BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang L, Zhu C, Guo Y, Wei F, Lu J, Qin J, Banerjee S, Wang J, Shang H, Verma SC, Yuan Z, Robertson ES, Cai Q. Inhibition of KAP1 enhances hypoxia-induced Kaposi's sarcoma-associated herpesvirus reactivation through RBP-Jκ. J Virol 2014;88:6873-84. [PMID: 24696491 DOI: 10.1128/JVI.00283-14] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Méndez-solís O, Bendjennat M, Naipauer J, Theodoridis PR, Ho JD, Verdun RE, Hare JM, Cesarman E, Lee S, Mesri EA. Kaposi’s sarcoma herpesvirus activates the hypoxia response to usurp HIF2α-dependent translation initiation for replication and oncogenesis. Cell Reports 2021;37:110144. [DOI: 10.1016/j.celrep.2021.110144] [Reference Citation Analysis]
2 Gelgor A, Gam Ze Letova C, Yegorov Y, Kalt I, Sarid R. Nucleolar stress enhances lytic reactivation of the Kaposi's sarcoma-associated herpesvirus. Oncotarget 2018;9:13822-33. [PMID: 29568397 DOI: 10.18632/oncotarget.24497] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Wang C, Zhu C, Wei F, Zhang L, Mo X, Feng Y, Xu J, Yuan Z, Robertson E, Cai Q. Constitutive Activation of Interleukin-13/STAT6 Contributes to Kaposi's Sarcoma-Associated Herpesvirus-Related Primary Effusion Lymphoma Cell Proliferation and Survival. J Virol 2015;89:10416-26. [PMID: 26246572 DOI: 10.1128/JVI.01525-15] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
4 Gjyshi O, Roy A, Dutta S, Veettil MV, Dutta D, Chandran B. Activated Nrf2 Interacts with Kaposi's Sarcoma-Associated Herpesvirus Latency Protein LANA-1 and Host Protein KAP1 To Mediate Global Lytic Gene Repression. J Virol 2015;89:7874-92. [PMID: 25995248 DOI: 10.1128/JVI.00895-15] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
5 Singh RK, Bose D, Robertson ES. HIF1α-Regulated Expression of the Fatty Acid Binding Protein Family Is Important for Hypoxic Reactivation of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2021;95:e02063-20. [PMID: 33789996 DOI: 10.1128/JVI.02063-20] [Reference Citation Analysis]
6 Reyes A, Corrales N, Gálvez NMS, Bueno SM, Kalergis AM, González PA. Contribution of hypoxia inducible factor-1 during viral infections. Virulence 2020;11:1482-500. [PMID: 33135539 DOI: 10.1080/21505594.2020.1836904] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
7 Li S, Hu H, He Z, Liang D, Sun R, Lan K. Fine-Tuning of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle in Neighboring Cells through the RTA-JAG1-Notch Pathway. PLoS Pathog 2016;12:e1005900. [PMID: 27760204 DOI: 10.1371/journal.ppat.1005900] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
8 Strahan R, Uppal T, Verma SC. Next-Generation Sequencing in the Understanding of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Biology. Viruses 2016;8:92. [PMID: 27043613 DOI: 10.3390/v8040092] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
9 Aneja KK, Yuan Y. Reactivation and Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus: An Update. Front Microbiol 2017;8:613. [PMID: 28473805 DOI: 10.3389/fmicb.2017.00613] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 14.2] [Reference Citation Analysis]
10 López-Rodríguez DM, Kirillov V, Krug LT, Mesri EA, Andreansky S. A role of hypoxia-inducible factor 1 alpha in Murine Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency. PLoS Pathog 2019;15:e1008192. [PMID: 31809522 DOI: 10.1371/journal.ppat.1008192] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
11 Asha K, Sharma-Walia N. Targeting Host Cellular Factors as a Strategy of Therapeutic Intervention for Herpesvirus Infections. Front Cell Infect Microbiol 2021;11:603309. [PMID: 33816328 DOI: 10.3389/fcimb.2021.603309] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Gonzalez-Lopez O, DeCotiis J, Goyeneche C, Mello H, Vicente-Ortiz BA, Shin HJ, Driscoll KE, Du P, Palmeri D, Lukac DM. A herpesvirus transactivator and cellular POU proteins extensively regulate DNA binding of the host Notch signaling protein RBP-Jκ to the virus genome. J Biol Chem 2019;294:13073-92. [PMID: 31308175 DOI: 10.1074/jbc.RA118.007331] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Beauclair G, Naimo E, Dubich T, Rückert J, Koch S, Dhingra A, Wirth D, Schulz TF. Targeting Kaposi's Sarcoma-Associated Herpesvirus ORF21 Tyrosine Kinase and Viral Lytic Reactivation by Tyrosine Kinase Inhibitors Approved for Clinical Use. J Virol 2020;94:e01791-19. [PMID: 31826996 DOI: 10.1128/JVI.01791-19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
14 Zhang RZ, Zeng XH, Lin ZF, Ming-Fu, Tong YL, Lui VC, Tam PK, Lamb JR, Xia HM, Chen Y. Downregulation of Hes1 expression in experimental biliary atresia and its effects on bile duct structure. World J Gastroenterol 2018; 24(29): 3260-3272 [PMID: 30090006 DOI: 10.3748/wjg.v24.i29.3260] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Thakker S, Strahan RC, Scurry AN, Uppal T, Verma SC. KSHV LANA upregulates the expression of epidermal growth factor like domain 7 to promote angiogenesis. Oncotarget 2018;9:1210-28. [PMID: 29416688 DOI: 10.18632/oncotarget.23456] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
16 Purushothaman P, Uppal T, Verma SC. Molecular biology of KSHV lytic reactivation. Viruses 2015;7:116-53. [PMID: 25594835 DOI: 10.3390/v7010116] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 10.3] [Reference Citation Analysis]
17 Purushothaman P, Dabral P, Gupta N, Sarkar R, Verma SC. KSHV Genome Replication and Maintenance. Front Microbiol 2016;7:54. [PMID: 26870016 DOI: 10.3389/fmicb.2016.00054] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 6.5] [Reference Citation Analysis]
18 Balistreri G, Viiliäinen J, Turunen M, Diaz R, Lyly L, Pekkonen P, Rantala J, Ojala K, Sarek G, Teesalu M, Denisova O, Peltonen K, Julkunen I, Varjosalo M, Kainov D, Kallioniemi O, Laiho M, Taipale J, Hautaniemi S, Ojala PM. Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication. PLoS Pathog 2016;12:e1005424. [PMID: 26891221 DOI: 10.1371/journal.ppat.1005424] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
19 Smith-Moore S, Neil SJD, Fraefel C, Linden RM, Bollen M, Rowe HM, Henckaerts E. Adeno-associated virus Rep proteins antagonize phosphatase PP1 to counteract KAP1 repression of the latent viral genome. Proc Natl Acad Sci U S A 2018;115:E3529-38. [PMID: 29581310 DOI: 10.1073/pnas.1721883115] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
20 He M, Cheng F, da Silva SR, Tan B, Sorel O, Gruffaz M, Li T, Gao SJ. Molecular Biology of KSHV in Relation to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019;177:23-62. [PMID: 30523620 DOI: 10.1007/978-3-030-03502-0_2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
21 Li X, Burton EM, Koganti S, Zhi J, Doyle F, Tenenbaum SA, Horn B, Bhaduri-McIntosh S. KRAB-ZFP Repressors Enforce Quiescence of Oncogenic Human Herpesviruses. J Virol 2018;92:e00298-18. [PMID: 29695433 DOI: 10.1128/JVI.00298-18] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
22 Lieberman PM. Epigenetics and Genetics of Viral Latency. Cell Host Microbe 2016;19:619-28. [PMID: 27173930 DOI: 10.1016/j.chom.2016.04.008] [Cited by in Crossref: 76] [Cited by in F6Publishing: 73] [Article Influence: 15.2] [Reference Citation Analysis]
23 Liu L, Zhang L, Wang J, Zhao X, Xu Q, Lu Y, Zuo Y, Chen L, Du J, Lian Y, Zhang Q. Downregulation of TRIM28 inhibits growth and increases apoptosis of nude mice with non‑small cell lung cancer xenografts. Mol Med Rep 2018;17:835-42. [PMID: 29115614 DOI: 10.3892/mmr.2017.7955] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
24 Uppal T, Banerjee S, Sun Z, Verma SC, Robertson ES. KSHV LANA--the master regulator of KSHV latency. Viruses 2014;6:4961-98. [PMID: 25514370 DOI: 10.3390/v6124961] [Cited by in Crossref: 81] [Cited by in F6Publishing: 72] [Article Influence: 10.1] [Reference Citation Analysis]
25 Wang C, Zhu C, Wei F, Gao S, Zhang L, Li Y, Feng Y, Tong Y, Xu J, Wang B, Yuan Z, Robertson ES, Cai Q. Nuclear Localization and Cleavage of STAT6 Is Induced by Kaposi's Sarcoma-Associated Herpesvirus for Viral Latency. PLoS Pathog 2017;13:e1006124. [PMID: 28099521 DOI: 10.1371/journal.ppat.1006124] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
26 Singh RK, Lang F, Pei Y, Jha HC, Robertson ES. Metabolic reprogramming of Kaposi's sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog 2018;14:e1007062. [PMID: 29746587 DOI: 10.1371/journal.ppat.1007062] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
27 De Leo A, Chen HS, Hu CC, Lieberman PM. Deregulation of KSHV latency conformation by ER-stress and caspase-dependent RAD21-cleavage. PLoS Pathog 2017;13:e1006596. [PMID: 28854249 DOI: 10.1371/journal.ppat.1006596] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
28 Dissinger NJ, Damania B. Recent advances in understanding Kaposi's sarcoma-associated herpesvirus. F1000Res 2016;5:F1000 Faculty Rev-740. [PMID: 27158465 DOI: 10.12688/f1000research.7612.1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
29 Broussard G, Damania B. Regulation of KSHV Latency and Lytic Reactivation. Viruses 2020;12:E1034. [PMID: 32957532 DOI: 10.3390/v12091034] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
30 Gandhi J, Khera L, Gaur N, Paul C, Kaul R. Role of Modulator of Inflammation Cyclooxygenase-2 in Gammaherpesvirus Mediated Tumorigenesis. Front Microbiol 2017;8:538. [PMID: 28400769 DOI: 10.3389/fmicb.2017.00538] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 5.4] [Reference Citation Analysis]
31 Siebels S, Czech-Sioli M, Spohn M, Schmidt C, Theiss J, Indenbirken D, Günther T, Grundhoff A, Fischer N. Merkel Cell Polyomavirus DNA Replication Induces Senescence in Human Dermal Fibroblasts in a Kap1/Trim28-Dependent Manner. mBio 2020;11:e00142-20. [PMID: 32156811 DOI: 10.1128/mBio.00142-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 DeCotiis JL, Lukac DM. KSHV and the Role of Notch Receptor Dysregulation in Disease Progression. Pathogens 2017;6:E34. [PMID: 28777778 DOI: 10.3390/pathogens6030034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
33 Lv DW, Zhang K, Li R. Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathog 2018;14:e1006868. [PMID: 29357389 DOI: 10.1371/journal.ppat.1006868] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
34 Abere B, Mamo TM, Hartmann S, Samarina N, Hage E, Rückert J, Hotop SK, Büsche G, Schulz TF. The Kaposi's sarcoma-associated herpesvirus (KSHV) non-structural membrane protein K15 is required for viral lytic replication and may represent a therapeutic target. PLoS Pathog 2017;13:e1006639. [PMID: 28938025 DOI: 10.1371/journal.ppat.1006639] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]