BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hassa PO, Haenni SS, Elser M, Hottiger MO. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 2006;70:789-829. [PMID: 16959969 DOI: 10.1128/MMBR.00040-05] [Cited by in Crossref: 475] [Cited by in F6Publishing: 245] [Article Influence: 29.7] [Reference Citation Analysis]
Number Citing Articles
1 Mittal N, Muthuswami R, Madhubala R. The mitochondrial SIR2 related protein 2 (SIR2RP2) impacts Leishmania donovani growth and infectivity. PLoS Negl Trop Dis 2017;11:e0005590. [PMID: 28493888 DOI: 10.1371/journal.pntd.0005590] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
2 Chen L, Zhong L. Genomics functional analysis and drug screening of SARS-CoV-2. Genes Dis 2020;7:542-50. [PMID: 32363223 DOI: 10.1016/j.gendis.2020.04.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
3 Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell. 2010;39:8-24. [PMID: 20603072 DOI: 10.1016/j.molcel.2010.06.017] [Cited by in Crossref: 549] [Cited by in F6Publishing: 537] [Article Influence: 45.8] [Reference Citation Analysis]
4 Lau C, Dölle C, Gossmann TI, Agledal L, Niere M, Ziegler M. Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyltransferases. J Biol Chem 2010;285:18868-76. [PMID: 20388704 DOI: 10.1074/jbc.M110.107631] [Cited by in Crossref: 44] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
5 Meyer-Ficca ML, Ihara M, Lonchar JD, Meistrich ML, Austin CA, Min W, Wang ZQ, Meyer RG. Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biol Reprod 2011;84:218-28. [PMID: 20881315 DOI: 10.1095/biolreprod.110.087361] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 2.6] [Reference Citation Analysis]
6 Sun X, Zhou X, Du L, Liu W, Liu Y, Hudson LG, Liu KJ. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. Toxicol Appl Pharmacol 2014;274:313-8. [PMID: 24275069 DOI: 10.1016/j.taap.2013.11.010] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
7 Sun Z, Lei H, Zhang Z. Pre-B cell colony enhancing factor (PBEF), a cytokine with multiple physiological functions. Cytokine Growth Factor Rev. 2013;24:433-442. [PMID: 23787158 DOI: 10.1016/j.cytogfr.2013.05.006] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 5.4] [Reference Citation Analysis]
8 Zhao B, Zhang WD, Duan YL, Lu YQ, Cun YX, Li CH, Guo K, Nie WH, Li L, Zhang R, Zheng P. Filia Is an ESC-Specific Regulator of DNA Damage Response and Safeguards Genomic Stability. Cell Stem Cell 2015;16:684-98. [PMID: 25936915 DOI: 10.1016/j.stem.2015.03.017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
9 Lehmann LC, Bacic L, Hewitt G, Brackmann K, Sabantsev A, Gaullier G, Pytharopoulou S, Degliesposti G, Okkenhaug H, Tan S, Costa A, Skehel JM, Boulton SJ, Deindl S. Mechanistic Insights into Regulation of the ALC1 Remodeler by the Nucleosome Acidic Patch. Cell Rep 2020;33:108529. [PMID: 33357431 DOI: 10.1016/j.celrep.2020.108529] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
10 Gao C, Xiao G, Hu J. Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci. 2014;4:13. [PMID: 24594309 DOI: 10.1186/2045-3701-4-13] [Cited by in Crossref: 108] [Cited by in F6Publishing: 111] [Article Influence: 13.5] [Reference Citation Analysis]
11 Braidy N, Villalva MD, van Eeden S. Sobriety and Satiety: Is NAD+ the Answer? Antioxidants (Basel) 2020;9:E425. [PMID: 32423100 DOI: 10.3390/antiox9050425] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Kowalski A. Polymorphism of histone H1.c’ in the population of Muscovy duck ( Cairina moschata L.): a link between histone H1.c’ allelic variants and ADP-ribosylation of histone H1 subtypes. The European Zoological Journal 2021;88:649-58. [DOI: 10.1080/24750263.2021.1912200] [Reference Citation Analysis]
13 Feijs KL, Kleine H, Braczynski A, Forst AH, Herzog N, Verheugd P, Linzen U, Kremmer E, Lüscher B. ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation. Cell Commun Signal 2013;11:5. [PMID: 23332125 DOI: 10.1186/1478-811X-11-5] [Cited by in Crossref: 88] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
14 Wang Z, Wang F, Tang T, Guo C. The role of PARP1 in the DNA damage response and its application in tumor therapy. Front Med 2012;6:156-64. [PMID: 22660976 DOI: 10.1007/s11684-012-0197-3] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 5.1] [Reference Citation Analysis]
15 Wisor JP. A metabolic-transcriptional network links sleep and cellular energetics in the brain. Pflugers Arch 2012;463:15-22. [PMID: 21927810 DOI: 10.1007/s00424-011-1030-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
16 Zhang L, Zhou D, Hu H, Li W, Hu Y, Xie J, Huang S, Wang W. Genome-wide characterization of a SRO gene family involved in response to biotic and abiotic stresses in banana (Musa spp.). BMC Plant Biol 2019;19:211. [PMID: 31113386 DOI: 10.1186/s12870-019-1807-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Pacher P, Szabó C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 2007;25:235-60. [PMID: 17919258 DOI: 10.1111/j.1527-3466.2007.00018.x] [Cited by in Crossref: 203] [Cited by in F6Publishing: 194] [Article Influence: 14.5] [Reference Citation Analysis]
18 Olabisi OA, Soto-Nieves N, Nieves E, Yang TT, Yang X, Yu RY, Suk HY, Macian F, Chow CW. Regulation of transcription factor NFAT by ADP-ribosylation. Mol Cell Biol 2008;28:2860-71. [PMID: 18299389 DOI: 10.1128/MCB.01746-07] [Cited by in Crossref: 61] [Cited by in F6Publishing: 43] [Article Influence: 4.4] [Reference Citation Analysis]
19 Feldmann J, Li Y, Tor Y. Emissive Synthetic Cofactors: A Highly Responsive NAD+ Analogue Reveals Biomolecular Recognition Features. Chemistry 2019;25:4379-89. [PMID: 30648291 DOI: 10.1002/chem.201805520] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kulkarni A, Oza J, Yao M, Sohail H, Ginjala V, Tomas-Loba A, Horejsi Z, Tan AR, Boulton SJ, Ganesan S. Tripartite Motif-containing 33 (TRIM33) protein functions in the poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response through interaction with Amplified in Liver Cancer 1 (ALC1) protein. J Biol Chem 2013;288:32357-69. [PMID: 23926104 DOI: 10.1074/jbc.M113.459164] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 4.1] [Reference Citation Analysis]
21 Blenn C, Wyrsch P, Althaus FR. The ups and downs of tannins as inhibitors of poly(ADP-ribose)glycohydrolase. Molecules 2011;16:1854-77. [PMID: 21343889 DOI: 10.3390/molecules16021854] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
22 Zhu A, Li X, Bai L, Zhu G, Guo Y, Lin J, Cui Y, Tian G, Zhang L, Wang J, Li XD, Li L. Biomimetic α-selective ribosylation enables two-step modular synthesis of biologically important ADP-ribosylated peptides. Nat Commun 2020;11:5600. [PMID: 33154359 DOI: 10.1038/s41467-020-19409-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Grigoryan H, Imani P, Dudoit S, Rappaport SM. Extending the HSA-Cys34-Adductomics Pipeline to Modifications at Lys525. Chem Res Toxicol 2021;34:2549-57. [PMID: 34788011 DOI: 10.1021/acs.chemrestox.1c00311] [Reference Citation Analysis]
24 Wang Y, Dawson VL, Dawson TM. Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp Neurol 2009;218:193-202. [PMID: 19332058 DOI: 10.1016/j.expneurol.2009.03.020] [Cited by in Crossref: 244] [Cited by in F6Publishing: 240] [Article Influence: 18.8] [Reference Citation Analysis]
25 Rovira AR, Fin A, Tor Y. Emissive Synthetic Cofactors: An Isomorphic, Isofunctional, and Responsive NAD+ Analogue. J Am Chem Soc 2017;139:15556-9. [PMID: 29043790 DOI: 10.1021/jacs.7b05852] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
26 Gamble KL, Young ME. Metabolism as an integral cog in the mammalian circadian clockwork. Crit Rev Biochem Mol Biol 2013;48:317-31. [PMID: 23594144 DOI: 10.3109/10409238.2013.786672] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
27 Boo YC. Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation. Antioxidants (Basel) 2021;10:1315. [PMID: 34439563 DOI: 10.3390/antiox10081315] [Reference Citation Analysis]
28 Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG. Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod 2011;84:900-9. [PMID: 21228215 DOI: 10.1095/biolreprod.110.090035] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 4.5] [Reference Citation Analysis]
29 Chaturvedi P, Tyagi SC. NAD+ : A big player in cardiac and skeletal muscle remodeling and aging. J Cell Physiol 2018;233:1895-6. [PMID: 28518407 DOI: 10.1002/jcp.26014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
30 Gagné JP, Haince JF, Pic E, Poirier GG. Affinity-based assays for the identification and quantitative evaluation of noncovalent poly(ADP-ribose)-binding proteins. Methods Mol Biol 2011;780:93-115. [PMID: 21870257 DOI: 10.1007/978-1-61779-270-0_7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
31 Dai Z, Zhang XN, Nasertorabi F, Cheng Q, Pei H, Louie SG, Stevens RC, Zhang Y. Facile chemoenzymatic synthesis of a novel stable mimic of NAD. Chem Sci 2018;9:8337-42. [PMID: 30568770 DOI: 10.1039/c8sc03899f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
32 Zhou W, Wahl DR. Metabolic Abnormalities in Glioblastoma and Metabolic Strategies to Overcome Treatment Resistance. Cancers (Basel) 2019;11:E1231. [PMID: 31450721 DOI: 10.3390/cancers11091231] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 12.7] [Reference Citation Analysis]
33 Citarelli M, Teotia S, Lamb RS. Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol 2010;10:308. [PMID: 20942953 DOI: 10.1186/1471-2148-10-308] [Cited by in Crossref: 71] [Cited by in F6Publishing: 69] [Article Influence: 5.9] [Reference Citation Analysis]
34 Sahaboglu A, Sharif A, Feng L, Secer E, Zrenner E, Paquet-Durand F. Temporal progression of PARP activity in the Prph2 mutant rd2 mouse: Neuroprotective effects of the PARP inhibitor PJ34. PLoS One 2017;12:e0181374. [PMID: 28723922 DOI: 10.1371/journal.pone.0181374] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
35 Page BDG, Valerie NCK, Wright RHG, Wallner O, Isaksson R, Carter M, Rudd SG, Loseva O, Jemth AS, Almlöf I, Font-Mateu J, Llona-Minguez S, Baranczewski P, Jeppsson F, Homan E, Almqvist H, Axelsson H, Regmi S, Gustavsson AL, Lundbäck T, Scobie M, Strömberg K, Stenmark P, Beato M, Helleday T. Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells. Nat Commun 2018;9:250. [PMID: 29343827 DOI: 10.1038/s41467-017-02293-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
36 Haenni SS, Altmeyer M, Hassa PO, Valovka T, Fey M, Hottiger MO. Importin alpha binding and nuclear localization of PARP-2 is dependent on lysine 36, which is located within a predicted classical NLS. BMC Cell Biol 2008;9:39. [PMID: 18644123 DOI: 10.1186/1471-2121-9-39] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
37 Cantó C, Sauve AA, Bai P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 2013;34:1168-201. [PMID: 23357756 DOI: 10.1016/j.mam.2013.01.004] [Cited by in Crossref: 143] [Cited by in F6Publishing: 133] [Article Influence: 15.9] [Reference Citation Analysis]
38 Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK, Washburn MP, Florens L, Ladurner AG, Conaway JW. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc Natl Acad Sci USA. 2009;106:13770-13774. [PMID: 19666485 DOI: 10.1073/pnas.0906920106] [Cited by in Crossref: 256] [Cited by in F6Publishing: 247] [Article Influence: 19.7] [Reference Citation Analysis]
39 Lehmann LC, Hewitt G, Aibara S, Leitner A, Marklund E, Maslen SL, Maturi V, Chen Y, van der Spoel D, Skehel JM, Moustakas A, Boulton SJ, Deindl S. Mechanistic Insights into Autoinhibition of the Oncogenic Chromatin Remodeler ALC1. Mol Cell 2017;68:847-859.e7. [PMID: 29220652 DOI: 10.1016/j.molcel.2017.10.017] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
40 Kaur G, Iyer LM, Burroughs AM, Aravind L. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. Elife 2021;10:e70394. [PMID: 34061031 DOI: 10.7554/eLife.70394] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic Stress and Carbon Stress in Diabetic Glucotoxicity. Aging Dis 2016;7:90-110. [PMID: 26816666 DOI: 10.14336/AD.2015.0702] [Cited by in Crossref: 57] [Cited by in F6Publishing: 37] [Article Influence: 9.5] [Reference Citation Analysis]
42 Pittelli M, Formentini L, Faraco G, Lapucci A, Rapizzi E, Cialdai F, Romano G, Moneti G, Moroni F, Chiarugi A. Inhibition of nicotinamide phosphoribosyltransferase: Cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J Biol Chem. 2010;285:34106-34114. [PMID: 20724478 DOI: 10.1074/jbc.m110.136739] [Cited by in Crossref: 123] [Cited by in F6Publishing: 82] [Article Influence: 10.3] [Reference Citation Analysis]
43 Cho SH, Ahn AK, Bhargava P, Lee CH, Eischen CM, McGuinness O, Boothby M. Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family. Proc Natl Acad Sci U S A 2011;108:15972-7. [PMID: 21911376 DOI: 10.1073/pnas.1017082108] [Cited by in Crossref: 68] [Cited by in F6Publishing: 67] [Article Influence: 6.2] [Reference Citation Analysis]
44 Shi X, Zhang XN, Chen J, Cheng Q, Pei H, Louie SG, Zhang Y. A poly-ADP-ribose polymer-based antibody-drug conjugate. Chem Sci 2020;11:9303-8. [PMID: 33623656 DOI: 10.1039/d0sc01795g] [Reference Citation Analysis]
45 Chen J, Lam AT, Zhang Y. A macrodomain-linked immunosorbent assay (MLISA) for mono-ADP-ribosyltransferases. Anal Biochem 2018;543:132-9. [PMID: 29247608 DOI: 10.1016/j.ab.2017.12.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
46 Ramamoorthy H, Abraham P, Isaac B. Melatonin protects against tenofovir-induced nephrotoxicity in rats by targeting multiple cellular pathways. Hum Exp Toxicol 2021;40:826-50. [PMID: 33146023 DOI: 10.1177/0960327120968860] [Reference Citation Analysis]
47 Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One 2012;7:e42357. [PMID: 22848760 DOI: 10.1371/journal.pone.0042357] [Cited by in Crossref: 279] [Cited by in F6Publishing: 270] [Article Influence: 27.9] [Reference Citation Analysis]
48 Liu L, Su X, Quinn WJ, Hui S, Krukenberg K, Frederick DW, Redpath P, Zhan L, Chellappa K, White E, Migaud M, Mitchison TJ, Baur JA, Rabinowitz JD. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab. 2018;27:1067-1080.e5. [PMID: 29685734 DOI: 10.1016/j.cmet.2018.03.018] [Cited by in Crossref: 147] [Cited by in F6Publishing: 141] [Article Influence: 49.0] [Reference Citation Analysis]
49 Nossa CW, Blanke SR. Helicobacter pylori activation of PARP-1: usurping a versatile regulator of host cellular health. Gut Microbes 2010;1:373-8. [PMID: 21468218 DOI: 10.4161/gmic.1.6.13572] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
50 Cheng Q, Barboule N, Frit P, Gomez D, Bombarde O, Couderc B, Ren GS, Salles B, Calsou P. Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic Acids Res 2011;39:9605-19. [PMID: 21880593 DOI: 10.1093/nar/gkr656] [Cited by in Crossref: 72] [Cited by in F6Publishing: 66] [Article Influence: 6.5] [Reference Citation Analysis]
51 Loseva O, Jemth AS, Bryant HE, Schüler H, Lehtiö L, Karlberg T, Helleday T. PARP-3 is a mono-ADP-ribosylase that activates PARP-1 in the absence of DNA. J Biol Chem 2010;285:8054-60. [PMID: 20064938 DOI: 10.1074/jbc.M109.077834] [Cited by in Crossref: 100] [Cited by in F6Publishing: 62] [Article Influence: 8.3] [Reference Citation Analysis]
52 Jiang H, Sherwood R, Zhang S, Zhu X, Liu Q, Graeff R, Kriksunov IA, Lee HC, Hao Q, Lin H. Identification of ADP-ribosylation sites of CD38 mutants by precursor ion scanning mass spectrometry. Anal Biochem 2013;433:218-26. [PMID: 23123429 DOI: 10.1016/j.ab.2012.10.029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
53 Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 2007;6:695-711. [PMID: 17337257 DOI: 10.1016/j.dnarep.2007.01.009] [Cited by in Crossref: 284] [Cited by in F6Publishing: 262] [Article Influence: 18.9] [Reference Citation Analysis]
54 Pan C, Chen L, Zhang X, Zhang D, Song Q, Peng J, Li Q. Molecular insight into the π‐stacking interactions of human ovarian cancer PARP ‐1 with its small‐molecule inhibitors and rational design of aromatic amino acid‐rich peptides to target PARP ‐1 based on the π‐stacking network. J Chinese Chemical Soc. [DOI: 10.1002/jccs.202200004] [Reference Citation Analysis]
55 Zaja R, Mikoč A, Barkauskaite E, Ahel I. Molecular Insights into Poly(ADP-ribose) Recognition and Processing. Biomolecules 2012;3:1-17. [PMID: 24970154 DOI: 10.3390/biom3010001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 2.7] [Reference Citation Analysis]
56 Weng MK, Natarajan K, Scholz D, Ivanova VN, Sachinidis A, Hengstler JG, Waldmann T, Leist M. Lineage-specific regulation of epigenetic modifier genes in human liver and brain. PLoS One 2014;9:e102035. [PMID: 25054330 DOI: 10.1371/journal.pone.0102035] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
57 Ko HL, Ren EC. Functional Aspects of PARP1 in DNA Repair and Transcription. Biomolecules. 2012;2:524-548. [PMID: 24970148 DOI: 10.3390/biom2040524] [Cited by in Crossref: 83] [Cited by in F6Publishing: 78] [Article Influence: 8.3] [Reference Citation Analysis]
58 Gamble MJ. Expanding the functional repertoire of macrodomains. Nat Struct Mol Biol 2013;20:407-8. [PMID: 23552290 DOI: 10.1038/nsmb.2552] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
59 Fontana P, Bonfiglio JJ, Palazzo L, Bartlett E, Matic I, Ahel I. Serine ADP-ribosylation reversal by the hydrolase ARH3. Elife 2017;6:e28533. [PMID: 28650317 DOI: 10.7554/eLife.28533] [Cited by in Crossref: 103] [Cited by in F6Publishing: 73] [Article Influence: 20.6] [Reference Citation Analysis]
60 Steffen JD, McCauley MM, Pascal JM. Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage. Nucleic Acids Res 2016;44:9771-83. [PMID: 27530425 DOI: 10.1093/nar/gkw710] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
61 Fu M, Yang X. The sweet tooth of the circadian clock. Biochem Soc Trans 2017;45:871-84. [PMID: 28673939 DOI: 10.1042/BST20160183] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
62 Mohammed SA, Ambrosini S, Lüscher T, Paneni F, Costantino S. Epigenetic Control of Mitochondrial Function in the Vasculature. Front Cardiovasc Med 2020;7:28. [PMID: 32195271 DOI: 10.3389/fcvm.2020.00028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
63 Zha JJ, Tang Y, Wang YL. Role of mono-ADP-ribosylation histone modification (Review). Exp Ther Med 2021;21:577. [PMID: 33850549 DOI: 10.3892/etm.2021.10009] [Reference Citation Analysis]
64 Hirsch BM, Burgos ES, Schramm VL. Transition-state analysis of 2-O-acetyl-ADP-ribose hydrolysis by human macrodomain 1. ACS Chem Biol 2014;9:2255-62. [PMID: 25051211 DOI: 10.1021/cb500485w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
65 Phulwani NK, Kielian T. Poly (ADP-ribose) polymerases (PARPs) 1-3 regulate astrocyte activation. J Neurochem 2008;106:578-90. [PMID: 18410506 DOI: 10.1111/j.1471-4159.2008.05403.x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 2.5] [Reference Citation Analysis]
66 Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J Biosci 2020;45. [DOI: 10.1007/s12038-020-00099-2] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
67 Ahel D, Horejsí Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel I, Flynn H, Skehel M, West SC, Jackson SP, Owen-Hughes T, Boulton SJ. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 2009;325:1240-3. [PMID: 19661379 DOI: 10.1126/science.1177321] [Cited by in Crossref: 391] [Cited by in F6Publishing: 371] [Article Influence: 30.1] [Reference Citation Analysis]
68 Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332:1443-1446. [PMID: 21680843 DOI: 10.1126/science.1202723] [Cited by in Crossref: 525] [Cited by in F6Publishing: 468] [Article Influence: 47.7] [Reference Citation Analysis]
69 Luna A, Aladjem MI, Kohn KW. SIRT1/PARP1 crosstalk: Connecting DNA damage and metabolism. Genome Integr. 2013;4:6. [PMID: 24360018 DOI: 10.1186/2041-9414-4-6] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
70 Hu Y, Petit SA, Ficarro SB, Toomire KJ, Xie A, Lim E, Cao SA, Park E, Eck MJ, Scully R, Brown M, Marto JA, Livingston DM. PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov 2014;4:1430-47. [PMID: 25252691 DOI: 10.1158/2159-8290.CD-13-0891] [Cited by in Crossref: 67] [Cited by in F6Publishing: 55] [Article Influence: 8.4] [Reference Citation Analysis]
71 Yang Y, Mohammed FS, Zhang N, Sauve AA. Dihydronicotinamide riboside is a potent NAD+ concentration enhancer in vitro and in vivo. J Biol Chem 2019;294:9295-307. [PMID: 30948509 DOI: 10.1074/jbc.RA118.005772] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
72 Cambronne XA, Stewart ML, Kim D, Jones-Brunette AM, Morgan RK, Farrens DL, Cohen MS, Goodman RH. Biosensor reveals multiple sources for mitochondrial NAD⁺. Science 2016;352:1474-7. [PMID: 27313049 DOI: 10.1126/science.aad5168] [Cited by in Crossref: 191] [Cited by in F6Publishing: 175] [Article Influence: 31.8] [Reference Citation Analysis]
73 German NJ, Haigis MC. Sirtuins and the Metabolic Hurdles in Cancer. Curr Biol 2015;25:R569-83. [PMID: 26126285 DOI: 10.1016/j.cub.2015.05.012] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 6.7] [Reference Citation Analysis]
74 Wang F, Zhao M, Chang B, Zhou Y, Wu X, Ma M, Liu S, Cao Y, Zheng M, Dang Y, Xu J, Chen L, Liu T, Tang F, Ren Y, Xu Z, Mao Z, Huang K, Luo M, Li J, Liu H, Ge B. Cytoplasmic PARP1 links the genome instability to the inhibition of antiviral immunity through PARylating cGAS. Mol Cell 2022:S1097-2765(22)00290-8. [PMID: 35460603 DOI: 10.1016/j.molcel.2022.03.034] [Reference Citation Analysis]
75 Zuo S, Dai G, Ren X. Identification of a 6-gene signature predicting prognosis for colorectal cancer. Cancer Cell Int. 2019;19:6. [PMID: 30627052 DOI: 10.1186/s12935-018-0724-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
76 Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010;31:194-223. [PMID: 20007326 DOI: 10.1210/er.2009-0026] [Cited by in Crossref: 529] [Cited by in F6Publishing: 493] [Article Influence: 40.7] [Reference Citation Analysis]
77 Karch KR, Langelier MF, Pascal JM, Garcia BA. The nucleosomal surface is the main target of histone ADP-ribosylation in response to DNA damage. Mol Biosyst 2017;13:2660-71. [PMID: 29058739 DOI: 10.1039/c7mb00498b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
78 Manco G, Lacerra G, Porzio E, Catara G. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives. Biomolecules 2022;12:443. [DOI: 10.3390/biom12030443] [Reference Citation Analysis]
79 Jaspers P, Overmyer K, Wrzaczek M, Vainonen JP, Blomster T, Salojärvi J, Reddy RA, Kangasjärvi J. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants. BMC Genomics 2010;11:170. [PMID: 20226034 DOI: 10.1186/1471-2164-11-170] [Cited by in Crossref: 75] [Cited by in F6Publishing: 64] [Article Influence: 6.3] [Reference Citation Analysis]
80 Cichewicz RH. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 2010;27:11-22. [PMID: 20024091 DOI: 10.1039/b920860g] [Cited by in Crossref: 193] [Cited by in F6Publishing: 84] [Article Influence: 14.8] [Reference Citation Analysis]
81 Wan X, Garg NJ. Sirtuin Control of Mitochondrial Dysfunction, Oxidative Stress, and Inflammation in Chagas Disease Models. Front Cell Infect Microbiol 2021;11:693051. [PMID: 34178728 DOI: 10.3389/fcimb.2021.693051] [Reference Citation Analysis]
82 Fouquerel E, Sobol RW. ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death. DNA Repair (Amst) 2014;23:27-32. [PMID: 25283336 DOI: 10.1016/j.dnarep.2014.09.004] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 8.0] [Reference Citation Analysis]
83 Jelezcova E, Trivedi RN, Wang XH, Tang JB, Brown AR, Goellner EM, Schamus S, Fornsaglio JL, Sobol RW. Parp1 activation in mouse embryonic fibroblasts promotes Pol beta-dependent cellular hypersensitivity to alkylation damage. Mutat Res 2010;686:57-67. [PMID: 20096707 DOI: 10.1016/j.mrfmmm.2010.01.016] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
84 Drenichev MS, Bennett M, Novikov RA, Mansfield J, Smirnoff N, Grant M, Mikhailov SN. A role for 3'-O-β-D-ribofuranosyladenosine in altering plant immunity. Phytochemistry 2019;157:128-34. [PMID: 30399495 DOI: 10.1016/j.phytochem.2018.10.016] [Reference Citation Analysis]
85 Palazzo L, Thomas B, Jemth AS, Colby T, Leidecker O, Feijs KL, Zaja R, Loseva O, Puigvert JC, Matic I, Helleday T, Ahel I. Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem J 2015;468:293-301. [PMID: 25789582 DOI: 10.1042/BJ20141554] [Cited by in Crossref: 77] [Cited by in F6Publishing: 56] [Article Influence: 11.0] [Reference Citation Analysis]
86 Lu D, Cai H, Park SS, Siddiqui S, Premont RT, Schmalzigaug R, Paramasivam M, Seidman M, Bodogai I, Biragyn A, Daimon CM, Martin B, Maudsley S. Nuclear GIT2 is an ATM substrate and promotes DNA repair. Mol Cell Biol 2015;35:1081-96. [PMID: 25605334 DOI: 10.1128/MCB.01432-14] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
87 Kato J, Vekhter D, Heath J, Zhu J, Barbieri JT, Moss J. Mutations of the functional ARH1 allele in tumors from ARH1 heterozygous mice and cells affect ARH1 catalytic activity, cell proliferation and tumorigenesis. Oncogenesis 2015;4:e151. [PMID: 26029825 DOI: 10.1038/oncsis.2015.5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
88 Tang JB, Svilar D, Trivedi RN, Wang XH, Goellner EM, Moore B, Hamilton RL, Banze LA, Brown AR, Sobol RW. N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide. Neuro Oncol 2011;13:471-86. [PMID: 21377995 DOI: 10.1093/neuonc/nor011] [Cited by in Crossref: 69] [Cited by in F6Publishing: 67] [Article Influence: 6.3] [Reference Citation Analysis]
89 Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol. 2013;20:259-266. [PMID: 23463310 DOI: 10.1038/nsmb.2470] [Cited by in Crossref: 583] [Cited by in F6Publishing: 504] [Article Influence: 64.8] [Reference Citation Analysis]
90 Erener S, Hesse M, Kostadinova R, Hottiger MO. Poly(ADP-ribose)polymerase-1 (PARP1) controls adipogenic gene expression and adipocyte function. Mol Endocrinol 2012;26:79-86. [PMID: 22053002 DOI: 10.1210/me.2011-1163] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 4.6] [Reference Citation Analysis]
91 Andreoli F, Del Rio A. Computer-aided Molecular Design of Compounds Targeting Histone Modifying Enzymes. Comput Struct Biotechnol J 2015;13:358-65. [PMID: 26082827 DOI: 10.1016/j.csbj.2015.04.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
92 Dakroub A, A Nasser S, Younis N, Bhagani H, Al-Dhaheri Y, Pintus G, Eid AA, El-Yazbi AF, Eid AH. Visfatin: A Possible Role in Cardiovasculo-Metabolic Disorders. Cells 2020;9:E2444. [PMID: 33182523 DOI: 10.3390/cells9112444] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
93 Yang Y, Sauve AA. NAD(+) metabolism: Bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta 2016;1864:1787-800. [PMID: 27374990 DOI: 10.1016/j.bbapap.2016.06.014] [Cited by in Crossref: 156] [Cited by in F6Publishing: 142] [Article Influence: 26.0] [Reference Citation Analysis]
94 Martínez-Redondo P, Vaquero A. The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer 2013;4:148-63. [PMID: 24020006 DOI: 10.1177/1947601913483767] [Cited by in Crossref: 95] [Cited by in F6Publishing: 86] [Article Influence: 10.6] [Reference Citation Analysis]
95 Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 2009;156:713-27. [PMID: 19210748 DOI: 10.1111/j.1476-5381.2008.00086.x] [Cited by in Crossref: 108] [Cited by in F6Publishing: 99] [Article Influence: 8.3] [Reference Citation Analysis]
96 Cao L, Li LS, Spruell C, Xiao L, Chakrabarti G, Bey EA, Reinicke KE, Srougi MC, Moore Z, Dong Y, Vo P, Kabbani W, Yang CR, Wang X, Fattah F, Morales JC, Motea EA, Bornmann WG, Yordy JS, Boothman DA. Tumor-selective, futile redox cycle-induced bystander effects elicited by NQO1 bioactivatable radiosensitizing drugs in triple-negative breast cancers. Antioxid Redox Signal 2014;21:237-50. [PMID: 24512128 DOI: 10.1089/ars.2013.5462] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
97 Poltronieri P, Celetti A, Palazzo L. Mono(ADP-ribosyl)ation Enzymes and NAD+ Metabolism: A Focus on Diseases and Therapeutic Perspectives. Cells 2021;10:128. [PMID: 33440786 DOI: 10.3390/cells10010128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
98 Shah NH, Vila-Perelló M, Muir TW. Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl 2011;50:6511-5. [PMID: 21656885 DOI: 10.1002/anie.201102909] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 5.2] [Reference Citation Analysis]
99 Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019;30:251-94. [PMID: 29634344 DOI: 10.1089/ars.2017.7269] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 13.3] [Reference Citation Analysis]
100 Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res 2009;37:3723-38. [PMID: 19372272 DOI: 10.1093/nar/gkp229] [Cited by in Crossref: 224] [Cited by in F6Publishing: 219] [Article Influence: 17.2] [Reference Citation Analysis]
101 Salemi M, Barone C, Romano C, Romano C, Scavuzzo C, Salluzzo M, Tirolo C, Cantarella R, Ragalmuto A, Paola S, Bosco P. Poly (ADP-ribose) polymerase 1 expression in fibroblasts of Down syndrome subjects. Open Medicine 2013;8:762-5. [DOI: 10.2478/s11536-013-0225-y] [Reference Citation Analysis]
102 Aravind L, Zhang D, de Souza RF, Anand S, Iyer LM. The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Curr Top Microbiol Immunol 2015;384:3-32. [PMID: 25027823 DOI: 10.1007/82_2014_414] [Cited by in Crossref: 23] [Cited by in F6Publishing: 43] [Article Influence: 3.3] [Reference Citation Analysis]
103 Lam AT, Zhang XN, Courouble VV, Strutzenberg TS, Pei H, Stiles BL, Louie SG, Griffin PR, Zhang Y. A Bifunctional NAD+ for Profiling Poly-ADP-Ribosylation-Dependent Interacting Proteins. ACS Chem Biol 2021;16:389-96. [PMID: 33524253 DOI: 10.1021/acschembio.0c00937] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
104 Chin CF, Yeong FM. Safeguarding entry into mitosis: the antephase checkpoint. Mol Cell Biol. 2010;30:22-32. [PMID: 19841063 DOI: 10.1128/mcb.00687-09] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
105 Mattiussi S, Tempera I, Matusali G, Mearini G, Lenti L, Fratarcangeli S, Mosca L, D'Erme M, Mattia E. Inhibition of Poly(ADP-ribose)polymerase impairs Epstein Barr Virus lytic cycle progression. Infect Agent Cancer 2007;2:18. [PMID: 17931416 DOI: 10.1186/1750-9378-2-18] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 0.9] [Reference Citation Analysis]
106 Pourfarjam Y, Ma Z, Kurinov I, Moss J, Kim IK. Structural and biochemical analysis of human ADP-ribosyl-acceptor hydrolase 3 reveals the basis of metal selectivity and different roles for the two magnesium ions. J Biol Chem 2021;296:100692. [PMID: 33894202 DOI: 10.1016/j.jbc.2021.100692] [Reference Citation Analysis]
107 Hachisuka SI, Sato T, Atomi H. Hyperthermophilic Archaeon Thermococcus kodakarensis Utilizes a Four-Step Pathway for NAD+ Salvage through Nicotinamide Deamination. J Bacteriol 2018;200:e00785-17. [PMID: 29555696 DOI: 10.1128/JB.00785-17] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
108 Montag K, Hornbergs J, Ivanov R, Bauer P. Phylogenetic analysis of plant multi-domain SEC14-like phosphatidylinositol transfer proteins and structure-function properties of PATELLIN2. Plant Mol Biol 2020;104:665-78. [PMID: 32915352 DOI: 10.1007/s11103-020-01067-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
109 Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier-de Murcia J, Susin SA. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 2007;27:4844-62. [PMID: 17470554 DOI: 10.1128/MCB.02141-06] [Cited by in Crossref: 230] [Cited by in F6Publishing: 124] [Article Influence: 15.3] [Reference Citation Analysis]
110 Nowak K, Rosenthal F, Karlberg T, Bütepage M, Thorsell AG, Dreier B, Grossmann J, Sobek J, Imhof R, Lüscher B, Schüler H, Plückthun A, Leslie Pedrioli DM, Hottiger MO. Engineering Af1521 improves ADP-ribose binding and identification of ADP-ribosylated proteins. Nat Commun 2020;11:5199. [PMID: 33060572 DOI: 10.1038/s41467-020-18981-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
111 Moroni F, Formentini L, Gerace E, Camaioni E, Pellegrini-Giampietro DE, Chiarugi A, Pellicciari R. Selective PARP-2 inhibitors increase apoptosis in hippocampal slices but protect cortical cells in models of post-ischaemic brain damage. Br J Pharmacol 2009;157:854-62. [PMID: 19422384 DOI: 10.1111/j.1476-5381.2009.00232.x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 2.5] [Reference Citation Analysis]
112 Zhang X, Lam AT, Cheng Q, Courouble VV, Strutzenberg TS, Li J, Wang Y, Pei H, Stiles BL, Louie SG, Griffin PR, Zhang Y. Discovery of an NAD + analogue with enhanced specificity for PARP1. Chem Sci . [DOI: 10.1039/d1sc06256e] [Reference Citation Analysis]
113 Liu Q, Kriksunov IA, Jiang H, Graeff R, Lin H, Lee HC, Hao Q. Covalent and noncovalent intermediates of an NAD utilizing enzyme, human CD38. Chem Biol 2008;15:1068-78. [PMID: 18940667 DOI: 10.1016/j.chembiol.2008.08.007] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 2.1] [Reference Citation Analysis]
114 Pears CJ, Couto CA, Wang HY, Borer C, Kiely R, Lakin ND. The role of ADP-ribosylation in regulating DNA double-strand break repair. Cell Cycle 2012;11:48-56. [PMID: 22186780 DOI: 10.4161/cc.11.1.18793] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
115 Dölle C, Niere M, Lohndal E, Ziegler M. Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cell Mol Life Sci 2010;67:433-43. [PMID: 19902144 DOI: 10.1007/s00018-009-0190-4] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 3.6] [Reference Citation Analysis]
116 Misri S, Pandita S, Kumar R, Pandita TK. Telomeres, histone code, and DNA damage response. Cytogenet Genome Res. 2008;122:297-307. [PMID: 19188699 DOI: 10.1159/000167816] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 2.9] [Reference Citation Analysis]
117 Coleman MP, Freeman MR. Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci. 2010;33:245-267. [PMID: 20345246 DOI: 10.1146/annurev-neuro-060909-153248] [Cited by in Crossref: 309] [Cited by in F6Publishing: 300] [Article Influence: 28.1] [Reference Citation Analysis]
118 Maltseva EA, Rechkunova NI, Sukhanova MV, Lavrik OI. Poly(ADP-ribose) Polymerase 1 Modulates Interaction of the Nucleotide Excision Repair Factor XPC-RAD23B with DNA via Poly(ADP-ribosyl)ation. J Biol Chem 2015;290:21811-20. [PMID: 26170451 DOI: 10.1074/jbc.M115.646638] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
119 Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G, Ladurner AG. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 2013;20:508-14. [PMID: 23474712 DOI: 10.1038/nsmb.2523] [Cited by in Crossref: 204] [Cited by in F6Publishing: 196] [Article Influence: 22.7] [Reference Citation Analysis]
120 Arimori T, Tamaoki H, Nakamura T, Kamiya H, Ikemizu S, Takagi Y, Ishibashi T, Harashima H, Sekiguchi M, Yamagata Y. Diverse substrate recognition and hydrolysis mechanisms of human NUDT5. Nucleic Acids Res 2011;39:8972-83. [PMID: 21768126 DOI: 10.1093/nar/gkr575] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
121 Watson M, Roulston A, Bélec L, Billot X, Marcellus R, Bédard D, Bernier C, Branchaud S, Chan H, Dairi K, Gilbert K, Goulet D, Gratton MO, Isakau H, Jang A, Khadir A, Koch E, Lavoie M, Lawless M, Nguyen M, Paquette D, Turcotte E, Berger A, Mitchell M, Shore GC, Beauparlant P. The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 2009;29:5872-88. [PMID: 19703994 DOI: 10.1128/MCB.00112-09] [Cited by in Crossref: 148] [Cited by in F6Publishing: 76] [Article Influence: 11.4] [Reference Citation Analysis]
122 Chen SH, Yu X. Targeting dePARylation selectively suppresses DNA repair-defective and PARP inhibitor-resistant malignancies. Sci Adv 2019;5:eaav4340. [PMID: 30989114 DOI: 10.1126/sciadv.aav4340] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
123 Yan LJ. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med 2018;1:7-13. [PMID: 29863179 DOI: 10.1002/ame2.12001] [Cited by in Crossref: 69] [Cited by in F6Publishing: 54] [Article Influence: 17.3] [Reference Citation Analysis]
124 Seyedsadjadi N, Berg J, Bilgin AA, Braidy N, Salonikas C, Grant R. High protein intake is associated with low plasma NAD+ levels in a healthy human cohort. PLoS One 2018;13:e0201968. [PMID: 30114226 DOI: 10.1371/journal.pone.0201968] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
125 Di Paola S, Micaroni M, Di Tullio G, Buccione R, Di Girolamo M. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1. PLoS One 2012;7:e37352. [PMID: 22701565 DOI: 10.1371/journal.pone.0037352] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 5.6] [Reference Citation Analysis]
126 Bassett SA, Barnett MP. The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients 2014;6:4273-301. [PMID: 25322459 DOI: 10.3390/nu6104273] [Cited by in Crossref: 89] [Cited by in F6Publishing: 78] [Article Influence: 11.1] [Reference Citation Analysis]
127 Reynoird N, Rousseaux S, Khochbin S. [Epigenetic perturbations and cancer: innovative therapeutic strategies against cancer]. Bull Cancer 2010;97:1265-74. [PMID: 21047719 DOI: 10.1684/bdc.2010.1204] [Reference Citation Analysis]
128 Mashimo M, Kato J, Moss J. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases. DNA Repair (Amst) 2014;23:88-94. [PMID: 24746921 DOI: 10.1016/j.dnarep.2014.03.005] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 5.3] [Reference Citation Analysis]
129 Chinnusamy V, Gong Z, Zhu JK. Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 2008;50:1187-95. [PMID: 19017106 DOI: 10.1111/j.1744-7909.2008.00727.x] [Cited by in Crossref: 197] [Cited by in F6Publishing: 164] [Article Influence: 15.2] [Reference Citation Analysis]
130 Sinha S, Molla S, Kundu CN. PARP1-modulated chromatin remodeling is a new target for cancer treatment. Med Oncol 2021;38:118. [PMID: 34432161 DOI: 10.1007/s12032-021-01570-2] [Reference Citation Analysis]
131 Wang Y, Zheng K, Huang Y, Xiong H, Su J, Chen R, Zou Y. PARP inhibitors in gastric cancer: beacon of hope. J Exp Clin Cancer Res 2021;40:211. [PMID: 34167572 DOI: 10.1186/s13046-021-02005-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
132 Gonçalves VM, Matteucci KC, Buzzo CL, Miollo BH, Ferrante D, Torrecilhas AC, Rodrigues MM, Alvarez JM, Bortoluci KR. NLRP3 controls Trypanosoma cruzi infection through a caspase-1-dependent IL-1R-independent NO production. PLoS Negl Trop Dis 2013;7:e2469. [PMID: 24098823 DOI: 10.1371/journal.pntd.0002469] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 7.6] [Reference Citation Analysis]
133 Chen Q, Bian C, Wang X, Liu X, Ahmad Kassab M, Yu Y, Yu X. ADP-ribosylation of histone variant H2AX promotes base excision repair. EMBO J 2021;40:e104542. [PMID: 33264433 DOI: 10.15252/embj.2020104542] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
134 Zhou X, Sun X, Cooper KL, Wang F, Liu KJ, Hudson LG. Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. J Biol Chem 2011;286:22855-63. [PMID: 21550982 DOI: 10.1074/jbc.M111.232926] [Cited by in Crossref: 128] [Cited by in F6Publishing: 70] [Article Influence: 11.6] [Reference Citation Analysis]
135 Mihalas BP, Redgrove KA, McLaughlin EA, Nixon B. Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage. Oxid Med Cell Longev 2017;2017:4015874. [PMID: 29312475 DOI: 10.1155/2017/4015874] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
136 Fouquerel E, Goellner EM, Yu Z, Gagné JP, Barbi de Moura M, Feinstein T, Wheeler D, Redpath P, Li J, Romero G, Migaud M, Van Houten B, Poirier GG, Sobol RW. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep 2014;8:1819-31. [PMID: 25220464 DOI: 10.1016/j.celrep.2014.08.036] [Cited by in Crossref: 103] [Cited by in F6Publishing: 98] [Article Influence: 12.9] [Reference Citation Analysis]
137 Navas LE, Carnero A. NAD+ metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021;6:2. [PMID: 33384409 DOI: 10.1038/s41392-020-00354-w] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
138 Vidal-Gil L, Sancho-Pelluz J, Zrenner E, Oltra M, Sahaboglu A. Poly ADP ribosylation and extracellular vesicle activity in rod photoreceptor degeneration. Sci Rep 2019;9:3758. [PMID: 30842506 DOI: 10.1038/s41598-019-40215-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
139 Besson VC. Drug targets for traumatic brain injury from poly(ADP-ribose)polymerase pathway modulation. Br J Pharmacol 2009;157:695-704. [PMID: 19371326 DOI: 10.1111/j.1476-5381.2009.00229.x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 2.3] [Reference Citation Analysis]
140 Takahashi H, Takahara K, Hashida SN, Hirabayashi T, Fujimori T, Kawai-Yamada M, Yamaya T, Yanagisawa S, Uchimiya H. Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene. Plant Physiol 2009;151:100-13. [PMID: 19587098 DOI: 10.1104/pp.109.140665] [Cited by in Crossref: 58] [Cited by in F6Publishing: 48] [Article Influence: 4.5] [Reference Citation Analysis]
141 Ghosh SG, Becker K, Huang H, Dixon-Salazar T, Chai G, Salpietro V, Al-Gazali L, Waisfisz Q, Wang H, Vaux KK, Stanley V, Manole A, Akpulat U, Weiss MM, Efthymiou S, Hanna MG, Minetti C, Striano P, Pisciotta L, De Grandis E, Altmüller J, Nürnberg P, Thiele H, Yis U, Okur TD, Polat AI, Amiri N, Doosti M, Karimani EG, Toosi MB, Haddad G, Karakaya M, Wirth B, van Hagen JM, Wolf NI, Maroofian R, Houlden H, Cirak S, Gleeson JG. Biallelic Mutations in ADPRHL2, Encoding ADP-Ribosylhydrolase 3, Lead to a Degenerative Pediatric Stress-Induced Epileptic Ataxia Syndrome. Am J Hum Genet 2018;103:431-9. [PMID: 30100084 DOI: 10.1016/j.ajhg.2018.07.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
142 Agarwal A, Mahfouz RZ, Sharma RK, Sarkar O, Mangrola D, Mathur PP. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod Biol Endocrinol 2009;7:143. [PMID: 19961617 DOI: 10.1186/1477-7827-7-143] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 5.2] [Reference Citation Analysis]
143 Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 2015;27:172-97. [PMID: 25516120 DOI: 10.1007/s12640-014-9508-6] [Cited by in Crossref: 94] [Cited by in F6Publishing: 73] [Article Influence: 11.8] [Reference Citation Analysis]
144 Zhao Y, Hu X, Wei L, Song D, Wang J, You L, Saiyin H, Li Z, Yu W, Yu L, Ding J, Wu J. PARP10 suppresses tumor metastasis through regulation of Aurora A activity. Oncogene 2018;37:2921-35. [PMID: 29515234 DOI: 10.1038/s41388-018-0168-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
145 Broniowska KA, Diers AR, Corbett JA, Hogg N. Effect of nitric oxide on naphthoquinone toxicity in endothelial cells: role of bioenergetic dysfunction and poly (ADP-ribose) polymerase activation. Biochemistry 2013;52:4364-72. [PMID: 23718265 DOI: 10.1021/bi400342t] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
146 Salemi M, Barone C, Romano C, Ridolfo F, Gulotta E, Scavuzzo C, Salluzzo MG, Giambirtone M, Caraci F, Romano C, Bosco P. Differential expression of PARP1 mRNA in leucocytes of patients with Down's syndrome. J Genet 2011;90:469-72. [PMID: 22227934 DOI: 10.1007/s12041-011-0074-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
147 Simithy J, Sidoli S, Garcia BA. Integrating Proteomics and Targeted Metabolomics to Understand Global Changes in Histone Modifications. Proteomics 2018;18:e1700309. [PMID: 29512899 DOI: 10.1002/pmic.201700309] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
148 Zhang Y, Wang J, Ding M, Yu Y. Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat Methods 2013;10:981-4. [PMID: 23955771 DOI: 10.1038/nmeth.2603] [Cited by in Crossref: 199] [Cited by in F6Publishing: 191] [Article Influence: 22.1] [Reference Citation Analysis]
149 Li M, Yu X. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell. 2013;23:693-704. [PMID: 23680151 DOI: 10.1016/j.ccr.2013.03.025] [Cited by in Crossref: 186] [Cited by in F6Publishing: 168] [Article Influence: 20.7] [Reference Citation Analysis]
150 Andersson A, Bluwstein A, Kumar N, Teloni F, Traenkle J, Baudis M, Altmeyer M, Hottiger MO. PKCα and HMGB1 antagonistically control hydrogen peroxide-induced poly-ADP-ribose formation. Nucleic Acids Res 2016;44:7630-45. [PMID: 27198223 DOI: 10.1093/nar/gkw442] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
151 Léger K, Bär D, Savić N, Santoro R, Hottiger MO. ARTD2 activity is stimulated by RNA. Nucleic Acids Res 2014;42:5072-82. [PMID: 24510188 DOI: 10.1093/nar/gku131] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
152 Martella A, Fisher DI. Regulation of Gene Expression and the Elucidative Role of CRISPR-Based Epigenetic Modifiers and CRISPR-Induced Chromosome Conformational Changes. CRISPR J 2021;4:43-57. [PMID: 33616442 DOI: 10.1089/crispr.2020.0108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
153 Hara N, Osago H, Hiyoshi M, Kobayashi-Miura M, Tsuchiya M. Quantitative analysis of the effects of nicotinamide phosphoribosyltransferase induction on the rates of NAD+ synthesis and breakdown in mammalian cells using stable isotope-labeling combined with mass spectrometry. PLoS One 2019;14:e0214000. [PMID: 30875389 DOI: 10.1371/journal.pone.0214000] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
154 Liu L, Li J, Ke Y, Zeng X, Gao J, Ba X, Wang R. The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell Mol Life Sci 2022;79:60. [PMID: 35000037 DOI: 10.1007/s00018-021-04109-w] [Reference Citation Analysis]
155 Wei C, Li Y, Feng X, Hu Z, Paquet-Durand F, Jiao K. RNA Biological Characteristics at the Peak of Cell Death in Different Hereditary Retinal Degeneration Mutants. Front Genet 2021;12:728791. [PMID: 34777465 DOI: 10.3389/fgene.2021.728791] [Reference Citation Analysis]
156 Burroughs AM, Aravind L. Analysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis. Front Genet 2014;5:424. [PMID: 25566315 DOI: 10.3389/fgene.2014.00424] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
157 Prabakaran S, Lippens G, Steen H, Gunawardena J. Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med 2012;4:565-83. [PMID: 22899623 DOI: 10.1002/wsbm.1185] [Cited by in Crossref: 190] [Cited by in F6Publishing: 173] [Article Influence: 19.0] [Reference Citation Analysis]
158 Scarabelli L, Lanza C, Demori I, Accomando R, Giansanti V, Scovassi AI, Palmero S. Expression of antioxidant defense and poly(ADP-ribose) polymerase-1 in rat developing Sertoli cells. Cell Biol Int 2011;35:883-9. [PMID: 21375507 DOI: 10.1042/CBI20100454] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
159 Oh GS, Kim HJ, Choi JH, Shen A, Choe SK, Karna A, Lee SH, Jo HJ, Yang SH, Kwak TH, Lee CH, Park R, So HS. Pharmacological activation of NQO1 increases NAD⁺ levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney Int 2014;85:547-60. [PMID: 24025646 DOI: 10.1038/ki.2013.330] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 8.7] [Reference Citation Analysis]
160 Faraone-Mennella MR, Ferone A, Marino L, Cardone A, Comitato R, Venditti P, Di Meo S, Farina B. Poly(ADP-ribosyl)ation of proteins and germ cell development in hyperthyroid rat testes. Mol Cell Biochem 2009;323:119-29. [PMID: 19082780 DOI: 10.1007/s11010-008-9970-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
161 Jubin T, Kadam A, Jariwala M, Bhatt S, Sutariya S, Gani AR, Gautam S, Begum R. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Cell Prolif. 2016;49:421-437. [PMID: 27329285 DOI: 10.1111/cpr.12268] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 7.5] [Reference Citation Analysis]
162 Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381-395. [PMID: 21321607 DOI: 10.1038/cr.2011.22] [Cited by in Crossref: 2825] [Cited by in F6Publishing: 2484] [Article Influence: 256.8] [Reference Citation Analysis]
163 Blenn C, Wyrsch P, Althaus FR. The Sound of Silence: RNAi in Poly (ADP-Ribose) Research. Genes (Basel) 2012;3:779-805. [PMID: 24705085 DOI: 10.3390/genes3040779] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
164 Dani N, Stilla A, Marchegiani A, Tamburro A, Till S, Ladurner AG, Corda D, Di Girolamo M. Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. Proc Natl Acad Sci U S A 2009;106:4243-8. [PMID: 19246377 DOI: 10.1073/pnas.0900066106] [Cited by in Crossref: 79] [Cited by in F6Publishing: 74] [Article Influence: 6.1] [Reference Citation Analysis]
165 Durdíková K, Chovanec M. Regulation of non-homologous end joining via post-translational modifications of components of the ligation step. Curr Genet 2017;63:591-605. [PMID: 27915381 DOI: 10.1007/s00294-016-0670-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
166 Han W, Li X, Fu X. The macro domain protein family: structure, functions, and their potential therapeutic implications. Mutat Res 2011;727:86-103. [PMID: 21421074 DOI: 10.1016/j.mrrev.2011.03.001] [Cited by in Crossref: 85] [Cited by in F6Publishing: 83] [Article Influence: 7.7] [Reference Citation Analysis]
167 De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH. The Elephant and the Blind Men: Making Sense of PARP Inhibitors in Homologous Recombination Deficient Tumor Cells. Front Oncol 2013;3:228. [PMID: 24062981 DOI: 10.3389/fonc.2013.00228] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 7.4] [Reference Citation Analysis]
168 Savelyev NV, Shepelev NM, Lavrik OI, Rubtsova MP, Dontsova OA. PARP1 Regulates the Biogenesis and Activity of Telomerase Complex Through Modification of H/ACA-Proteins. Front Cell Dev Biol 2021;9:621134. [PMID: 34095104 DOI: 10.3389/fcell.2021.621134] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
169 Niere M, Kernstock S, Koch-Nolte F, Ziegler M. Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol 2008;28:814-24. [PMID: 17991898 DOI: 10.1128/MCB.01766-07] [Cited by in Crossref: 71] [Cited by in F6Publishing: 44] [Article Influence: 4.7] [Reference Citation Analysis]
170 Shang J, Smith MR, Anmangandla A, Lin H. NAD+-consuming enzymes in immune defense against viral infection. Biochem J 2021;478:4071-92. [PMID: 34871367 DOI: 10.1042/BCJ20210181] [Reference Citation Analysis]
171 Tang JB, Goellner EM, Wang XH, Trivedi RN, St Croix CM, Jelezcova E, Svilar D, Brown AR, Sobol RW. Bioenergetic metabolites regulate base excision repair-dependent cell death in response to DNA damage. Mol Cancer Res 2010;8:67-79. [PMID: 20068071 DOI: 10.1158/1541-7786.MCR-09-0411] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 4.1] [Reference Citation Analysis]
172 Hossain MS, Gresock J, Edmonds Y, Helm R, Potts M, Ramakrishnan N. Connecting the dots between PubMed abstracts. PLoS One 2012;7:e29509. [PMID: 22235301 DOI: 10.1371/journal.pone.0029509] [Cited by in Crossref: 25] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
173 Wang J, Hao L, Wang Y, Qin W, Wang X, Zhao T, Liu Y, Sheng L, Du Y, Zhang M, Lu Q. Inhibition of poly (ADP-ribose) polymerase and inducible nitric oxide synthase protects against ischemic myocardial damage by reduction of apoptosis. Mol Med Rep 2015;11:1768-76. [PMID: 25412407 DOI: 10.3892/mmr.2014.2977] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
174 Chen Q, Ma K, Liu X, Chen SH, Li P, Yu Y, Leung AKL, Yu X. Truncated PARP1 mediates ADP-ribosylation of RNA polymerase III for apoptosis. Cell Discov 2022;8:3. [PMID: 35039483 DOI: 10.1038/s41421-021-00355-1] [Reference Citation Analysis]
175 Kaelin WG, McKnight SL. Influence of metabolism on epigenetics and disease. Cell. 2013;153:56-69. [PMID: 23540690 DOI: 10.1016/j.cell.2013.03.004] [Cited by in Crossref: 545] [Cited by in F6Publishing: 488] [Article Influence: 60.6] [Reference Citation Analysis]
176 Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, Jankevicius G, Simpson MA, Matic I, Ozkan E, Golia B, Schellenberg MJ, Weston R, Williams JG, Rossi MN, Galehdari H, Krahn J, Wan A, Trembath RC, Crosby AH, Ahel D, Hay R, Ladurner AG, Timinszky G, Williams RS, Ahel I. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J 2013;32:1225-37. [PMID: 23481255 DOI: 10.1038/emboj.2013.51] [Cited by in Crossref: 189] [Cited by in F6Publishing: 186] [Article Influence: 21.0] [Reference Citation Analysis]
177 Kassner I, Andersson A, Fey M, Tomas M, Ferrando-May E, Hottiger MO. SET7/9-dependent methylation of ARTD1 at K508 stimulates poly-ADP-ribose formation after oxidative stress. Open Biol 2013;3:120173. [PMID: 24088713 DOI: 10.1098/rsob.120173] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
178 Altmeyer M, Barthel M, Eberhard M, Rehrauer H, Hardt WD, Hottiger MO. Absence of poly(ADP-ribose) polymerase 1 delays the onset of Salmonella enterica serovar Typhimurium-induced gut inflammation. Infect Immun 2010;78:3420-31. [PMID: 20515923 DOI: 10.1128/IAI.00211-10] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
179 Hachisuka SI, Sato T, Atomi H. Metabolism Dealing with Thermal Degradation of NAD+ in the Hyperthermophilic Archaeon Thermococcus kodakarensis. J Bacteriol 2017;199:e00162-17. [PMID: 28652302 DOI: 10.1128/JB.00162-17] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
180 Li M, Yu X. The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy. Oncogene 2015;34:3349-56. [PMID: 25220415 DOI: 10.1038/onc.2014.295] [Cited by in Crossref: 66] [Cited by in F6Publishing: 66] [Article Influence: 8.3] [Reference Citation Analysis]
181 Farrar D, Rai S, Chernukhin I, Jagodic M, Ito Y, Yammine S, Ohlsson R, Murrell A, Klenova E. Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation. Mol Cell Biol 2010;30:1199-216. [PMID: 20038529 DOI: 10.1128/MCB.00827-09] [Cited by in Crossref: 56] [Cited by in F6Publishing: 46] [Article Influence: 4.3] [Reference Citation Analysis]
182 Niere M, Mashimo M, Agledal L, Dölle C, Kasamatsu A, Kato J, Moss J, Ziegler M. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose). J Biol Chem 2012;287:16088-102. [PMID: 22433848 DOI: 10.1074/jbc.M112.349183] [Cited by in Crossref: 80] [Cited by in F6Publishing: 49] [Article Influence: 8.0] [Reference Citation Analysis]
183 Romashov LV, Zeifman AA, Zakharenko AL, Novikov FN, Stroilov VS, Stroganov OV, Chilov GG, Khodyreva SN, Lavrik OI, Titov IY, Svitan’ko IV. Rational design and synthesis of new PARP1 inhibitors. Mendeleev Communications 2012;22:15-7. [DOI: 10.1016/j.mencom.2012.01.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
184 Cho SH, Raybuck A, Wei M, Erickson J, Nam KT, Cox RG, Trochtenberg A, Thomas JW, Williams J, Boothby M. B cell-intrinsic and -extrinsic regulation of antibody responses by PARP14, an intracellular (ADP-ribosyl)transferase. J Immunol 2013;191:3169-78. [PMID: 23956424 DOI: 10.4049/jimmunol.1301106] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
185 Tsai MM, Lin PY, Cheng WL, Tsai CY, Chi HC, Chen CY, Tseng YH, Cheng YF, Chen CD, Liang Y. Overexpression of ADP-ribosylation factor 1 in human gastric carcinoma and its clinicopathological significance. Cancer Sci. 2012;103:1136-1144. [PMID: 22348287 DOI: 10.1111/j.1349-7006.2012.02243.x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
186 Chen Q, Kassab MA, Dantzer F, Yu X. PARP2 mediates branched poly ADP-ribosylation in response to DNA damage. Nat Commun 2018;9:3233. [PMID: 30104678 DOI: 10.1038/s41467-018-05588-5] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 12.0] [Reference Citation Analysis]
187 Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta 2009;1789:45-57. [PMID: 18603028 DOI: 10.1016/j.bbagrm.2008.06.005] [Cited by in Crossref: 234] [Cited by in F6Publishing: 206] [Article Influence: 16.7] [Reference Citation Analysis]
188 Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B, Colombelli J, Altmeyer M, Stelzer EH, Scheffzek K, Hottiger MO, Ladurner AG. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 2009;16:923-9. [PMID: 19680243 DOI: 10.1038/nsmb.1664] [Cited by in Crossref: 309] [Cited by in F6Publishing: 305] [Article Influence: 23.8] [Reference Citation Analysis]
189 Novikov FN, Stroylov VS, Stroganov OV, Kulkov V, Chilov GG. Developing novel approaches to improve binding energy estimation and virtual screening: a PARP case study. J Mol Model 2009;15:1337-47. [PMID: 19370366 DOI: 10.1007/s00894-009-0497-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
190 Gero D, Szabo C. Salvage of nicotinamide adenine dinucleotide plays a critical role in the bioenergetic recovery of post-hypoxic cardiomyocytes. Br J Pharmacol 2015;172:4817-32. [PMID: 26218637 DOI: 10.1111/bph.13252] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
191 Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol. 2009;156:713-727. [PMID: 19210748 DOI: 10.111/j.1476-5381.2008.00086.x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
192 Blenn C, Wyrsch P, Bader J, Bollhalder M, Althaus FR. Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death. Cell Mol Life Sci 2011;68:1455-66. [PMID: 20878536 DOI: 10.1007/s00018-010-0533-1] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 3.9] [Reference Citation Analysis]
193 Buzzo CL, Medina T, Branco LM, Lage SL, Ferreira LC, Amarante-Mendes GP, Hottiger MO, De Carvalho DD, Bortoluci KR. Epigenetic regulation of nitric oxide synthase 2, inducible (Nos2) by NLRC4 inflammasomes involves PARP1 cleavage. Sci Rep 2017;7:41686. [PMID: 28150715 DOI: 10.1038/srep41686] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
194 Benavente CA, Schnell SA, Jacobson EL. Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin. PLoS One 2012;7:e42276. [PMID: 22860104 DOI: 10.1371/journal.pone.0042276] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 4.4] [Reference Citation Analysis]
195 Valikhani M, Rahimian E, Ahmadi SE, Chegeni R, Safa M. Involvement of classic and alternative non-homologous end joining pathways in hematologic malignancies: targeting strategies for treatment. Exp Hematol Oncol 2021;10:51. [PMID: 34732266 DOI: 10.1186/s40164-021-00242-1] [Reference Citation Analysis]
196 Perina D, Mikoč A, Ahel J, Ćetković H, Žaja R, Ahel I. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair (Amst) 2014;23:4-16. [PMID: 24865146 DOI: 10.1016/j.dnarep.2014.05.003] [Cited by in Crossref: 83] [Cited by in F6Publishing: 83] [Article Influence: 10.4] [Reference Citation Analysis]
197 Colanzi A, Grimaldi G, Catara G, Valente C, Cericola C, Liberali P, Ronci M, Lalioti VS, Bruno A, Beccari AR, Urbani A, De Flora A, Nardini M, Bolognesi M, Luini A, Corda D. Molecular mechanism and functional role of brefeldin A-mediated ADP-ribosylation of CtBP1/BARS. Proc Natl Acad Sci U S A 2013;110:9794-9. [PMID: 23716697 DOI: 10.1073/pnas.1222413110] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
198 Zheng H, Wu J, Jin Z, Yan LJ. Protein Modifications as Manifestations of Hyperglycemic Glucotoxicity in Diabetes and Its Complications. Biochem Insights 2016;9:1-9. [PMID: 27042090 DOI: 10.4137/BCI.S36141] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
199 Guastafierro T, Cecchinelli B, Zampieri M, Reale A, Riggio G, Sthandier O, Zupi G, Calabrese L, Caiafa P. CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery. J Biol Chem 2008;283:21873-80. [PMID: 18539602 DOI: 10.1074/jbc.M801170200] [Cited by in Crossref: 98] [Cited by in F6Publishing: 59] [Article Influence: 7.0] [Reference Citation Analysis]
200 Janetzko J, Walker S. Aspartate Glycosylation Triggers Isomerization to Isoaspartate. J Am Chem Soc 2017;139:3332-5. [PMID: 28207246 DOI: 10.1021/jacs.6b12866] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
201 Massudi H, Grant R, Guillemin GJ, Braidy N. NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep 2012;17:28-46. [PMID: 22340513 DOI: 10.1179/1351000212Y.0000000001] [Cited by in Crossref: 79] [Cited by in F6Publishing: 43] [Article Influence: 7.9] [Reference Citation Analysis]
202 Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R, Winkler HC, Fischer D, Caflisch A, Hassa PO, Lüscher B, Hottiger MO. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 2013;20:502-7. [PMID: 23474714 DOI: 10.1038/nsmb.2521] [Cited by in Crossref: 206] [Cited by in F6Publishing: 198] [Article Influence: 22.9] [Reference Citation Analysis]
203 Li Y, Xie J, Li X, Fang J. Poly (ADP-ribosylation) of HMGB1 facilitates its acetylation and promotes HMGB1 translocation-associated chemotherapy-induced autophagy in leukaemia cells. Oncol Lett 2020;19:368-78. [PMID: 31897149 DOI: 10.3892/ol.2019.11116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
204 Keppler BR, Archer TK. Chromatin-modifying enzymes as therapeutic targets--Part 2. Expert Opin Ther Targets 2008;12:1457-67. [PMID: 18851700 DOI: 10.1517/14728222.12.11.1457] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
205 Fitzpatrick TB, Basset GJ, Borel P, Carrari F, DellaPenna D, Fraser PD, Hellmann H, Osorio S, Rothan C, Valpuesta V, Caris-Veyrat C, Fernie AR. Vitamin deficiencies in humans: can plant science help? Plant Cell 2012;24:395-414. [PMID: 22374394 DOI: 10.1105/tpc.111.093120] [Cited by in Crossref: 149] [Cited by in F6Publishing: 117] [Article Influence: 14.9] [Reference Citation Analysis]
206 Zhen Y, Zhang Y, Yu Y. A Cell-Line-Specific Atlas of PARP-Mediated Protein Asp/Glu-ADP-Ribosylation in Breast Cancer. Cell Rep 2017;21:2326-37. [PMID: 29166620 DOI: 10.1016/j.celrep.2017.10.106] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
207 Lindell Jonsson E, Erngren I, Engskog M, Haglöf J, Arvidsson T, Hedeland M, Petterson C, Laurell G, Nestor M. Exploring Radiation Response in Two Head and Neck Squamous Carcinoma Cell Lines Through Metabolic Profiling. Front Oncol 2019;9:825. [PMID: 31544064 DOI: 10.3389/fonc.2019.00825] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
208 David KK, Andrabi SA, Dawson TM, Dawson VL. Parthanatos, a messenger of death. Front Biosci (Landmark Ed) 2009;14:1116-28. [PMID: 19273119 DOI: 10.2741/3297] [Cited by in Crossref: 211] [Cited by in F6Publishing: 217] [Article Influence: 16.2] [Reference Citation Analysis]
209 Park SM, Li T, Wu S, Li WQ, Weinstock M, Qureshi AA, Cho E. Niacin intake and risk of skin cancer in US women and men. Int J Cancer 2017;140:2023-31. [PMID: 28152570 DOI: 10.1002/ijc.30630] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
210 Singh N, Pay SL, Bhandare SB, Arimpur U, Motea EA. Therapeutic Strategies and Biomarkers to Modulate PARP Activity for Targeted Cancer Therapy. Cancers (Basel) 2020;12:E972. [PMID: 32295316 DOI: 10.3390/cancers12040972] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
211 Liu C, Yu X. ADP-ribosyltransferases and poly ADP-ribosylation. Curr Protein Pept Sci 2015;16:491-501. [PMID: 25938242 DOI: 10.2174/1389203716666150504122435] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 6.7] [Reference Citation Analysis]
212 Kraus D, Reckenbeil J, Veit N, Kuerpig S, Meisenheimer M, Beier I, Stark H, Winter J, Probstmeier R. Targeting glucose transport and the NAD pathway in tumor cells with STF-31: a re-evaluation. Cell Oncol (Dordr). 2018;41:485-494. [PMID: 29949049 DOI: 10.1007/s13402-018-0385-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
213 Lucarini L, Durante M, Lanzi C, Pini A, Boccalini G, Calosi L, Moroni F, Masini E, Mannaioni G. HYDAMTIQ, a selective PARP-1 inhibitor, improves bleomycin-induced lung fibrosis by dampening the TGF-β/SMAD signalling pathway. J Cell Mol Med 2017;21:324-35. [PMID: 27704718 DOI: 10.1111/jcmm.12967] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
214 Mesquita I, Varela P, Belinha A, Gaifem J, Laforge M, Vergnes B, Estaquier J, Silvestre R. Exploring NAD+ metabolism in host-pathogen interactions. Cell Mol Life Sci 2016;73:1225-36. [PMID: 26718485 DOI: 10.1007/s00018-015-2119-4] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
215 Moyle PM, Muir TW. Method for the synthesis of mono-ADP-ribose conjugated peptides. J Am Chem Soc 2010;132:15878-80. [PMID: 20968292 DOI: 10.1021/ja1064312] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 3.4] [Reference Citation Analysis]
216 Eblimit A, Zaneveld SA, Liu W, Thomas K, Wang K, Li Y, Mardon G, Chen R. NMNAT1 E257K variant, associated with Leber Congenital Amaurosis (LCA9), causes a mild retinal degeneration phenotype. Exp Eye Res 2018;173:32-43. [PMID: 29674119 DOI: 10.1016/j.exer.2018.04.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
217 Scott CL, Swisher EM, Kaufmann SH. Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. J Clin Oncol 2015;33:1397-406. [PMID: 25779564 DOI: 10.1200/JCO.2014.58.8848] [Cited by in Crossref: 223] [Cited by in F6Publishing: 132] [Article Influence: 31.9] [Reference Citation Analysis]
218 Zhang XN, Dai Z, Cheng Q, Zhang Y. Chemoenzymatic Preparation of 4'-Thioribose NAD.. Curr Protoc Nucleic Acid Chem 2019;77:e83. [PMID: 30951610 DOI: 10.1002/cpnc.83] [Reference Citation Analysis]
219 Hurtado-Bagès S, Guberovic I, Buschbeck M. The MacroH2A1.1 - PARP1 Axis at the Intersection Between Stress Response and Metabolism. Front Genet 2018;9:417. [PMID: 30356649 DOI: 10.3389/fgene.2018.00417] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
220 Kelley MR, Fishel ML. DNA repair proteins as molecular targets for cancer therapeutics. Anticancer Agents Med Chem 2008;8:417-25. [PMID: 18473726 DOI: 10.2174/187152008784220294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 55] [Article Influence: 4.9] [Reference Citation Analysis]
221 Benavente CA, Jacobson EL. Niacin restriction upregulates NADPH oxidase and reactive oxygen species (ROS) in human keratinocytes. Free Radic Biol Med 2008;44:527-37. [PMID: 17997992 DOI: 10.1016/j.freeradbiomed.2007.10.006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 2.5] [Reference Citation Analysis]
222 Cyr AR, Domann FE. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 2011;15:551-89. [PMID: 20919933 DOI: 10.1089/ars.2010.3492] [Cited by in Crossref: 177] [Cited by in F6Publishing: 158] [Article Influence: 16.1] [Reference Citation Analysis]
223 Xu JX, Xiong W, Zeng Z, Tang Y, Wang YL, Xiao M, Li M, Li QS, Song GL, Kuang J. Effect of ART1 on the proliferation and migration of mouse colon carcinoma CT26 cells in vivo. Mol Med Rep 2017;15:1222-8. [PMID: 28138708 DOI: 10.3892/mmr.2017.6152] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
224 Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol. 2012;13:411-424. [PMID: 22713970 DOI: 10.1038/nrm3376] [Cited by in Crossref: 712] [Cited by in F6Publishing: 691] [Article Influence: 71.2] [Reference Citation Analysis]
225 Blaess M, Deigner HP. Derailed Ceramide Metabolism in Atopic Dermatitis (AD): A Causal Starting Point for a Personalized (Basic) Therapy. Int J Mol Sci 2019;20:E3967. [PMID: 31443157 DOI: 10.3390/ijms20163967] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
226 Nan L, Xie Q, Chen Z, Zhang Y, Chen Y, Li H, Lai W, Chen Y, Huang M. Involvement of PARP-1/AIF Signaling Pathway in Protective Effects of Gualou Guizhi Decoction Against Ischemia-Reperfusion Injury-Induced Apoptosis. Neurochem Res 2020;45:278-94. [PMID: 31792665 DOI: 10.1007/s11064-019-02912-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
227 Chen JK, Lin WL, Chen Z, Liu HW. PARP-1-dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability. Proc Natl Acad Sci U S A 2018;115:E1759-68. [PMID: 29432179 DOI: 10.1073/pnas.1713912115] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
228 Li J, Luthra S, Wang XH, Chandran UR, Sobol RW. Transcriptional profiling reveals elevated Sox2 in DNA polymerase ß null mouse embryonic fibroblasts. Am J Cancer Res 2012;2:699-713. [PMID: 23226616 DOI: 10.1158/1538-7445.am2012-699] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
229 Tanić M, Krivokuća A, Čavić M, Mladenović J, Plesinac Karapandžić V, Beck S, Radulović S, Susnjar S, Janković R. Molecular signature of response to preoperative radiotherapy in locally advanced breast cancer. Radiat Oncol 2018;13:193. [PMID: 30285791 DOI: 10.1186/s13014-018-1129-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
230 Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, Herson PS. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab 2011;31:2160-8. [PMID: 21587268 DOI: 10.1038/jcbfm.2011.77] [Cited by in Crossref: 74] [Cited by in F6Publishing: 78] [Article Influence: 6.7] [Reference Citation Analysis]
231 Shrubsole MJ, Shu XO, Li HL, Cai H, Yang G, Gao YT, Gao J, Zheng W. Dietary B vitamin and methionine intakes and breast cancer risk among Chinese women. Am J Epidemiol 2011;173:1171-82. [PMID: 21447479 DOI: 10.1093/aje/kwq491] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 4.2] [Reference Citation Analysis]
232 Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A, Hottiger MO. PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res 2010;38:6350-62. [PMID: 20525793 DOI: 10.1093/nar/gkq463] [Cited by in Crossref: 168] [Cited by in F6Publishing: 159] [Article Influence: 14.0] [Reference Citation Analysis]
233 Aung K, Kim P, Li Z, Joe A, Kvitko B, Alfano JR, He SY. Pathogenic Bacteria Target Plant Plasmodesmata to Colonize and Invade Surrounding Tissues. Plant Cell 2020;32:595-611. [PMID: 31888968 DOI: 10.1105/tpc.19.00707] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
234 Wang M, Yuan Z, Xie R, Ma Y, Liu X, Yu X. Structure-function analyses reveal the mechanism of the ARH3-dependent hydrolysis of ADP-ribosylation. J Biol Chem 2018;293:14470-80. [PMID: 30045870 DOI: 10.1074/jbc.RA118.004284] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
235 Zhang XN, Cheng Q, Chen J, Lam AT, Lu Y, Dai Z, Pei H, Evdokimov NM, Louie SG, Zhang Y. A ribose-functionalized NAD+ with unexpected high activity and selectivity for protein poly-ADP-ribosylation. Nat Commun 2019;10:4196. [PMID: 31519936 DOI: 10.1038/s41467-019-12215-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
236 Formentini L, Macchiarulo A, Cipriani G, Camaioni E, Rapizzi E, Pellicciari R, Moroni F, Chiarugi A. Poly(ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure. J Biol Chem 2009;284:17668-76. [PMID: 19411252 DOI: 10.1074/jbc.M109.002931] [Cited by in Crossref: 61] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
237 Sultana R, Islam M, Haque MA, Evamoni FZ, Imran ZM, Khanom J, Munim MA. Molecular docking based virtual screening of the breast cancer target NUDT5. Bioinformation 2019;15:784-9. [PMID: 31902977 DOI: 10.6026/97320630015784] [Reference Citation Analysis]
238 Hu B, Wu Z, Hergert P, Henke CA, Bitterman PB, Phan SH. Regulation of myofibroblast differentiation by poly(ADP-ribose) polymerase 1. Am J Pathol 2013;182:71-83. [PMID: 23260200 DOI: 10.1016/j.ajpath.2012.09.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
239 Wyrsch P, Blenn C, Bader J, Althaus FR. Cell death and autophagy under oxidative stress: roles of poly(ADP-Ribose) polymerases and Ca(2+). Mol Cell Biol 2012;32:3541-53. [PMID: 22751932 DOI: 10.1128/MCB.00437-12] [Cited by in Crossref: 57] [Cited by in F6Publishing: 32] [Article Influence: 5.7] [Reference Citation Analysis]
240 Janetzko J, Trauger SA, Lazarus MB, Walker S. How the glycosyltransferase OGT catalyzes amide bond cleavage. Nat Chem Biol 2016;12:899-901. [PMID: 27618188 DOI: 10.1038/nchembio.2173] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
241 Li C, Chung Y, Wu Y, Hunyadi A, Wang CCC, Chang F. Natural products development under epigenetic modulation in fungi. Phytochem Rev 2020;19:1323-40. [DOI: 10.1007/s11101-020-09684-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
242 Giannone PJ, Alcamo AA, Schanbacher BL, Nankervis CA, Besner GE, Bauer JA. Poly(ADP-ribose) polymerase-1: a novel therapeutic target in necrotizing enterocolitis. Pediatr Res 2011;70:67-71. [PMID: 21399558 DOI: 10.1203/PDR.0b013e31821928ff] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
243 Daniels CM, Ong SE, Leung AK. The Promise of Proteomics for the Study of ADP-Ribosylation. Mol Cell 2015;58:911-24. [PMID: 26091340 DOI: 10.1016/j.molcel.2015.06.012] [Cited by in Crossref: 136] [Cited by in F6Publishing: 122] [Article Influence: 19.4] [Reference Citation Analysis]
244 Hopp AK, Grüter P, Hottiger MO. Regulation of Glucose Metabolism by NAD+ and ADP-Ribosylation. Cells 2019;8:E890. [PMID: 31412683 DOI: 10.3390/cells8080890] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
245 Niu Y, Chen J, Qiao Y. Epigenetic Modifications in Tumor-Associated Macrophages: A New Perspective for an Old Foe. Front Immunol 2022;13:836223. [DOI: 10.3389/fimmu.2022.836223] [Reference Citation Analysis]
246 Liu C, Vyas A, Kassab MA, Singh AK, Yu X. The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res 2017;45:8129-41. [PMID: 28854736 DOI: 10.1093/nar/gkx565] [Cited by in Crossref: 78] [Cited by in F6Publishing: 78] [Article Influence: 15.6] [Reference Citation Analysis]
247 Prasad R, Horton JK, Wilson SH. Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC). DNA Repair (Amst) 2020;90:102850. [PMID: 32438305 DOI: 10.1016/j.dnarep.2020.102850] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
248 Samanta S, Rajasingh S, Cao T, Dawn B, Rajasingh J. Epigenetic dysfunctional diseases and therapy for infection and inflammation. Biochim Biophys Acta Mol Basis Dis 2017;1863:518-28. [PMID: 27919711 DOI: 10.1016/j.bbadis.2016.11.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
249 Sanbhnani S, Yeong FM. CHFR: a key checkpoint component implicated in a wide range of cancers. Cell Mol Life Sci 2012;69:1669-87. [PMID: 22159584 DOI: 10.1007/s00018-011-0892-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
250 Meyer RG, Meyer-Ficca ML, Whatcott CJ, Jacobson EL, Jacobson MK. Two small enzyme isoforms mediate mammalian mitochondrial poly(ADP-ribose) glycohydrolase (PARG) activity. Exp Cell Res 2007;313:2920-36. [PMID: 17509564 DOI: 10.1016/j.yexcr.2007.03.043] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 3.7] [Reference Citation Analysis]
251 Wu J, Jin Z, Zheng H, Yan LJ. Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes 2016;9:145-53. [PMID: 27274295 DOI: 10.2147/DMSO.S106087] [Cited by in Crossref: 21] [Cited by in F6Publishing: 36] [Article Influence: 3.5] [Reference Citation Analysis]
252 Zhou ZJ, Luo CB, Xin HY, Hu ZQ, Zhu GQ, Li J, Zhou SL. MACROD2 deficiency promotes hepatocellular carcinoma growth and metastasis by activating GSK-3β/β-catenin signaling. NPJ Genom Med 2020;5:15. [PMID: 32257385 DOI: 10.1038/s41525-020-0122-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
253 Ryu KW, Kim DS, Kraus WL. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem Rev. 2015;115:2453-2481. [PMID: 25575290 DOI: 10.1021/cr5004248] [Cited by in Crossref: 77] [Cited by in F6Publishing: 77] [Article Influence: 11.0] [Reference Citation Analysis]
254 Sinha S, Renganathan A, Nagendra PB, Bhat V, Mathew BS, Rao MRS. AEBP1 down regulation induced cell death pathway depends on PTEN status of glioma cells. Sci Rep 2019;9:14577. [PMID: 31601918 DOI: 10.1038/s41598-019-51068-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
255 Altmeyer M, Hottiger MO. Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging. Aging (Albany NY) 2009;1:458-69. [PMID: 20157531 DOI: 10.18632/aging.100052] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 4.4] [Reference Citation Analysis]
256 Mueller-Dieckmann C, Kernstock S, Mueller-Dieckmann J, Weiss MS, Koch-Nolte F. Structure of mouse ADP-ribosylhydrolase 3 (mARH3). Acta Crystallogr Sect F Struct Biol Cryst Commun 2008;64:156-62. [PMID: 18323597 DOI: 10.1107/S1744309108001413] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
257 Ryan K, Bolaňos B, Smith M, Palde PB, Cuenca PD, VanArsdale TL, Niessen S, Zhang L, Behenna D, Ornelas MA, Tran KT, Kaiser S, Lum L, Stewart A, Gajiwala KS. Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1. J Biol Chem 2021;296:100251. [PMID: 33361107 DOI: 10.1074/jbc.RA120.016573] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
258 Berthold CL, Wang H, Nordlund S, Högbom M. Mechanism of ADP-ribosylation removal revealed by the structure and ligand complexes of the dimanganese mono-ADP-ribosylhydrolase DraG. Proc Natl Acad Sci U S A 2009;106:14247-52. [PMID: 19706507 DOI: 10.1073/pnas.0905906106] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
259 Gagné JP, Pic E, Isabelle M, Krietsch J, Ethier C, Paquet E, Kelly I, Boutin M, Moon KM, Foster LJ, Poirier GG. Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Res 2012;40:7788-805. [PMID: 22669911 DOI: 10.1093/nar/gks486] [Cited by in Crossref: 102] [Cited by in F6Publishing: 98] [Article Influence: 10.2] [Reference Citation Analysis]
260 Salemi M, Galia A, Fraggetta F, La Corte C, Pepe P, La Vignera S, Improta G, Bosco P, Calogero AE. Poly (ADP-ribose) polymerase 1 protein expression in normal and neoplastic prostatic tissue. Eur J Histochem 2013;57:e13. [PMID: 23807292 DOI: 10.4081/ejh.2013.e13] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
261 Goellner EM, Grimme B, Brown AR, Lin YC, Wang XH, Sugrue KF, Mitchell L, Trivedi RN, Tang JB, Sobol RW. Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair. Cancer Res 2011;71:2308-17. [PMID: 21406402 DOI: 10.1158/0008-5472.CAN-10-3213] [Cited by in Crossref: 97] [Cited by in F6Publishing: 60] [Article Influence: 8.8] [Reference Citation Analysis]
262 Tkacz ID, Gupta SK, Volkov V, Romano M, Haham T, Tulinski P, Lebenthal I, Michaeli S. Analysis of spliceosomal proteins in Trypanosomatids reveals novel functions in mRNA processing. J Biol Chem 2010;285:27982-99. [PMID: 20592024 DOI: 10.1074/jbc.M109.095349] [Cited by in Crossref: 42] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
263 Britton S, Dernoncourt E, Delteil C, Froment C, Schiltz O, Salles B, Frit P, Calsou P. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 2014;42:9047-62. [PMID: 25030905 DOI: 10.1093/nar/gku601] [Cited by in Crossref: 106] [Cited by in F6Publishing: 100] [Article Influence: 13.3] [Reference Citation Analysis]
264 Lage SL, Longo C, Branco LM, da Costa TB, Buzzo Cde L, Bortoluci KR. Emerging Concepts about NAIP/NLRC4 Inflammasomes. Front Immunol. 2014;5:309. [PMID: 25071770 DOI: 10.3389/fimmu.2014.00309] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 4.1] [Reference Citation Analysis]
265 Fahie K, Hu P, Swatkoski S, Cotter RJ, Zhang Y, Wolberger C. Side chain specificity of ADP-ribosylation by a sirtuin. FEBS J 2009;276:7159-76. [PMID: 19895577 DOI: 10.1111/j.1742-4658.2009.07427.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
266 Roulston A, Shore GC. New strategies to maximize therapeutic opportunities for NAMPT inhibitors in oncology. Mol Cell Oncol 2016;3:e1052180. [PMID: 27308565 DOI: 10.1080/23723556.2015.1052180] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]