BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hong GK, Gulley ML, Feng WH, Delecluse HJ, Holley-Guthrie E, Kenney SC. Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol. 2005;79:13993-14003. [PMID: 16254335 DOI: 10.1128/jvi.79.22.13993-14003.2005] [Cited by in Crossref: 155] [Cited by in F6Publishing: 98] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Penkert RR, Kalejta RF. Tegument protein control of latent herpesvirus establishment and animation. Herpesviridae 2011;2:3. [PMID: 21429246 DOI: 10.1186/2042-4280-2-3] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 4.1] [Reference Citation Analysis]
2 Yang J, Deng W, Hau PM, Liu J, Lau VM, Cheung AL, Huen MS, Tsao SW. Epstein-Barr virus BZLF1 protein impairs accumulation of host DNA damage proteins at damage sites in response to DNA damage. Lab Invest 2015;95:937-50. [PMID: 26006018 DOI: 10.1038/labinvest.2015.69] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
3 Burns DM, Ryan GB, Harvey CM, Nagy E, Hughes S, Murray PG, Russell NH, Fox CP, Long HM. Non-uniform in vivo Expansion of Epstein-Barr Virus-Specific T-Cells Following Donor Lymphocyte Infusion for Post-transplant Lymphoproliferative Disease. Front Immunol 2019;10:2489. [PMID: 31736946 DOI: 10.3389/fimmu.2019.02489] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Kawada JI, Ando S, Torii Y, Watanabe T, Sato Y, Ito Y, Kimura H. Antitumor effects of duvelisib on Epstein-Barr virus-associated lymphoma cells. Cancer Med 2018;7:1275-84. [PMID: 29522278 DOI: 10.1002/cam4.1311] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
5 Lupey-Green LN, Moquin SA, Martin KA, McDevitt SM, Hulse M, Caruso LB, Pomerantz RT, Miranda JL, Tempera I. PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter. Virology 2017;507:220-30. [PMID: 28456021 DOI: 10.1016/j.virol.2017.04.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
6 Choi CK, Ho DN, Hui KF, Kao RY, Chiang AK. Identification of Novel Small Organic Compounds with Diverse Structures for the Induction of Epstein-Barr Virus (EBV) Lytic Cycle in EBV-Positive Epithelial Malignancies. PLoS One 2015;10:e0145994. [PMID: 26717578 DOI: 10.1371/journal.pone.0145994] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
7 Morales-Sánchez A, Fuentes-Panana EM. The Immunomodulatory Capacity of an Epstein-Barr Virus Abortive Lytic Cycle: Potential Contribution to Viral Tumorigenesis. Cancers (Basel) 2018;10:E98. [PMID: 29601503 DOI: 10.3390/cancers10040098] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
8 Morales-Sánchez A, Fuentes-Pananá EM. Human viruses and cancer. Viruses. 2014;6:4047-4079. [PMID: 25341666 DOI: 10.3390/v6104047] [Cited by in Crossref: 84] [Cited by in F6Publishing: 71] [Article Influence: 12.0] [Reference Citation Analysis]
9 Rivera-Soto R, Damania B. Modulation of Angiogenic Processes by the Human Gammaherpesviruses, Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus. Front Microbiol 2019;10:1544. [PMID: 31354653 DOI: 10.3389/fmicb.2019.01544] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
10 Frey TR, Akinyemi IA, Burton EM, Bhaduri-McIntosh S, McIntosh MT. An Ancestral Retrovirus Envelope Protein Regulates Persistent Gammaherpesvirus Lifecycles. Front Microbiol 2021;12:708404. [PMID: 34434177 DOI: 10.3389/fmicb.2021.708404] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Yin Q, Sides M, Parsons CH, Flemington EK, Lasky JA. Arsenic trioxide inhibits EBV reactivation and promotes cell death in EBV-positive lymphoma cells. Virol J 2017;14:121. [PMID: 28637474 DOI: 10.1186/s12985-017-0784-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
12 Song H, Lim Y, Im H, Bae JM, Kang GH, Ahn J, Baek D, Kim TY, Yoon SS, Koh Y. Interpretation of EBV infection in pan-cancer genome considering viral life cycle: LiEB (Life cycle of Epstein-Barr virus). Sci Rep 2019;9:3465. [PMID: 30837539 DOI: 10.1038/s41598-019-39706-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
13 Andrei G, Trompet E, Snoeck R. Novel Therapeutics for Epstein⁻Barr Virus. Molecules 2019;24:E997. [PMID: 30871092 DOI: 10.3390/molecules24050997] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
14 Ondondo B, Faulkner L, Williams NA, Morgan AJ, Morgan DJ. The B subunit of Escherichia coli enterotoxin helps control the in vivo growth of solid tumors expressing the Epstein-Barr virus latent membrane protein 2A. Cancer Med 2015;4:457-71. [PMID: 25641882 DOI: 10.1002/cam4.380] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
15 Traylen CM, Patel HR, Fondaw W, Mahatme S, Williams JF, Walker LR, Dyson OF, Arce S, Akula SM. Virus reactivation: a panoramic view in human infections. Future Virol 2011;6:451-63. [PMID: 21799704 DOI: 10.2217/fvl.11.21] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
16 Rennekamp AJ, Wang P, Lieberman PM. Evidence for DNA hairpin recognition by Zta at the Epstein-Barr virus origin of lytic replication. J Virol 2010;84:7073-82. [PMID: 20444899 DOI: 10.1128/JVI.02666-09] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
17 Gotoh K, Ito Y, Maruo S, Takada K, Mizuno T, Teranishi M, Nakata S, Nakashima T, Iwata S, Goshima F, Nakamura S, Kimura H. Replication of Epstein-Barr virus primary infection in human tonsil tissue explants. PLoS One 2011;6:e25490. [PMID: 21998663 DOI: 10.1371/journal.pone.0025490] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
18 Ma SD, Yu X, Mertz JE, Gumperz JE, Reinheim E, Zhou Y, Tang W, Burlingham WJ, Gulley ML, Kenney SC. An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J Virol 2012;86:7976-87. [PMID: 22623780 DOI: 10.1128/JVI.00770-12] [Cited by in Crossref: 84] [Cited by in F6Publishing: 63] [Article Influence: 9.3] [Reference Citation Analysis]
19 Bilger A, Plowshay J, Ma S, Nawandar D, Barlow EA, Romero-Masters JC, Bristol JA, Li Z, Tsai MH, Delecluse HJ, Kenney SC. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication. Oncotarget 2017;8:44266-80. [PMID: 28574826 DOI: 10.18632/oncotarget.17863] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 10.7] [Reference Citation Analysis]
20 Lapsia S, Koganti S, Spadaro S, Rajapakse R, Chawla A, Bhaduri-McIntosh S. Anti-TNFα therapy for inflammatory bowel diseases is associated with Epstein-Barr virus lytic activation. J Med Virol 2016;88:312-8. [PMID: 26307954 DOI: 10.1002/jmv.24331] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
21 Jones RJ, Singh RK, Shirazi F, Wan J, Wang H, Wang X, Ha MJ, Baljevic M, Kuiatse I, Davis RE, Orlowski RZ. Intravenous Immunoglobulin G Suppresses Heat Shock Protein (HSP)-70 Expression and Enhances the Activity of HSP90 and Proteasome Inhibitors. Front Immunol 2020;11:1816. [PMID: 32903557 DOI: 10.3389/fimmu.2020.01816] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Hill ER, Koganti S, Zhi J, Megyola C, Freeman AF, Palendira U, Tangye SG, Farrell PJ, Bhaduri-McIntosh S. Signal transducer and activator of transcription 3 limits Epstein-Barr virus lytic activation in B lymphocytes. J Virol 2013;87:11438-46. [PMID: 23966384 DOI: 10.1128/JVI.01762-13] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
23 Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16:789-802. [PMID: 27687982 DOI: 10.1038/nrc.2016.92] [Cited by in Crossref: 296] [Cited by in F6Publishing: 287] [Article Influence: 59.2] [Reference Citation Analysis]
24 Strong MJ, O'Grady T, Lin Z, Xu G, Baddoo M, Parsons C, Zhang K, Taylor CM, Flemington EK. Epstein-Barr virus and human herpesvirus 6 detection in a non-Hodgkin's diffuse large B-cell lymphoma cohort by using RNA sequencing. J Virol 2013;87:13059-62. [PMID: 24049168 DOI: 10.1128/JVI.02380-13] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
25 Granai M, Ambrosio MR, Akarca A, Mundo L, Vergoni F, Santi R, Mancini V, di Stefano G, Amato T, Bellan C, Puccini B, Sorrentino E, Naresh KN, Leoncini L, Marafioti T, Lazzi S. Role of Epstein-Barr virus in transformation of follicular lymphoma to diffuse large B-cell lymphoma: a case report and review of the literature. Haematologica 2019;104:e269-73. [PMID: 30846502 DOI: 10.3324/haematol.2018.215053] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
26 Wu CC, Fang CY, Hsu HY, Chuang HY, Cheng YJ, Chen YJ, Chou SP, Huang SY, Lin SF, Chang Y, Tsai CH, Chen JY. EBV reactivation as a target of luteolin to repress NPC tumorigenesis. Oncotarget 2016;7:18999-9017. [PMID: 26967558 DOI: 10.18632/oncotarget.7967] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
27 Rennekamp AJ, Lieberman PM. Initiation of lytic DNA replication in Epstein-Barr virus: search for a common family mechanism. Future Virol 2010;5:65-83. [PMID: 22468146 DOI: 10.2217/fvl.09.69] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
28 Gargouri B, Van Pelt J, El Feki Ael F, Attia H, Lassoued S. Induction of Epstein-Barr virus (EBV) lytic cycle in vitro causes oxidative stress in lymphoblastoid B cell lines. Mol Cell Biochem 2009;324:55-63. [PMID: 19082543 DOI: 10.1007/s11010-008-9984-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
29 Garolla A, Vitagliano A, Muscianisi F, Valente U, Ghezzi M, Andrisani A, Ambrosini G, Foresta C. Role of Viral Infections in Testicular Cancer Etiology: Evidence From a Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2019;10:355. [PMID: 31263452 DOI: 10.3389/fendo.2019.00355] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
30 Koganti S, de la Paz A, Freeman AF, Bhaduri-McIntosh S. B lymphocytes from patients with a hypomorphic mutation in STAT3 resist Epstein-Barr virus-driven cell proliferation. J Virol 2014;88:516-24. [PMID: 24173212 DOI: 10.1128/JVI.02601-13] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
31 Wang P, Rennekamp AJ, Yuan Y, Lieberman PM. Topoisomerase I and RecQL1 function in Epstein-Barr virus lytic reactivation. J Virol 2009;83:8090-8. [PMID: 19494003 DOI: 10.1128/JVI.02379-08] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
32 Feng WH, Kraus RJ, Dickerson SJ, Lim HJ, Jones RJ, Yu X, Mertz JE, Kenney SC. ZEB1 and c-Jun levels contribute to the establishment of highly lytic Epstein-Barr virus infection in gastric AGS cells. J Virol 2007;81:10113-22. [PMID: 17626078 DOI: 10.1128/JVI.00692-07] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 3.1] [Reference Citation Analysis]
33 Greijer AE, Stevens SJ, Verkuijlen SA, Juwana H, Fleig SC, Verschuuren EA, Hepkema BG, Cornelissen JJ, Brooimans RA, Verdonck LF, Middeldorp JM. Variable EBV DNA load distributions and heterogeneous EBV mRNA expression patterns in the circulation of solid organ versus stem cell transplant recipients. Clin Dev Immunol 2012;2012:543085. [PMID: 23346186 DOI: 10.1155/2012/543085] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
34 Kenney SC, Mertz JE. Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol. 2014;26:60-68. [PMID: 24457012 DOI: 10.1016/j.semcancer.2014.01.002] [Cited by in Crossref: 151] [Cited by in F6Publishing: 145] [Article Influence: 21.6] [Reference Citation Analysis]
35 Williams MV, Cox B, Ariza ME. Herpesviruses dUTPases: A New Family of Pathogen-Associated Molecular Pattern (PAMP) Proteins with Implications for Human Disease. Pathogens 2016;6:E2. [PMID: 28036046 DOI: 10.3390/pathogens6010002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
36 Williams M, Ariza ME. EBV Positive Diffuse Large B Cell Lymphoma and Chronic Lymphocytic Leukemia Patients Exhibit Increased Anti-dUTPase Antibodies. Cancers (Basel) 2018;10:E129. [PMID: 29723986 DOI: 10.3390/cancers10050129] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Wang M, Gu B, Chen X, Wang Y, Li P, Wang K. The Function and Therapeutic Potential of Epstein-Barr Virus-Encoded MicroRNAs in Cancer. Mol Ther Nucleic Acids 2019;17:657-68. [PMID: 31400608 DOI: 10.1016/j.omtn.2019.07.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
38 Damania B, Münz C. Immunodeficiencies that predispose to pathologies by human oncogenic γ-herpesviruses. FEMS Microbiol Rev 2019;43:181-92. [PMID: 30649299 DOI: 10.1093/femsre/fuy044] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
39 Ambrosio MR, De Falco G, Gozzetti A, Rocca BJ, Amato T, Mourmouras V, Gazaneo S, Mundo L, Candi V, Piccaluga PP, Cusi MG, Leoncini L, Lazzi S. Plasmablastic transformation of a pre-existing plasmacytoma: a possible role for reactivation of Epstein Barr virus infection. Haematologica 2014;99:e235-7. [PMID: 25193957 DOI: 10.3324/haematol.2014.111872] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
40 Linnerbauer S, Behrends U, Adhikary D, Witter K, Bornkamm GW, Mautner J. Virus and autoantigen-specific CD4+ T cells are key effectors in a SCID mouse model of EBV-associated post-transplant lymphoproliferative disorders. PLoS Pathog 2014;10:e1004068. [PMID: 24853673 DOI: 10.1371/journal.ppat.1004068] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
41 Whitehurst CB, Li G, Montgomery SA, Montgomery ND, Su L, Pagano JS. Knockout of Epstein-Barr virus BPLF1 retards B-cell transformation and lymphoma formation in humanized mice. MBio. 2015;6:e01574-e01515. [PMID: 26489865 DOI: 10.1128/mbio.01574-15] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
42 Gulley ML, Tang W. Using Epstein-Barr viral load assays to diagnose, monitor, and prevent posttransplant lymphoproliferative disorder. Clin Microbiol Rev. 2010;23:350-366. [PMID: 20375356 DOI: 10.1128/cmr.00006-09] [Cited by in Crossref: 157] [Cited by in F6Publishing: 52] [Article Influence: 14.3] [Reference Citation Analysis]
43 Kanai K, Satoh Y, Yamanaka H, Kawaguchi A, Horie K, Sugata K, Hoshikawa Y, Sata T, Sairenji T. The vIL-10 gene of the Epstein-Barr virus (EBV) is conserved in a stable manner except for a few point mutations in various EBV isolates. Virus Genes 2007;35:563-9. [PMID: 17763933 DOI: 10.1007/s11262-007-0153-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
44 McHugh D, Caduff N, Murer A, Engelmann C, Deng Y, Zdimerova H, Zens K, Chijioke O, Münz C. Infection and immune control of human oncogenic γ-herpesviruses in humanized mice. Philos Trans R Soc Lond B Biol Sci 2019;374:20180296. [PMID: 30955487 DOI: 10.1098/rstb.2018.0296] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
45 Frey TR, Brathwaite J, Li X, Burgula S, Akinyemi IA, Agarwal S, Burton EM, Ljungman M, McIntosh MT, Bhaduri-McIntosh S. Nascent Transcriptomics Reveal Cellular Prolytic Factors Upregulated Upstream of the Latent-to-Lytic Switch Protein of Epstein-Barr Virus. J Virol 2020;94:e01966-19. [PMID: 31941784 DOI: 10.1128/JVI.01966-19] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
46 Li X, Akinyemi IA, You JK, Rezaei MA, Li C, McIntosh MT, Del Poeta M, Bhaduri-McIntosh S. A Mechanism-Based Targeted Screen To Identify Epstein-Barr Virus-Directed Antiviral Agents. J Virol 2020;94:e01179-20. [PMID: 32796077 DOI: 10.1128/JVI.01179-20] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Van Sciver N, Ohashi M, Pauly NP, Bristol JA, Nelson SE, Johannsen EC, Kenney SC. Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathog 2021;17:e1009783. [PMID: 34339458 DOI: 10.1371/journal.ppat.1009783] [Reference Citation Analysis]
48 Sinclair AJ. Unexpected structure of Epstein-Barr virus lytic cycle activator Zta. Trends Microbiol 2006;14:289-91. [PMID: 16730442 DOI: 10.1016/j.tim.2006.05.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.0] [Reference Citation Analysis]
49 Wu CC, Fang CY, Huang SY, Chiu SH, Lee CH, Chen JY. Perspective: Contribution of Epstein-Barr virus (EBV) Reactivation to the Carcinogenicity of Nasopharyngeal Cancer Cells. Cancers (Basel) 2018;10:E120. [PMID: 29673164 DOI: 10.3390/cancers10040120] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
50 Pavlova S, Feederle R, Gärtner K, Fuchs W, Granzow H, Delecluse HJ. An Epstein-Barr virus mutant produces immunogenic defective particles devoid of viral DNA. J Virol 2013;87:2011-22. [PMID: 23236073 DOI: 10.1128/JVI.02533-12] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
51 Sato Y, Kamura T, Shirata N, Murata T, Kudoh A, Iwahori S, Nakayama S, Isomura H, Nishiyama Y, Tsurumi T. Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex. PLoS Pathog 2009;5:e1000530. [PMID: 19649319 DOI: 10.1371/journal.ppat.1000530] [Cited by in Crossref: 78] [Cited by in F6Publishing: 78] [Article Influence: 6.5] [Reference Citation Analysis]
52 Habib M, Buisson M, Lupo J, Agbalika F, Socié G, Germi R, Baccard M, Imbert-Marcille BM, Dantal J, Morand P, Drouet E. Lytic EBV infection investigated by detection of Soluble Epstein-Barr virus ZEBRA in the serum of patients with PTLD. Sci Rep 2017;7:10479. [PMID: 28874674 DOI: 10.1038/s41598-017-09798-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
53 Valente RM, Ehlers E, Xu D, Ahmad H, Steadman A, Blasnitz L, Zhou Y, Kastanek L, Meng B, Zhang L. Toll-like receptor 7 stimulates the expression of Epstein-Barr virus latent membrane protein 1. PLoS One 2012;7:e43317. [PMID: 22952664 DOI: 10.1371/journal.pone.0043317] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
54 Pratesi C, Zanussi S, Tedeschi R, Bortolin MT, Talamini R, Rupolo M, Scaini C, Basaglia G, Di Maso M, Mazzucato M, Zanet E, Tirelli U, Michieli M, Carbone A, De Paoli P. γ-Herpesvirus load as surrogate marker of early death in HIV-1 lymphoma patients submitted to high dose chemotherapy and autologous peripheral blood stem cell transplantation. PLoS One 2015;10:e0116887. [PMID: 25668032 DOI: 10.1371/journal.pone.0116887] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
55 Burton EM, Goldbach-Mansky R, Bhaduri-McIntosh S. A promiscuous inflammasome sparks replication of a common tumor virus. Proc Natl Acad Sci U S A 2020;117:1722-30. [PMID: 31919284 DOI: 10.1073/pnas.1919133117] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
56 Verma D, Church TM, Swaminathan S. Epstein-Barr virus co-opts TFIIH component XPB to specifically activate essential viral lytic promoters. Proc Natl Acad Sci U S A 2020;117:13044-55. [PMID: 32434920 DOI: 10.1073/pnas.2000625117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Pánisová E, Lünemann A, Bürgler S, Kotur M, Lazarovici J, Danu A, Kaulfuss M, Mietz J, Chijioke O, Münz C, Busson P, Berger C, Ghez D, Azzi T. Reduced frequency of cytotoxic CD56dim CD16+ NK cells leads to impaired antibody-dependent degranulation in EBV-positive classical Hodgkin lymphoma. Cancer Immunol Immunother 2021. [PMID: 33993319 DOI: 10.1007/s00262-021-02956-x] [Reference Citation Analysis]
58 Jones RJ, Iempridee T, Wang X, Lee HC, Mertz JE, Kenney SC, Lin HC, Baladandayuthapani V, Dawson CW, Shah JJ, Weber DM, Orlowski RZ. Lenalidomide, Thalidomide, and Pomalidomide Reactivate the Epstein-Barr Virus Lytic Cycle through Phosphoinositide 3-Kinase Signaling and Ikaros Expression. Clin Cancer Res 2016;22:4901-12. [PMID: 27297582 DOI: 10.1158/1078-0432.CCR-15-2242] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
59 Gong D, Dai X, Xiao Y, Du Y, Chapa TJ, Johnson JR, Li X, Krogan NJ, Deng H, Wu TT, Sun R. Virus-Like Vesicles of Kaposi's Sarcoma-Associated Herpesvirus Activate Lytic Replication by Triggering Differentiation Signaling. J Virol 2017;91:e00362-17. [PMID: 28515293 DOI: 10.1128/JVI.00362-17] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
60 Gruffat H, Lupo J, Morand P, Boyer V, Manet E. The nuclear and adherent junction complex component protein ubinuclein negatively regulates the productive cycle of Epstein-Barr virus in epithelial cells. J Virol 2011;85:784-94. [PMID: 21084479 DOI: 10.1128/JVI.01397-10] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
61 Hsu M, Wu SY, Chang SS, Su IJ, Tsai CH, Lai SJ, Shiau AL, Takada K, Chang Y. Epstein-Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J Virol 2008;82:3679-88. [PMID: 18234802 DOI: 10.1128/JVI.02301-07] [Cited by in Crossref: 54] [Cited by in F6Publishing: 30] [Article Influence: 4.2] [Reference Citation Analysis]
62 Tsai SC, Lin SJ, Chen PW, Luo WY, Yeh TH, Wang HW, Chen CJ, Tsai CH. EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood 2009;114:109-18. [PMID: 19417211 DOI: 10.1182/blood-2008-12-193375] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 4.6] [Reference Citation Analysis]
63 Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020;12:E1479. [PMID: 32517128 DOI: 10.3390/cancers12061479] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
64 Wu CC, Fang CY, Cheng YJ, Hsu HY, Chou SP, Huang SY, Tsai CH, Chen JY. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J Biomed Sci 2017;24:2. [PMID: 28056971 DOI: 10.1186/s12929-016-0313-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
65 Hong GK, Kumar P, Wang L, Damania B, Gulley ML, Delecluse HJ, Polverini PJ, Kenney SC. Epstein-Barr virus lytic infection is required for efficient production of the angiogenesis factor vascular endothelial growth factor in lymphoblastoid cell lines. J Virol 2005;79:13984-92. [PMID: 16254334 DOI: 10.1128/JVI.79.22.13984-13992.2005] [Cited by in Crossref: 76] [Cited by in F6Publishing: 50] [Article Influence: 5.1] [Reference Citation Analysis]
66 Morscio J, Tousseyn T. Recent insights in the pathogenesis of post-transplantation lymphoproliferative disorders. World J Transplant 2016; 6(3): 505-516 [PMID: 27683629 DOI: 10.5500/wjt.v6.i3.505] [Cited by in CrossRef: 42] [Cited by in F6Publishing: 35] [Article Influence: 8.4] [Reference Citation Analysis]
67 Djavadian R, Chiu YF, Johannsen E. An Epstein-Barr Virus-Encoded Protein Complex Requires an Origin of Lytic Replication In Cis to Mediate Late Gene Transcription. PLoS Pathog 2016;12:e1005718. [PMID: 27348612 DOI: 10.1371/journal.ppat.1005718] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
68 Guo SS, Huang PY, Chen QY, Liu H, Tang LQ, Zhang L, Liu LT, Cao KJ, Guo L, Mo HY, Guo X, Hong MH, Mai HQ. The impact of smoking on the clinical outcome of locoregionally advanced nasopharyngeal carcinoma after chemoradiotherapy. Radiat Oncol 2014;9:246. [PMID: 25424191 DOI: 10.1186/s13014-014-0246-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
69 Keck KM, Moquin SA, He A, Fernandez SG, Somberg JJ, Liu SM, Martinez DM, Miranda JL. Bromodomain and extraterminal inhibitors block the Epstein-Barr virus lytic cycle at two distinct steps. J Biol Chem 2017;292:13284-95. [PMID: 28588024 DOI: 10.1074/jbc.M116.751644] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
70 Rosemarie Q, Sugden B. Epstein-Barr Virus: How Its Lytic Phase Contributes to Oncogenesis. Microorganisms 2020;8:E1824. [PMID: 33228078 DOI: 10.3390/microorganisms8111824] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
71 Wiedmer A, Wang P, Zhou J, Rennekamp AJ, Tiranti V, Zeviani M, Lieberman PM. Epstein-Barr virus immediate-early protein Zta co-opts mitochondrial single-stranded DNA binding protein to promote viral and inhibit mitochondrial DNA replication. J Virol 2008;82:4647-55. [PMID: 18305033 DOI: 10.1128/JVI.02198-07] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
72 Forrest C, Hislop AD, Rickinson AB, Zuo J. Proteome-wide analysis of CD8+ T cell responses to EBV reveals differences between primary and persistent infection. PLoS Pathog 2018;14:e1007110. [PMID: 30248160 DOI: 10.1371/journal.ppat.1007110] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
73 Djavadian R, Hayes M, Johannsen E. CAGE-seq analysis of Epstein-Barr virus lytic gene transcription: 3 kinetic classes from 2 mechanisms. PLoS Pathog 2018;14:e1007114. [PMID: 29864140 DOI: 10.1371/journal.ppat.1007114] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
74 Chang SS, Lo YC, Chua HH, Chiu HY, Tsai SC, Chen JY, Lo KW, Tsai CH. Critical role of p53 in histone deacetylase inhibitor-induced Epstein-Barr virus Zta expression. J Virol 2008;82:7745-51. [PMID: 18495777 DOI: 10.1128/JVI.02717-07] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
75 Lee CH, Yeh TH, Lai HC, Wu SY, Su IJ, Takada K, Chang Y. Epstein-Barr virus Zta-induced immunomodulators from nasopharyngeal carcinoma cells upregulate interleukin-10 production from monocytes. J Virol 2011;85:7333-42. [PMID: 21543473 DOI: 10.1128/JVI.00182-11] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
76 Cocco M, Bellan C, Tussiwand R, Corti D, Traggiai E, Lazzi S, Mannucci S, Bronz L, Palummo N, Ginanneschi C, Tosi P, Lanzavecchia A, Manz MG, Leoncini L. CD34+ cord blood cell-transplanted Rag2-/- gamma(c)-/- mice as a model for Epstein-Barr virus infection. Am J Pathol 2008;173:1369-78. [PMID: 18845836 DOI: 10.2353/ajpath.2008.071186] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 3.4] [Reference Citation Analysis]
77 Heilmann AM, Calderwood MA, Portal D, Lu Y, Johannsen E. Genome-wide analysis of Epstein-Barr virus Rta DNA binding. J Virol 2012;86:5151-64. [PMID: 22379087 DOI: 10.1128/JVI.06760-11] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
78 Wang Q, Zhu N, Hu J, Wang Y, Xu J, Gu Q, Lieberman PM, Yuan Y. The mTOR inhibitor manassantin B reveals a crucial role of mTORC2 signaling in Epstein-Barr virus reactivation. J Biol Chem 2020;295:7431-41. [PMID: 32312752 DOI: 10.1074/jbc.RA120.012645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
79 Strong MJ, Xu G, Coco J, Baribault C, Vinay DS, Lacey MR, Strong AL, Lehman TA, Seddon MB, Lin Z. Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: implications for possible immune adjuvant therapy. PLoS Pathog. 2013;9:e1003341. [PMID: 23671415 DOI: 10.1371/journal.ppat.1003341] [Cited by in Crossref: 100] [Cited by in F6Publishing: 87] [Article Influence: 12.5] [Reference Citation Analysis]
80 Gruffat H, Kadjouf F, Mariamé B, Manet E. The Epstein-Barr virus BcRF1 gene product is a TBP-like protein with an essential role in late gene expression. J Virol 2012;86:6023-32. [PMID: 22457524 DOI: 10.1128/JVI.00159-12] [Cited by in Crossref: 52] [Cited by in F6Publishing: 39] [Article Influence: 5.8] [Reference Citation Analysis]
81 Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors. Front Oncol 2019;9:713. [PMID: 31448229 DOI: 10.3389/fonc.2019.00713] [Cited by in Crossref: 101] [Cited by in F6Publishing: 98] [Article Influence: 50.5] [Reference Citation Analysis]
82 Borozan I, Zapatka M, Frappier L, Ferretti V. Analysis of Epstein-Barr Virus Genomes and Expression Profiles in Gastric Adenocarcinoma. J Virol 2018;92:e01239-17. [PMID: 29093097 DOI: 10.1128/JVI.01239-17] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
83 Li H, Liu S, Hu J, Luo X, Li N, M Bode A, Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci 2016;12:1309-18. [PMID: 27877083 DOI: 10.7150/ijbs.16564] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 11.8] [Reference Citation Analysis]
84 Aguayo F, Boccardo E, Corvalán A, Calaf GM, Blanco R. Interplay between Epstein-Barr virus infection and environmental xenobiotic exposure in cancer. Infect Agent Cancer 2021;16:50. [PMID: 34193233 DOI: 10.1186/s13027-021-00391-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Sivachandran N, Wang X, Frappier L. Functions of the Epstein-Barr virus EBNA1 protein in viral reactivation and lytic infection. J Virol 2012;86:6146-58. [PMID: 22491455 DOI: 10.1128/JVI.00013-12] [Cited by in Crossref: 65] [Cited by in F6Publishing: 44] [Article Influence: 7.2] [Reference Citation Analysis]
86 Saha A, Robertson ES. Mechanisms of B-Cell Oncogenesis Induced by Epstein-Barr Virus. J Virol 2019;93:e00238-19. [PMID: 30971472 DOI: 10.1128/JVI.00238-19] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
87 Manners O, Murphy JC, Coleman A, Hughes DJ, Whitehouse A. Contribution of the KSHV and EBV lytic cycles to tumourigenesis. Curr Opin Virol 2018;32:60-70. [PMID: 30268927 DOI: 10.1016/j.coviro.2018.08.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 11.0] [Reference Citation Analysis]
88 Wang P, Day L, Lieberman PM. Multivalent sequence recognition by Epstein-Barr virus Zta requires cysteine 171 and an extension of the canonical B-ZIP domain. J Virol 2006;80:10942-9. [PMID: 16971443 DOI: 10.1128/JVI.00907-06] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
89 Tsang CM, Tsao SW. The role of Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Virol Sin 2015;30:107-21. [PMID: 25910483 DOI: 10.1007/s12250-015-3592-5] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 9.5] [Reference Citation Analysis]
90 Yetming KD, Lupey-Green LN, Biryukov S, Hughes DJ, Marendy EM, Miranda JL, Sample JT. The BHLF1 Locus of Epstein-Barr Virus Contributes to Viral Latency and B-Cell Immortalization. J Virol 2020;94:e01215-20. [PMID: 32581094 DOI: 10.1128/JVI.01215-20] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
91 Antsiferova O, Müller A, Rämer PC, Chijioke O, Chatterjee B, Raykova A, Planas R, Sospedra M, Shumilov A, Tsai MH, Delecluse HJ, Münz C. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog 2014;10:e1004333. [PMID: 25165855 DOI: 10.1371/journal.ppat.1004333] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 6.9] [Reference Citation Analysis]
92 Ma SD, Hegde S, Young KH, Sullivan R, Rajesh D, Zhou Y, Jankowska-Gan E, Burlingham WJ, Sun X, Gulley ML. A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol. 2011;85:165-177. [PMID: 20980506 DOI: 10.1128/jvi.01512-10] [Cited by in Crossref: 192] [Cited by in F6Publishing: 134] [Article Influence: 17.5] [Reference Citation Analysis]
93 Oussaief L, Hippocrate A, Ramirez V, Rampanou A, Zhang W, Meyers D, Cole P, Khelifa R, Joab I. Phosphatidylinositol 3-kinase/Akt pathway targets acetylation of Smad3 through Smad3/CREB-binding protein interaction: contribution to transforming growth factor beta1-induced Epstein-Barr virus reactivation. J Biol Chem 2009;284:23912-24. [PMID: 19589780 DOI: 10.1074/jbc.M109.036483] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
94 Thierry E, Brennich M, Round A, Buisson M, Burmeister WP, Hutin S. Production and characterisation of Epstein-Barr virus helicase-primase complex and its accessory protein BBLF2/3. Virus Genes 2015;51:171-81. [PMID: 26292944 DOI: 10.1007/s11262-015-1233-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
95 Chijioke O, Müller A, Feederle R, Barros MH, Krieg C, Emmel V, Marcenaro E, Leung CS, Antsiferova O, Landtwing V, Bossart W, Moretta A, Hassan R, Boyman O, Niedobitek G, Delecluse HJ, Capaul R, Münz C. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep 2013;5:1489-98. [PMID: 24360958 DOI: 10.1016/j.celrep.2013.11.041] [Cited by in Crossref: 142] [Cited by in F6Publishing: 136] [Article Influence: 17.8] [Reference Citation Analysis]
96 Drosu NC, Edelman ER, Housman DE. Tenofovir prodrugs potently inhibit Epstein-Barr virus lytic DNA replication by targeting the viral DNA polymerase. Proc Natl Acad Sci U S A 2020;117:12368-74. [PMID: 32409608 DOI: 10.1073/pnas.2002392117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
97 Tsai MH, Lin X, Shumilov A, Bernhardt K, Feederle R, Poirey R, Kopp-Schneider A, Pereira B, Almeida R, Delecluse HJ. The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers. Oncotarget 2017;8:10238-54. [PMID: 28052012 DOI: 10.18632/oncotarget.14380] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 13.3] [Reference Citation Analysis]
98 Trompet E, Temblador A, Gillemot S, Topalis D, Snoeck R, Andrei G. An MHV-68 Mutator Phenotype Mutant Virus, Confirmed by CRISPR/Cas9-Mediated Gene Editing of the Viral DNA Polymerase Gene, Shows Reduced Viral Fitness. Viruses 2021;13:985. [PMID: 34073189 DOI: 10.3390/v13060985] [Reference Citation Analysis]