BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gaudreault E, Fiola S, Olivier M, Gosselin J. Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2. J Virol 2007;81:8016-24. [PMID: 17522215 DOI: 10.1128/JVI.00403-07] [Cited by in Crossref: 86] [Cited by in F6Publishing: 62] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Ning S. Innate immune modulation in EBV infection. Herpesviridae 2011;2:1. [PMID: 21429244 DOI: 10.1186/2042-4280-2-1] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 3.5] [Reference Citation Analysis]
2 Kimura H, Cohen JI. Chronic Active Epstein-Barr Virus Disease. Front Immunol 2017;8:1867. [PMID: 29375552 DOI: 10.3389/fimmu.2017.01867] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 12.2] [Reference Citation Analysis]
3 Cai MS, Li ML, Zheng CF. Herpesviral infection and Toll-like receptor 2. Protein Cell 2012;3:590-601. [PMID: 22865347 DOI: 10.1007/s13238-012-2059-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
4 Younesi V, Shirazi FG, Memarian A, Amanzadeh A, Jeddi-Tehrani M, Shokri F. Assessment of the effect of TLR7/8, TLR9 agonists and CD40 ligand on the transformation efficiency of Epstein-Barr virus in human B lymphocytes by limiting dilution assay. Cytotechnology 2014;66:95-105. [PMID: 23404520 DOI: 10.1007/s10616-013-9542-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
5 Xagorari A, Chlichlia K. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J 2008;2:49-59. [PMID: 19088911 DOI: 10.2174/1874285800802010049] [Cited by in Crossref: 121] [Cited by in F6Publishing: 111] [Article Influence: 8.6] [Reference Citation Analysis]
6 Chijioke O, Azzi T, Nadal D, Münz C. Innate immune responses against Epstein Barr virus infection. J Leukoc Biol 2013;94:1185-90. [PMID: 23812328 DOI: 10.1189/jlb.0313173] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
7 Pang F, Zhang M, Li G, Zhang Z, Huang H, Li B, Wang C, Yang X, Zheng Y, An Q, Zhang L, Du L, Wang F. Integrated mRNA and miRNA profiling in NIH/3T3 cells in response to bovine papillomavirus E6 gene expression. PeerJ 2019;7:e7442. [PMID: 31396463 DOI: 10.7717/peerj.7442] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
8 Hopcraft SE, Damania B. Tumour viruses and innate immunity. Philos Trans R Soc Lond B Biol Sci 2017;372:20160267. [PMID: 28893934 DOI: 10.1098/rstb.2016.0267] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
9 Williams MV, Cox B, Ariza ME. Herpesviruses dUTPases: A New Family of Pathogen-Associated Molecular Pattern (PAMP) Proteins with Implications for Human Disease. Pathogens 2016;6:E2. [PMID: 28036046 DOI: 10.3390/pathogens6010002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
10 Liu S, Wang X, Shi Y, Han L, Zhao Z, Zhao C, Luo B. Toll-like receptor gene polymorphisms and susceptibility to Epstein-Barr virus-associated and -negative gastric carcinoma in Northern China. Saudi J Gastroenterol. 2015;21:95-103. [PMID: 25843196 DOI: 10.4103/1319-3767.153832] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
11 Anzinger JJ, Butterfield TR, Angelovich TA, Crowe SM, Palmer CS. Monocytes as regulators of inflammation and HIV-related comorbidities during cART. J Immunol Res 2014;2014:569819. [PMID: 25025081 DOI: 10.1155/2014/569819] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 6.6] [Reference Citation Analysis]
12 Vistarop AG, Cohen M, Huaman F, Irazu L, Rodriguez M, De Matteo E, Preciado MV, Chabay PA. The interplay between local immune response and Epstein-Barr virus-infected tonsillar cells could lead to viral infection control. Med Microbiol Immunol 2018;207:319-27. [PMID: 30046954 DOI: 10.1007/s00430-018-0553-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
13 Podda G, Nyirenda M, Crooks J, Gran B. Innate immune responses in the CNS: role of toll-like receptors, mechanisms, and therapeutic opportunities in multiple sclerosis. J Neuroimmune Pharmacol. 2013;8:791-806. [PMID: 23812895 DOI: 10.1007/s11481-013-9483-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
14 Zheng Y, Qin Z, Ye Q, Chen P, Wang Z, Yan Q, Luo Z, Liu X, Zhou Y, Xiong W, Ma J, Li G. Lactoferrin suppresses the Epstein-Barr virus-induced inflammatory response by interfering with pattern recognition of TLR2 and TLR9. Lab Invest 2014;94:1188-99. [PMID: 25068657 DOI: 10.1038/labinvest.2014.105] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
15 Aguilar-Briseño JA, Upasani V, Ellen BMT, Moser J, Pauzuolis M, Ruiz-Silva M, Heng S, Laurent D, Choeung R, Dussart P, Cantaert T, Smit JM, Rodenhuis-Zybert IA. TLR2 on blood monocytes senses dengue virus infection and its expression correlates with disease pathogenesis. Nat Commun 2020;11:3177. [PMID: 32576819 DOI: 10.1038/s41467-020-16849-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
16 Gujer C, Murer A, Müller A, Vanoaica D, Sutter K, Jacque E, Fournier N, Kalchschmidt J, Zbinden A, Capaul R, Dzionek A, Mondon P, Dittmer U, Münz C. Plasmacytoid dendritic cells respond to Epstein-Barr virus infection with a distinct type I interferon subtype profile. Blood Adv 2019;3:1129-44. [PMID: 30952679 DOI: 10.1182/bloodadvances.2018025536] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
17 Singh H, Koury J, Kaul M. Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses 2021;13:170. [PMID: 33498715 DOI: 10.3390/v13020170] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Sohn DH, Sohn HJ, Lee HJ, Lee SD, Kim S, Hyun SJ, Cho HI, Cho SG, Lee SK, Kim TG. Measurement of CD8+ and CD4+ T Cell Frequencies Specific for EBV LMP1 and LMP2a Using mRNA-Transfected DCs. PLoS One 2015;10:e0127899. [PMID: 26023769 DOI: 10.1371/journal.pone.0127899] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
19 Ariza ME, Rivailler P, Glaser R, Chen M, Williams MV. Epstein-Barr virus encoded dUTPase containing exosomes modulate innate and adaptive immune responses in human dendritic cells and peripheral blood mononuclear cells. PLoS One 2013;8:e69827. [PMID: 23894549 DOI: 10.1371/journal.pone.0069827] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.1] [Reference Citation Analysis]
20 Hermann JK, Capadona JR. Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Crit Rev Biomed Eng 2018;46:341-67. [PMID: 30806249 DOI: 10.1615/CritRevBiomedEng.2018027166] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
21 Tsai SC, Lin SJ, Lin CJ, Chou YC, Lin JH, Yeh TH, Chen MR, Huang LM, Lu MY, Huang YC. Autocrine CCL3 and CCL4 induced by the oncoprotein LMP1 promote Epstein-Barr virus-triggered B cell proliferation. J Virol. 2013;87:9041-9052. [PMID: 23760235 DOI: 10.1128/jvi.00541-13] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
22 Ma Z, Ni G, Damania B. Innate Sensing of DNA Virus Genomes. Annu Rev Virol 2018;5:341-62. [PMID: 30265633 DOI: 10.1146/annurev-virology-092917-043244] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 17.7] [Reference Citation Analysis]
23 Lacerte P, Brunet A, Egarnes B, Duchêne B, Brown JP, Gosselin J. Overexpression of TLR2 and TLR9 on monocyte subsets of active rheumatoid arthritis patients contributes to enhance responsiveness to TLR agonists. Arthritis Res Ther 2016;18:10. [PMID: 26759164 DOI: 10.1186/s13075-015-0901-1] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
24 Zheng W, Xu Q, Zhang Y, E X, Gao W, Zhang M, Zhai W, Rajkumar RS, Liu Z. Toll-like receptor-mediated innate immunity against herpesviridae infection: a current perspective on viral infection signaling pathways. Virol J 2020;17:192. [PMID: 33298111 DOI: 10.1186/s12985-020-01463-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Zhao Q, Liang D, Sun R, Jia B, Xia T, Xiao H, Lan K. Kaposi's sarcoma-associated herpesvirus-encoded replication and transcription activator impairs innate immunity via ubiquitin-mediated degradation of myeloid differentiation factor 88. J Virol 2015;89:415-27. [PMID: 25320320 DOI: 10.1128/JVI.02591-14] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 4.9] [Reference Citation Analysis]
26 Kim JO, Kim JO, Kim WS, Oh MJ. Characterization of the Transcriptome and Gene Expression of Brain Tissue in Sevenband Grouper (Hyporthodus septemfasciatus) in Response to NNV Infection. Genes (Basel) 2017;8:E31. [PMID: 28098800 DOI: 10.3390/genes8010031] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
27 Yokota S, Okabayashi T, Fujii N. The battle between virus and host: modulation of Toll-like receptor signaling pathways by virus infection. Mediators Inflamm 2010;2010:184328. [PMID: 20672047 DOI: 10.1155/2010/184328] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 2.4] [Reference Citation Analysis]
28 Michaud F, Coulombe F, Gaudreault E, Kriz J, Gosselin J. Involvement of TLR2 in recognition of acute gammaherpesvirus-68 infection. PLoS One 2010;5:e13742. [PMID: 21060793 DOI: 10.1371/journal.pone.0013742] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.4] [Reference Citation Analysis]
29 Zhao L, Lee JY, Hwang DH. Inhibition of pattern recognition receptor-mediated inflammation by bioactive phytochemicals. Nutr Rev. 2011;69:310-320. [PMID: 21631512 DOI: 10.1111/j.1753-4887.2011.00394.x] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 5.9] [Reference Citation Analysis]
30 Martorelli D, Muraro E, Merlo A, Turrini R, Faè DA, Rosato A, Dolcetti R. Exploiting the interplay between innate and adaptive immunity to improve immunotherapeutic strategies for Epstein-Barr-virus-driven disorders. Clin Dev Immunol 2012;2012:931952. [PMID: 22319542 DOI: 10.1155/2012/931952] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
31 Jangra S, Yuen KS, Botelho MG, Jin DY. Epstein-Barr Virus and Innate Immunity: Friends or Foes? Microorganisms 2019;7:E183. [PMID: 31238570 DOI: 10.3390/microorganisms7060183] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
32 Ariza ME, Glaser R, Williams MV. Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity. Front Microbiol 2014;5:504. [PMID: 25309527 DOI: 10.3389/fmicb.2014.00504] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
33 Wang Y, Cai J, Zeng X, Chen Y, Yan W, Ouyang Y, Xiao D, Zeng Z, Huang L, Liu A. Downregulation of toll-like receptor 4 induces suppressive effects on hepatitis B virus-related hepatocellular carcinoma via ERK1/2 signaling. BMC Cancer 2015;15:821. [PMID: 26514586 DOI: 10.1186/s12885-015-1866-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
34 Gaglia MM. Anti-viral and pro-inflammatory functions of Toll-like receptors during gamma-herpesvirus infections. Virol J 2021;18:218. [PMID: 34749760 DOI: 10.1186/s12985-021-01678-x] [Reference Citation Analysis]
35 Nath AP, Ritchie SC, Byars SG, Fearnley LG, Havulinna AS, Joensuu A, Kangas AJ, Soininen P, Wennerström A, Milani L, Metspalu A, Männistö S, Würtz P, Kettunen J, Raitoharju E, Kähönen M, Juonala M, Palotie A, Ala-Korpela M, Ripatti S, Lehtimäki T, Abraham G, Raitakari O, Salomaa V, Perola M, Inouye M. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation. Genome Biol 2017;18:146. [PMID: 28764798 DOI: 10.1186/s13059-017-1279-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
36 Shen Y, Zhang S, Sun R, Wu T, Qian J. Understanding the interplay between host immunity and Epstein-Barr virus in NPC patients. Emerg Microbes Infect 2015;4:e20. [PMID: 26038769 DOI: 10.1038/emi.2015.20] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
37 Melchjorsen J. Learning from the messengers: innate sensing of viruses and cytokine regulation of immunity - clues for treatments and vaccines. Viruses 2013;5:470-527. [PMID: 23435233 DOI: 10.3390/v5020470] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
38 Zheng Y, Zhang W, Ye Q, Zhou Y, Xiong W, He W, Deng M, Zhou M, Guo X, Chen P, Fan S, Liu X, Wang Z, Li X, Ma J, Li G. Inhibition of Epstein-Barr virus infection by lactoferrin. J Innate Immun 2012;4:387-98. [PMID: 22433582 DOI: 10.1159/000336178] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
39 Saeed U, Mazoor S, Jalal N, Zahid Piracha Z. Contemplating the Importance of Toll-like Receptors I and II Regarding Human Viral Pathogenesis. Jundishapur J Microbiol. 2015;8:e13348. [PMID: 25763131 DOI: 10.5812/jjm.13348] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
40 Robinet M, Maillard S, Cron MA, Berrih-Aknin S, Le Panse R. Review on Toll-Like Receptor Activation in Myasthenia Gravis: Application to the Development of New Experimental Models. Clin Rev Allergy Immunol 2017;52:133-47. [PMID: 27207173 DOI: 10.1007/s12016-016-8549-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
41 Imai K, Ogata Y. How Does Epstein-Barr Virus Contribute to Chronic Periodontitis? Int J Mol Sci 2020;21:E1940. [PMID: 32178406 DOI: 10.3390/ijms21061940] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
42 Yang ZH, Dai Q, Gu YJ, Guo QX, Gong L. Cytokine and chemokine modification by Toll-like receptor polymorphisms is associated with nasopharyngeal carcinoma. Cancer Sci 2012;103:653-8. [PMID: 22320262 DOI: 10.1111/j.1349-7006.2012.02210.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
43 Faure M, Rabourdin-Combe C. Innate immunity modulation in virus entry. Curr Opin Virol 2011;1:6-12. [PMID: 22440562 DOI: 10.1016/j.coviro.2011.05.013] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
44 Carty M, Bowie AG. Recent insights into the role of Toll-like receptors in viral infection. Clin Exp Immunol. 2010;161:397-406. [PMID: 20560984 DOI: 10.1111/j.1365-2249.2010.04196.x] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 6.2] [Reference Citation Analysis]
45 Shepardson KM, Schwarz B, Larson K, Morton RV, Avera J, McCoy K, Caffrey A, Harmsen A, Douglas T, Rynda-Apple A. Induction of Antiviral Immune Response through Recognition of the Repeating Subunit Pattern of Viral Capsids Is Toll-Like Receptor 2 Dependent. mBio 2017;8:e01356-17. [PMID: 29138299 DOI: 10.1128/mBio.01356-17] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
46 Rathinam VA, Fitzgerald KA. Innate immune sensing of DNA viruses. Virology 2011;411:153-62. [PMID: 21334037 DOI: 10.1016/j.virol.2011.02.003] [Cited by in Crossref: 77] [Cited by in F6Publishing: 71] [Article Influence: 7.0] [Reference Citation Analysis]
47 Wolska A, Lech-Marańda E, Robak T. Toll-like receptors and their role in carcinogenesis and anti-tumor treatment. Cell Mol Biol Lett 2009;14:248-72. [PMID: 19096763 DOI: 10.2478/s11658-008-0048-z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 2.8] [Reference Citation Analysis]
48 van Gent M, Braem SG, de Jong A, Delagic N, Peeters JG, Boer IG, Moynagh PN, Kremmer E, Wiertz EJ, Ovaa H, Griffin BD, Ressing ME. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog 2014;10:e1003960. [PMID: 24586164 DOI: 10.1371/journal.ppat.1003960] [Cited by in Crossref: 75] [Cited by in F6Publishing: 71] [Article Influence: 9.4] [Reference Citation Analysis]
49 Rahman MM, McFadden G. Modulation of NF-κB signalling by microbial pathogens. Nat Rev Microbiol 2011;9:291-306. [PMID: 21383764 DOI: 10.1038/nrmicro2539] [Cited by in Crossref: 207] [Cited by in F6Publishing: 209] [Article Influence: 18.8] [Reference Citation Analysis]
50 Uddin MJ, Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. West Nile Virus Challenge Alters the Transcription Profiles of Innate Immune Genes in Rabbit Peripheral Blood Mononuclear Cells. Front Vet Sci 2015;2:76. [PMID: 26697438 DOI: 10.3389/fvets.2015.00076] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
51 Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011;10:324-335. [PMID: 22018233 DOI: 10.1016/j.chom.2011.10.003] [Cited by in Crossref: 246] [Cited by in F6Publishing: 229] [Article Influence: 24.6] [Reference Citation Analysis]
52 Man SM, Jenkins BJ. Context-dependent functions of pattern recognition receptors in cancer. Nat Rev Cancer 2022. [PMID: 35355007 DOI: 10.1038/s41568-022-00462-5] [Reference Citation Analysis]
53 Carriere J, Rao Y, Liu Q, Lin X, Zhao J, Feng P. Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Front Microbiol 2019;10:2647. [PMID: 31798565 DOI: 10.3389/fmicb.2019.02647] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
54 West JA, Gregory SM, Damania B. Toll-like receptor sensing of human herpesvirus infection. Front Cell Infect Microbiol 2012;2:122. [PMID: 23061052 DOI: 10.3389/fcimb.2012.00122] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
55 Münz C. Dendritic cells during Epstein Barr virus infection. Front Microbiol 2014;5:308. [PMID: 24999343 DOI: 10.3389/fmicb.2014.00308] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
56 Schock SN, Chandra NV, Sun Y, Irie T, Kitagawa Y, Gotoh B, Coscoy L, Winoto A. Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway. Cell Death Differ 2017;24:615-25. [PMID: 28060376 DOI: 10.1038/cdd.2016.153] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 12.8] [Reference Citation Analysis]
57 Degboé Y, Fruchon S, Baron M, Nigon D, Turrin CO, Caminade AM, Poupot R, Cantagrel A, Davignon JL. Modulation of pro-inflammatory activation of monocytes and dendritic cells by aza-bis-phosphonate dendrimer as an experimental therapeutic agent. Arthritis Res Ther 2014;16:R98. [PMID: 24745366 DOI: 10.1186/ar4546] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
58 Browne EP. Regulation of B-cell responses by Toll-like receptors. Immunology. 2012;136:370-379. [PMID: 22444240 DOI: 10.1111/j.1365-2567.2012.03587.x] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 7.0] [Reference Citation Analysis]
59 Paludan SR, Bowie AG, Horan KA, Fitzgerald KA. Recognition of herpesviruses by the innate immune system. Nat Rev Immunol. 2011;11:143-154. [PMID: 21267015 DOI: 10.1038/nri2937] [Cited by in Crossref: 220] [Cited by in F6Publishing: 210] [Article Influence: 20.0] [Reference Citation Analysis]
60 Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer. 2009;9:57-63. [PMID: 19052556 DOI: 10.1038/nrc2541] [Cited by in Crossref: 586] [Cited by in F6Publishing: 564] [Article Influence: 41.9] [Reference Citation Analysis]
61 Iskra S, Kalla M, Delecluse HJ, Hammerschmidt W, Moosmann A. Toll-like receptor agonists synergistically increase proliferation and activation of B cells by Epstein-Barr virus. J Virol. 2010;84:3612-3623. [PMID: 20089650 DOI: 10.1128/jvi.01400-09] [Cited by in Crossref: 37] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
62 Hofman P, Vouret-Craviari V. Microbes-induced EMT at the crossroad of inflammation and cancer. Gut Microbes 2012;3:176-85. [PMID: 22572828 DOI: 10.4161/gmic.20288] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 3.9] [Reference Citation Analysis]
63 Saeed U, Piracha ZZ. Bridging the importance of Toll like receptors in human viral infections. Asian Pacific Journal of Tropical Disease 2016;6:573-80. [DOI: 10.1016/s2222-1808(16)61089-7] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
64 Jabłońska A, Studzińska M, Szenborn L, Wiśniewska-Ligier M, Karlikowska-Skwarnik M, Gęsicki T, Paradowska E. TLR4 896A/G and TLR9 1174G/A polymorphisms are associated with the risk of infectious mononucleosis. Sci Rep 2020;10:13154. [PMID: 32753695 DOI: 10.1038/s41598-020-70129-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]