8.1] [Reference Citation Analysis]
48 Gál E, Dolenšek J, Stožer A, Pohorec V, Ébert A, Venglovecz V. A Novel in situ Approach to Studying Pancreatic Ducts in Mice. Front Physiol 2019;10:938. [PMID: 31396104 DOI: 10.3389/fphys.2019.00938] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
49 Balázs A, Balla Z, Kui B, Maléth J, Rakonczay Z Jr, Duerr J, Zhou-Suckow Z, Schatterny J, Sendler M, Mayerle J, Kühn JP, Tiszlavicz L, Mall MA, Hegyi P. Ductal Mucus Obstruction and Reduced Fluid Secretion Are Early Defects in Chronic Pancreatitis. Front Physiol 2018;9:632. [PMID: 29896115 DOI: 10.3389/fphys.2018.00632] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
50 Balázs A, Ruffert C, Hegyi E, Hritz I, Czakó L, Takács T, Szepes Z, Németh BC, Gervain J, Izbéki F, Halász A, Kelemen D, Szmola R, Novák J, Crai S, Illés A, Vincze Á, Molnár Z, Varga M, Bod B, Farkas G Jr, Sümegi J, Szepes A, Dubravcsik Z, Lásztity N, Párniczky A, Hamvas J, Andorka C, Veres G, Szentkereszty Z, Rakonczay Z Jr, Maléth J, Sahin-Tóth M, Rosendahl J, Hegyi P; Hungarian Pancreatic Study Group. Genetic analysis of the bicarbonate secreting anion exchanger SLC26A6 in chronic pancreatitis. Pancreatology 2015;15:508-13. [PMID: 26372434 DOI: 10.1016/j.pan.2015.08.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
51 Madácsy T, Pallagi P, Maleth J. Cystic Fibrosis of the Pancreas: The Role of CFTR Channel in the Regulation of Intracellular Ca2+ Signaling and Mitochondrial Function in the Exocrine Pancreas. Front Physiol 2018;9:1585. [PMID: 30618777 DOI: 10.3389/fphys.2018.01585] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
52 Muili KA, Wang D, Orabi AI, Sarwar S, Luo Y, Javed TA, Eisses JF, Mahmood SM, Jin S, Singh VP. Bile acids induce pancreatic acinar cell injury and pancreatitis by activating calcineurin. J Biol Chem. 2013;288:570-580. [PMID: 23148215 DOI: 10.1074/jbc.m112.428896] [Cited by in Crossref: 54] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
53 Ignáth I, Hegyi P, Venglovecz V, Székely CA, Carr G, Hasegawa M, Inoue M, Takács T, Argent BE, Gray MA, Rakonczay Z Jr. CFTR expression but not Cl- transport is involved in the stimulatory effect of bile acids on apical Cl-/HCO3- exchange activity in human pancreatic duct cells. Pancreas 2009;38:921-9. [PMID: 19752774 DOI: 10.1097/MPA.0b013e3181b65d34] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
54 García M, Hernández-lorenzo P, San Román JI, Calvo JJ. Pancreatic duct secretion: experimental methods, ion transport mechanisms and regulation. J Physiol Biochem 2008;64:243-57. [DOI: 10.1007/bf03178846] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Geyer N, Diszházi G, Csernoch L, Jóna I, Almássy J. Bile acids activate ryanodine receptors in pancreatic acinar cells via a direct allosteric mechanism. Cell Calcium 2015;58:160-70. [DOI: 10.1016/j.ceca.2015.03.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
56 Fanczal J, Pallagi P, Görög M, Diszházi G, Almássy J, Madácsy T, Varga Á, Csernay-Biró P, Katona X, Tóth E, Molnár R, Rakonczay Z Jr, Hegyi P, Maléth J. TRPM2-mediated extracellular Ca2+ entry promotes acinar cell necrosis in biliary acute pancreatitis. J Physiol 2020;598:1253-70. [PMID: 31917868 DOI: 10.1113/JP279047] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
57 Venglovecz V, Pallagi P, Kemény LV, Balázs A, Balla Z, Becskeházi E, Gál E, Tóth E, Zvara Á, Puskás LG, Borka K, Sendler M, Lerch MM, Mayerle J, Kühn JP, Rakonczay Z Jr, Hegyi P. The Importance of Aquaporin 1 in Pancreatitis and Its Relation to the CFTR Cl- Channel. Front Physiol 2018;9:854. [PMID: 30050452 DOI: 10.3389/fphys.2018.00854] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
58 Maléth J, Rakonczay Z, Venglovecz V, Dolman NJ, Hegyi P. Central role of mitochondrial injury in the pathogenesis of acute pancreatitis. Acta Physiol (Oxf). 2013;207:226-235. [PMID: 23167280 DOI: 10.1111/apha.12037] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 4.2] [Reference Citation Analysis]
59 Pallagi-Kunstár É, Farkas K, Maléth J, Rakonczay Z Jr, Nagy F, Molnár T, Szepes Z, Venglovecz V, Lonovics J, Rázga Z, Wittmann T, Hegyi P. Bile acids inhibit Na⁺/H⁺ exchanger and Cl⁻/HCO₃⁻ exchanger activities via cellular energy breakdown and Ca²⁺ overload in human colonic crypts. Pflugers Arch 2015;467:1277-90. [PMID: 25015415 DOI: 10.1007/s00424-014-1560-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
60 Hegyi P, Maléth J, Venglovecz V, Rakonczay Z Jr. Pancreatic ductal bicarbonate secretion: challenge of the acinar Acid load. Front Physiol 2011;2:36. [PMID: 21808623 DOI: 10.3389/fphys.2011.00036] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
61 Jung J, Lee MG. Role of calcium signaling in epithelial bicarbonate secretion. Cell Calcium. 2014;55:376-384. [PMID: 24598807 DOI: 10.1016/j.ceca.2014.02.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
62 Becskeházi E, Korsós MM, Erőss B, Hegyi P, Venglovecz V. OEsophageal Ion Transport Mechanisms and Significance Under Pathological Conditions. Front Physiol 2020;11:855. [PMID: 32765303 DOI: 10.3389/fphys.2020.00855] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Gerasimenko JV, Lur G, Ferdek P, Sherwood MW, Ebisui E, Tepikin AV, Mikoshiba K, Petersen OH, Gerasimenko OV. Calmodulin protects against alcohol-induced pancreatic trypsinogen activation elicited via Ca2+ release through IP3 receptors. Proc Natl Acad Sci USA. 2011;108:5873-5878. [PMID: 21436055 DOI: 10.1073/pnas.1016534108] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 3.9] [Reference Citation Analysis]
64 Abu-El-Haija M, Gukovskaya AS, Andersen DK, Gardner TB, Hegyi P, Pandol SJ, Papachristou GI, Saluja AK, Singh VK, Uc A, Wu BU. Accelerating the Drug Delivery Pipeline for Acute and Chronic Pancreatitis: Summary of the Working Group on Drug Development and Trials in Acute Pancreatitis at the National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2018;47:1185-92. [PMID: 30325856 DOI: 10.1097/MPA.0000000000001175] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]