BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shi L, Jiang Q, Bushkin Y, Subbian S, Tyagi S. Biphasic Dynamics of Macrophage Immunometabolism during Mycobacterium tuberculosis Infection. mBio 2019;10:e02550-18. [PMID: 30914513 DOI: 10.1128/mBio.02550-18] [Cited by in Crossref: 67] [Cited by in F6Publishing: 70] [Article Influence: 16.8] [Reference Citation Analysis]
Number Citing Articles
1 Kim JK, Silwal P, Kim YJ, Jeon SM, Kim IS, Lee J, Heo JY, Lee S, Bae J, Kim J, Park JB, Jo E. Gamma-aminobutyric acid type A receptor alpha 4 coordinates autophagy, inflammation, and immunometabolism to promote innate immune activation. Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2023.2181915] [Reference Citation Analysis]
2 Zhang K, Sowers ML, Cherryhomes EI, Singh VK, Mishra A, Restrepo BI, Khan A, Jagannath C. Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Front Immunol 2023;14. [DOI: 10.3389/fimmu.2023.1121495] [Reference Citation Analysis]
3 Kim YJ, Park EJ, Lee SH, Silwal P, Kim JK, Yang JS, Whang J, Jang J, Kim JM, Jo EK. Dimethyl itaconate is effective in host-directed antimicrobial responses against mycobacterial infections through multifaceted innate immune pathways. Cell Biosci 2023;13:49. [PMID: 36882813 DOI: 10.1186/s13578-023-00992-x] [Reference Citation Analysis]
4 Ma X, Wang F, Zhen L, Cai Q. Hsa_circ_0001204 modulates inflammatory response of macrophages infected by Mycobacterium tuberculosis via TLR4/NF-κB signalling pathway. Clin Exp Pharmacol Physiol 2023;50:132-9. [PMID: 36048566 DOI: 10.1111/1440-1681.13716] [Reference Citation Analysis]
5 Mohareer K, Banerjee S. Mycobacterial infection alters host mitochondrial activity. International Review of Cell and Molecular Biology 2023. [DOI: 10.1016/bs.ircmb.2023.01.007] [Reference Citation Analysis]
6 Restrepo BI, Scordo JM, Aguillón-Durán GP, Ayala D, Quirino-Cerrillo AP, Loera-Salazar R, Cruz-González A, Caso JA, Joya-Ayala M, García-Oropesa EM, Salinas AB, Martinez L, Schlesinger LS, Torrelles JB, Turner J. Differential Role of Type 2 Diabetes as a Risk Factor for Tuberculosis in the Elderly versus Younger Adults. Pathogens 2022;11. [PMID: 36558885 DOI: 10.3390/pathogens11121551] [Reference Citation Analysis]
7 Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1027472] [Reference Citation Analysis]
8 Pan X, Zhu Q, Pan L, Sun J. Macrophage immunometabolism in inflammatory bowel diseases: From pathogenesis to therapy. Pharmacology & Therapeutics 2022;238:108176. [DOI: 10.1016/j.pharmthera.2022.108176] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Fan J, Yang Y, Wang L, Shang X, Zhang L, Sun H, Ma Y, Li Y, Wang J, Ma X, Ciccacci C. Study on the Correlation between Interleukin-27 and CXCL10 in Pulmonary Tuberculosis. Journal of Immunology Research 2022;2022:1-14. [DOI: 10.1155/2022/2932837] [Reference Citation Analysis]
10 Ortiz-Zapater E, Signes-Costa J, Montero P, Roger I. Lung Fibrosis and Fibrosis in the Lungs: Is It All about Myofibroblasts? Biomedicines 2022;10:1423. [PMID: 35740444 DOI: 10.3390/biomedicines10061423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Jiao Y, Cao S, Zhang Y, Tan Y, Zhou Y, Wang T, You Y, Chen H, Ren Y, Yang R, Du Z, Larock CN. Yersinia pestis -Induced Mitophagy That Balances Mitochondrial Homeostasis and mROS-Mediated Bactericidal Activity. Microbiol Spectr. [DOI: 10.1128/spectrum.00718-22] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Zhang B, Li H, Zhang J, Hang Y, Xu Y. Activating transcription factor 3 protects alveolar epithelial type II cells from Mycobacterium tuberculosis infection-induced inflammation. Tuberculosis 2022. [DOI: 10.1016/j.tube.2022.102227] [Reference Citation Analysis]
13 Karan KR, Trumpff C, Cross M, Engelstad KM, Marsland AL, McGuire PJ, Hirano M, Picard M. Leukocyte cytokine responses in adult patients with mitochondrial DNA defects. J Mol Med (Berl) 2022;100:963-71. [PMID: 35635577 DOI: 10.1007/s00109-022-02206-2] [Reference Citation Analysis]
14 Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022;13:747799. [DOI: 10.3389/fimmu.2022.747799] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Susser LI, Rayner KJ. Through the layers: how macrophages drive atherosclerosis across the vessel wall. Journal of Clinical Investigation 2022;132:e157011. [DOI: 10.1172/jci157011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Wigger GW, Bouton TC, Jacobson KR, Auld SC, Yeligar SM, Staitieh BS. The Impact of Alcohol Use Disorder on Tuberculosis: A Review of the Epidemiology and Potential Immunologic Mechanisms. Front Immunol 2022;13:864817. [PMID: 35432348 DOI: 10.3389/fimmu.2022.864817] [Reference Citation Analysis]
17 Zhao H, Shi L, Wang X, Yu X, Wang D. Sp1 transcription factor represses transcription of phosphatase and tensin homolog to aggravate lung injury in mice with type 2 diabetes mellitus-pulmonary tuberculosis. Bioengineered 2022;13:9928-44. [PMID: 35420971 DOI: 10.1080/21655979.2022.2062196] [Reference Citation Analysis]
18 de Oliveira Rezende A, Sabóia RS, da Costa AC, da Silva Monteiro DMP, Zagmignan A, Santiago LÂM, Carvalho RC, Pereira PVS, Junqueira-kipnis AP, de Sousa EM. Restricted Activation of the NF-κB Pathway in Individuals with Latent Tuberculosis Infection after HIF-1α Blockade. Biomedicines 2022;10:817. [DOI: 10.3390/biomedicines10040817] [Reference Citation Analysis]
19 Munansangu BSM, Kenyon C, Walzl G, Loxton AG, Kotze LA, du Plessis N. Immunometabolism of Myeloid-Derived Suppressor Cells: Implications for Mycobacterium tuberculosis Infection and Insights from Tumor Biology. Int J Mol Sci 2022;23:3512. [PMID: 35408873 DOI: 10.3390/ijms23073512] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Yang S, Sui S, Qin Y, Chen H, Sha S, Liu X, Deng G, Ma Y. Protein O-mannosyltransferase Rv1002c contributes to low cell permeability, biofilm formation in vitro, and mycobacterial survival in mice. APMIS 2022;130:181-92. [PMID: 34978741 DOI: 10.1111/apm.13204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Babunovic GH, DeJesus MA, Bosch B, Chase MR, Barbier T, Dickey AK, Bryson BD, Rock JM, Fortune SM. CRISPR Interference Reveals That All-Trans-Retinoic Acid Promotes Macrophage Control of Mycobacterium tuberculosis by Limiting Bacterial Access to Cholesterol and Propionyl Coenzyme A. mBio 2022;13:e0368321. [PMID: 35038923 DOI: 10.1128/mbio.03683-21] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
22 López-Agudelo VA, Baena A, Barrera V, Cabarcas F, Alzate JF, Beste DJV, Ríos-Estepa R, Barrera LF. Dual RNA Sequencing of Mycobacterium tuberculosis-Infected Human Splenic Macrophages Reveals a Strain-Dependent Host-Pathogen Response to Infection. Int J Mol Sci 2022;23:1803. [PMID: 35163725 DOI: 10.3390/ijms23031803] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
23 Cui HR, Zhang JY, Cheng XH, Zheng JX, Zhang Q, Zheng R, You LZ, Han DR, Shang HC. Immunometabolism at the service of traditional Chinese medicine. Pharmacol Res 2022;:106081. [PMID: 35033650 DOI: 10.1016/j.phrs.2022.106081] [Reference Citation Analysis]
24 Jiang Q, Qiu Y, Kurland IJ, Drlica K, Subbian S, Tyagi S, Shi L. Glutamine is required for M1-like polarization in response to Mycobacterium tuberculosis infection.. [DOI: 10.1101/2022.01.11.475775] [Reference Citation Analysis]
25 Lundahl MLE, Mitermite M, Ryan DG, Case S, Williams NC, Yang M, Lynch RI, Lagan E, Lebre FM, Gorman AL, Stojkovic B, Bracken AP, Frezza C, Sheedy FJ, Scanlan EM, O'Neill LAJ, Gordon SV, Lavelle EC. Macrophage innate training induced by IL-4 and IL-13 activation enhances OXPHOS driven anti-mycobacterial responses. Elife 2022;11. [PMID: 36173104 DOI: 10.7554/eLife.74690] [Reference Citation Analysis]
26 Karan KR, Trumpff C, Cross M, Englestad KM, Marsland AL, Mcguire P, Hirano M, Picard M. Leukocyte cytokine responses in adult patients with mitochondrial DNA defects.. [DOI: 10.1101/2021.12.13.472449] [Reference Citation Analysis]
27 Vavougios GD, Zarogiannis S, Barh D, Breza M, Krogfelt KA, Stamoulis G, Gourgoulianis KI. Innate immunity and metal ion trafficking pathway perturbations in idiopathic Parkinson's disease and Tuberculosis: A comparative transcriptomics approach. Brain Disorders 2021;4:100025. [DOI: 10.1016/j.dscb.2021.100025] [Reference Citation Analysis]
28 Llibre A, Dedicoat M, Burel JG, Demangel C, O'Shea MK, Mauro C. Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Front Immunol 2021;12:747387. [PMID: 34630426 DOI: 10.3389/fimmu.2021.747387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Guo Y, Xu D, Fang Z, Xu S, Liu J, Xu Z, Zhou J, Bu Z, Zhao Y, He J, Yang X, Pan W, Shen Y, Sun F. Metabolomics Analysis of Splenic CD19+ B Cells in Mice Chronically Infected With Echinococcus granulosus sensu lato Protoscoleces. Front Vet Sci 2021;8:718743. [PMID: 34552973 DOI: 10.3389/fvets.2021.718743] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Llibre A, Grudzinska FS, O'Shea MK, Duffy D, Thickett DR, Mauro C, Scott A. Lactate cross-talk in host-pathogen interactions. Biochem J 2021;478:3157-78. [PMID: 34492096 DOI: 10.1042/BCJ20210263] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
31 Liu F, Dong Z, Lin Y, Yang H, Wang P, Zhang Y. MicroRNA‑502‑3p promotes Mycobacterium tuberculosis survival in macrophages by modulating the inflammatory response by targeting ROCK1. Mol Med Rep 2021;24:753. [PMID: 34476503 DOI: 10.3892/mmr.2021.12393] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Jiang Q, Shi L. Coordination of the Uptake and Metabolism of Amino Acids in Mycobacterium tuberculosis-Infected Macrophages. Front Immunol 2021;12:711462. [PMID: 34326848 DOI: 10.3389/fimmu.2021.711462] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 de Lima JB, da Silva Fonseca LP, Xavier LP, de Matos Macchi B, Cassoli JS, da Silva EO, da Silva Valadares RB, do Nascimento JLM, Santos AV, de Sena CBC. Culture of Mycobacterium smegmatis in Different Carbon Sources to Induce In Vitro Cholesterol Consumption Leads to Alterations in the Host Cells after Infection: A Macrophage Proteomics Analysis. Pathogens 2021;10:662. [PMID: 34071265 DOI: 10.3390/pathogens10060662] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Wan Z, Lan R, Zhou Y, Xu Y, Wang Z, Luo Z, Miao J. Taurine-Mediated IDOL Contributes to Resolution of Streptococcus uberis Infection. Infect Immun 2021;89:e00788-20. [PMID: 33593888 DOI: 10.1128/IAI.00788-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
35 Meng L, Lu C, Wu B, Lan C, Mo L, Chen C, Wang X, Zhang N, Lan L, Wang Q, Zeng X, Li X, Tang S. Taurine Antagonizes Macrophages M1 Polarization by Mitophagy-Glycolysis Switch Blockage via Dragging SAM-PP2Ac Transmethylation. Front Immunol 2021;12:648913. [PMID: 33912173 DOI: 10.3389/fimmu.2021.648913] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
36 Park JH, Shim D, Kim KES, Lee W, Shin SJ. Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2021;11:635335. [PMID: 33796480 DOI: 10.3389/fcimb.2021.635335] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
37 Prakhar P, Bhatt B, Mukherjee T, Lohia GK, Kolthur-seetharam U, Sundaresan NR, Rajmani R, Balaji KN. G9a and Sirtuin6 epigenetically modulate host cholesterol accumulation to facilitate mycobacterial survival.. [DOI: 10.1101/2021.02.27.433201] [Reference Citation Analysis]
38 Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021;11:624607. [PMID: 33718271 DOI: 10.3389/fcimb.2021.624607] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
39 Dow CT, Chan ED. What is the evidence that mycobacteria are associated with the pathogenesis of Sjogren's syndrome? J Transl Autoimmun 2021;4:100085. [PMID: 33665595 DOI: 10.1016/j.jtauto.2021.100085] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
40 Smulan LJ, Martinez N, Kiritsy MC, Kativhu C, Cavallo K, Sassetti CM, Singhal A, Remold HG, Kornfeld H. Sirtuin 3 Downregulation in Mycobacterium tuberculosis-Infected Macrophages Reprograms Mitochondrial Metabolism and Promotes Cell Death. mBio 2021;12:e03140-20. [PMID: 33531400 DOI: 10.1128/mBio.03140-20] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
41 Martin M, deVisch A, Boudehen Y, Barthe P, Gutierrez C, Turapov O, Aydogan T, Heriaud L, Gracy J, Neyrolles O, Mukamolova GV, Letourneur F, Cohen-gonsaud M. A Mycobacterium tuberculosis effector targets mitochondrion, controls energy metabolism and limits cytochrome c exit.. [DOI: 10.1101/2021.01.31.428746] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Smulan L, Kornfeld H, Singhal A. Sirtuin Deacetylases: Linking Mycobacterial Infection and Host Metabolism. Advances in Host-Directed Therapies Against Tuberculosis 2021. [DOI: 10.1007/978-3-030-56905-1_2] [Reference Citation Analysis]
43 Jiang Q, Gennaro ML, Shi L. HIF-1α as a Potential Therapeutic Target for Tuberculosis Treatment. Advances in Host-Directed Therapies Against Tuberculosis 2021. [DOI: 10.1007/978-3-030-56905-1_4] [Reference Citation Analysis]
44 Paik S, Jo EK. An Interplay Between Autophagy and Immunometabolism for Host Defense Against Mycobacterial Infection. Front Immunol 2020;11:603951. [PMID: 33262773 DOI: 10.3389/fimmu.2020.603951] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
45 Heaster TM, Humayun M, Yu J, Beebe DJ, Skala MC. Autofluorescence Imaging of 3D Tumor-Macrophage Microscale Cultures Resolves Spatial and Temporal Dynamics of Macrophage Metabolism. Cancer Res 2020;80:5408-23. [PMID: 33093167 DOI: 10.1158/0008-5472.CAN-20-0831] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
46 Mohareer K, Medikonda J, Vadankula GR, Banerjee S. Mycobacterial Control of Host Mitochondria: Bioenergetic and Metabolic Changes Shaping Cell Fate and Infection Outcome. Front Cell Infect Microbiol 2020;10:457. [PMID: 33102245 DOI: 10.3389/fcimb.2020.00457] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
47 Thiriot JD, Martinez-Martinez YB, Endsley JJ, Torres AG. Hacking the host: exploitation of macrophage polarization by intracellular bacterial pathogens. Pathog Dis 2020;78:ftaa009. [PMID: 32068828 DOI: 10.1093/femspd/ftaa009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
48 Cumming BM, Pacl HT, Steyn AJC. Relevance of the Warburg Effect in Tuberculosis for Host-Directed Therapy. Front Cell Infect Microbiol 2020;10:576596. [PMID: 33072629 DOI: 10.3389/fcimb.2020.576596] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
49 Hackett EE, Sheedy FJ. An Army Marches on Its Stomach: Metabolic Intermediates as Antimicrobial Mediators in Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2020;10:446. [PMID: 32984072 DOI: 10.3389/fcimb.2020.00446] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
50 Savulescu AF, Jacobs C, Negishi Y, Davignon L, Mhlanga MM. Pinpointing Cell Identity in Time and Space. Front Mol Biosci 2020;7:209. [PMID: 32923457 DOI: 10.3389/fmolb.2020.00209] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
51 Kim JS, Kim YR, Yang CS. Host-Directed Therapy in Tuberculosis: Targeting Host Metabolism. Front Immunol 2020;11:1790. [PMID: 32903583 DOI: 10.3389/fimmu.2020.01790] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
52 López-Agudelo VA, Mendum TA, Laing E, Wu H, Baena A, Barrera LF, Beste DJV, Rios-Estepa R. A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks. PLoS Comput Biol 2020;16:e1007533. [PMID: 32542021 DOI: 10.1371/journal.pcbi.1007533] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
53 Shankaran D, Singh A, Dawa S, Prabhakar A, Gandotra S, Rao V. The antidepressant sertraline provides a novel host directed therapy module for augmenting TB therapy.. [DOI: 10.1101/2020.05.26.115808] [Reference Citation Analysis]
54 Xu J, Zhou Y, Yang Y, Lv C, Liu X, Wang Y. Involvement of ABC-transporters and acyltransferase 1 in intracellular cholesterol-mediated autophagy in bovine alveolar macrophages in response to the Bacillus Calmette-Guerin (BCG) infection. BMC Immunol 2020;21:26. [PMID: 32397995 DOI: 10.1186/s12865-020-00356-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
55 Howard NC, Khader SA. Immunometabolism during Mycobacterium tuberculosis Infection. Trends Microbiol 2020;28:832-50. [PMID: 32409147 DOI: 10.1016/j.tim.2020.04.010] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
56 Shen Y, Xun J, Song W, Wang Z, Wang J, Liu L, Zhang R, Qi T, Tang Y, Chen J, Sun J, Lu H. Discovery of Potential Plasma Biomarkers for Tuberculosis in HIV-Infected Patients by Data-Independent Acquisition-Based Quantitative Proteomics. Infect Drug Resist 2020;13:1185-96. [PMID: 32425558 DOI: 10.2147/IDR.S245460] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Segura-Cerda CA, Marquina-Castillo B, Lozano-Ordaz V, Mata-Espinosa D, Barrios-Payán JA, López-Torres MO, Aceves-Sánchez MJ, Bielefeldt-Ohmann H, Hernández-Pando R, Flores-Valdez MA. BCG and BCGΔBCG1419c protect type 2 diabetic mice against tuberculosis via different participation of T and B lymphocytes, dendritic cells and pro-inflammatory cytokines. NPJ Vaccines 2020;5:21. [PMID: 32194998 DOI: 10.1038/s41541-020-0169-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
58 Tiku V, Tan MW, Dikic I. Mitochondrial Functions in Infection and Immunity. Trends Cell Biol 2020;30:263-75. [PMID: 32200805 DOI: 10.1016/j.tcb.2020.01.006] [Cited by in Crossref: 132] [Cited by in F6Publishing: 145] [Article Influence: 44.0] [Reference Citation Analysis]
59 Wagner A, Wang C, Detomaso D, Avila-pacheco J, Zaghouani S, Fessler J, Eyzaguirre S, Akama-garren E, Pierce K, Ron-harel N, Douglas VP, Haigis M, Sobel RA, Clish C, Regev A, Kuchroo VK, Yosef N. In Silico Modeling of Metabolic State in Single Th17 Cells Reveals Novel Regulators of Inflammation and Autoimmunity.. [DOI: 10.1101/2020.01.23.912717] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
60 Kumar R, Singh P, Kolloli A, Shi L, Bushkin Y, Tyagi S, Subbian S. Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Front Mol Biosci 2019;6:105. [PMID: 31681793 DOI: 10.3389/fmolb.2019.00105] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 11.5] [Reference Citation Analysis]
61 Wilson JL, Mayr HK, Weichhart T. Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease. Front Immunol 2019;10:2265. [PMID: 31681260 DOI: 10.3389/fimmu.2019.02265] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 9.3] [Reference Citation Analysis]