BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tavares RCA, Mahadeshwar G, Wan H, Huston NC, Pyle AM. The global and local distribution of RNA structure throughout the SARS-CoV-2 genome. J Virol 2020:JVI. [PMID: 33268519 DOI: 10.1128/JVI.02190-20] [Cited by in Crossref: 11] [Cited by in F6Publishing: 36] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Bassett M, Salemi M, Rife Magalis B. Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. Microbiol Mol Biol Rev. [DOI: 10.1128/mmbr.00057-21] [Reference Citation Analysis]
2 Pontoriero L, Schiavina M, Korn SM, Schlundt A, Pierattelli R, Felli IC. NMR Reveals Specific Tracts within the Intrinsically Disordered Regions of the SARS-CoV-2 Nucleocapsid Protein Involved in RNA Encountering. Biomolecules 2022;12:929. [DOI: 10.3390/biom12070929] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Feng S, Ali MS, Evdokimova M, Reid GE, Clark NM, Uprichard SL, Baker SC. Sequencing during Times of Change: Evaluating SARS-CoV-2 Clinical Samples during the Transition from the Delta to Omicron Wave. Viruses 2022;14:1408. [PMID: 35891388 DOI: 10.3390/v14071408] [Reference Citation Analysis]
4 Clever S, Volz A. Mouse models in COVID-19 research: analyzing the adaptive immune response. Med Microbiol Immunol 2022. [PMID: 35661253 DOI: 10.1007/s00430-022-00735-8] [Reference Citation Analysis]
5 Zhang Q, Radvak P, Lee J, Xu Y, Cao-Dao V, Xu M, Zheng W, Chen CZ, Xie H, Ye Y. Mitoxantrone modulates a heparan sulfate-spike complex to inhibit SARS-CoV-2 infection. Sci Rep 2022;12:6294. [PMID: 35440680 DOI: 10.1038/s41598-022-10293-x] [Reference Citation Analysis]
6 Wan H, Adams RL, Lindenbach BD, Pyle AM. The In Vivo and In Vitro Architecture of the Hepatitis C Virus RNA Genome Uncovers Functional RNA Secondary and Tertiary Structures. J Virol 2022;:e0194621. [PMID: 35353000 DOI: 10.1128/jvi.01946-21] [Reference Citation Analysis]
7 Yulia R, Ikasanti PAI, Herawati F, Hartono R, Hanum PS, Lestiono, Ramdani D, Jaelani AK, Kantono K, Wijono H. Evaluation of Antibacterial and Antiviral Drug Effectiveness in COVID-19 Therapy: A Data-Driven Retrospective Approach. Pathophysiology 2022;29:92-105. [DOI: 10.3390/pathophysiology29010009] [Reference Citation Analysis]
8 Le TB, Kim HK, Ahn MJ, Zanin M, Lo VT, Ling S, Jiang Z, Kang JA, Bae PK, Kim YS, Kim S, Wong SS, Jeong DG, Yoon SW. Diagnostic performance and clinical feasibility of a novel one-step RT-qPCR assay for simultaneous detection of multiple severe acute respiratory syndrome coronaviruses. Arch Virol 2022. [PMID: 35137250 DOI: 10.1007/s00705-022-05383-0] [Reference Citation Analysis]
9 Soszynska-jozwiak M, Ruszkowska A, Kierzek R, O’leary CA, Moss WN, Kierzek E. Secondary Structure of Subgenomic RNA M of SARS-CoV-2. Viruses 2022;14:322. [DOI: 10.3390/v14020322] [Reference Citation Analysis]
10 Davis G, Li K, Thankam FG, Wilson DR, Agrawal DK. Ocular transmissibility of COVID-19: possibilities and perspectives. Mol Cell Biochem 2022. [PMID: 35066705 DOI: 10.1007/s11010-021-04336-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Gauthier NPG, Nelson C, Bonsall MB, Locher K, Charles M, MacDonald C, Krajden M, Chorlton SD, Manges AR. Nanopore metagenomic sequencing for detection and characterization of SARS-CoV-2 in clinical samples. PLoS One 2021;16:e0259712. [PMID: 34793508 DOI: 10.1371/journal.pone.0259712] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Zhang C, Forsdyke DR. Potential Achilles heels of SARS-CoV-2 are best displayed by the base order-dependent component of RNA folding energy. Comput Biol Chem 2021;94:107570. [PMID: 34500325 DOI: 10.1016/j.compbiolchem.2021.107570] [Reference Citation Analysis]
13 Pollett S, Conte MA, Sanborn M, Jarman RG, Lidl GM, Modjarrad K, Maljkovic Berry I. A comparative recombination analysis of human coronaviruses and implications for the SARS-CoV-2 pandemic. Sci Rep 2021;11:17365. [PMID: 34462471 DOI: 10.1038/s41598-021-96626-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zhao Q, Zhao Z, Fan X, Yuan Z, Mao Q, Yao Y. Review of machine learning methods for RNA secondary structure prediction. PLoS Comput Biol 2021;17:e1009291. [PMID: 34437528 DOI: 10.1371/journal.pcbi.1009291] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
15 Yang SL, DeFalco L, Anderson DE, Zhang Y, Aw JGA, Lim SY, Lim XN, Tan KY, Zhang T, Chawla T, Su Y, Lezhava A, Merits A, Wang LF, Huber RG, Wan Y. Comprehensive mapping of SARS-CoV-2 interactions in vivo reveals functional virus-host interactions. Nat Commun 2021;12:5113. [PMID: 34433821 DOI: 10.1038/s41467-021-25357-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
16 Li Y, Garcia G, Arumugaswami V, Guo F. Structure-based design of antisense oligonucleotides that inhibit SARS-CoV-2 replication. bioRxiv 2021:2021. [PMID: 34462746 DOI: 10.1101/2021.08.23.457434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Frazier MN, Dillard LB, Krahn JM, Perera L, Williams JG, Wilson IM, Stewart ZD, Pillon MC, Deterding LJ, Borgnia MJ, Stanley RE. Characterization of SARS2 Nsp15 nuclease activity reveals it's mad about U. Nucleic Acids Res 2021:gkab719. [PMID: 34403466 DOI: 10.1093/nar/gkab719] [Cited by in F6Publishing: 15] [Reference Citation Analysis]
18 Li D, Chen P, Shi T, Mehmood A, Qiu J. HD5 and LL-37 Inhibit SARS-CoV and SARS-CoV-2 Binding to Human ACE2 by Molecular Simulation. Interdiscip Sci 2021. [PMID: 34363600 DOI: 10.1007/s12539-021-00462-3] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
19 Gomaa AA, Mohamed HS, Abd-Ellatief RB, Gomaa MA. Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology 2021;29:1033-48. [PMID: 34224069 DOI: 10.1007/s10787-021-00841-8] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
20 Cao C, Cai Z, Xiao X, Rao J, Chen J, Hu N, Yang M, Xing X, Wang Y, Li M, Zhou B, Wang X, Wang J, Xue Y. The architecture of the SARS-CoV-2 RNA genome inside virion. Nat Commun 2021;12:3917. [PMID: 34168138 DOI: 10.1038/s41467-021-22785-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 33] [Article Influence: 3.0] [Reference Citation Analysis]
21 Aghagoli G, Gallo Marin B, Katchur NJ, Chaves-Sell F, Asaad WF, Murphy SA. Neurological Involvement in COVID-19 and Potential Mechanisms: A Review. Neurocrit Care. 2021;34:1062-1071. [PMID: 32661794 DOI: 10.1007/s12028-020-01049-4] [Cited by in Crossref: 44] [Cited by in F6Publishing: 74] [Article Influence: 44.0] [Reference Citation Analysis]
22 Raghav PK, Kalyanaraman K, Kumar D. Human cell receptors: potential drug targets to combat COVID-19. Amino Acids 2021;53:813-42. [PMID: 33950300 DOI: 10.1007/s00726-021-02991-z] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
23 Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol 2021;21:382-93. [PMID: 33875867 DOI: 10.1038/s41577-021-00542-x] [Cited by in Crossref: 51] [Cited by in F6Publishing: 219] [Article Influence: 51.0] [Reference Citation Analysis]
24 Manfredonia I, Incarnato D. Structure and regulation of coronavirus genomes: state-of-the-art and novel insights from SARS-CoV-2 studies. Biochem Soc Trans 2021;49:341-52. [PMID: 33367597 DOI: 10.1042/BST20200670] [Cited by in Crossref: 3] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
25 Schnichels S, Rohrbach JM, Bayyoud T, Thaler S, Ziemssen F, Hurst J. Can SARS-CoV-2 infect the eye? An overview of the receptor status in ocular tissue. Ophthalmologe 2021;118:81-4. [PMID: 33289868 DOI: 10.1007/s00347-020-01281-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
26 Mohamed NE, Benn EKT, Astha V, Okhawere KE, Korn TG, Nkemdirim W, Rambhia A, Ige OA, Funchess H, Mihalopoulos M, Meilika KN, Kyprianou N, Badani KK. Association between chronic kidney disease and COVID-19-related mortality in New York. World J Urol 2021;39:2987-93. [PMID: 33481113 DOI: 10.1007/s00345-020-03567-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
27 Huston NC, Wan H, Strine MS, de Cesaris Araujo Tavares R, Wilen CB, Pyle AM. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol Cell 2021;81:584-598.e5. [PMID: 33444546 DOI: 10.1016/j.molcel.2020.12.041] [Cited by in Crossref: 29] [Cited by in F6Publishing: 76] [Article Influence: 29.0] [Reference Citation Analysis]
28 Wacker A, Weigand JE, Akabayov SR, Altincekic N, Bains JK, Banijamali E, Binas O, Castillo-Martinez J, Cetiner E, Ceylan B, Chiu LY, Davila-Calderon J, Dhamotharan K, Duchardt-Ferner E, Ferner J, Frydman L, Fürtig B, Gallego J, Grün JT, Hacker C, Haddad C, Hähnke M, Hengesbach M, Hiller F, Hohmann KF, Hymon D, de Jesus V, Jonker H, Keller H, Knezic B, Landgraf T, Löhr F, Luo L, Mertinkus KR, Muhs C, Novakovic M, Oxenfarth A, Palomino-Schätzlein M, Petzold K, Peter SA, Pyper DJ, Qureshi NS, Riad M, Richter C, Saxena K, Schamber T, Scherf T, Schlagnitweit J, Schlundt A, Schnieders R, Schwalbe H, Simba-Lahuasi A, Sreeramulu S, Stirnal E, Sudakov A, Tants JN, Tolbert BS, Vögele J, Weiß L, Wirmer-Bartoschek J, Wirtz Martin MA, Wöhnert J, Zetzsche H. Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res 2020;48:12415-35. [PMID: 33167030 DOI: 10.1093/nar/gkaa1013] [Cited by in Crossref: 39] [Cited by in F6Publishing: 51] [Article Influence: 19.5] [Reference Citation Analysis]
29 Simmonds P, Williams S, Harvala H. Understanding the outcomes of COVID-19 - does the current model of an acute respiratory infection really fit? J Gen Virol 2021;102. [PMID: 33331810 DOI: 10.1099/jgv.0.001545] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
30 Su S, Du L, Jiang S. Learning from the past: development of safe and effective COVID-19 vaccines. Nat Rev Microbiol 2021;19:211-9. [PMID: 33067570 DOI: 10.1038/s41579-020-00462-y] [Cited by in Crossref: 34] [Cited by in F6Publishing: 60] [Article Influence: 17.0] [Reference Citation Analysis]
31 Wu J, Deng W, Li S, Yang X. Advances in research on ACE2 as a receptor for 2019-nCoV. Cell Mol Life Sci 2021;78:531-44. [PMID: 32780149 DOI: 10.1007/s00018-020-03611-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 42] [Article Influence: 12.5] [Reference Citation Analysis]
32 Mercurio I, Tragni V, Busto F, De Grassi A, Pierri CL. Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies. Cell Mol Life Sci 2021;78:1501-22. [PMID: 32623480 DOI: 10.1007/s00018-020-03580-1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 54] [Article Influence: 14.5] [Reference Citation Analysis]