BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pickl A, Johnsen U, Schönheit P. Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphate kinase, and class II fructose-1,6-bisphosphate aldolase. J Bacteriol 2012;194:3088-97. [PMID: 22493022 DOI: 10.1128/JB.00200-12] [Cited by in Crossref: 38] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Atomi H, Imanaka T, Fukui T. Overview of the genetic tools in the Archaea. Front Microbiol 2012;3:337. [PMID: 23060865 DOI: 10.3389/fmicb.2012.00337] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
2 Williams TJ, Allen MA, DeMaere MZ, Kyrpides NC, Tringe SG, Woyke T, Cavicchioli R. Microbial ecology of an Antarctic hypersaline lake: genomic assessment of ecophysiology among dominant haloarchaea. ISME J 2014;8:1645-58. [PMID: 24553470 DOI: 10.1038/ismej.2014.18] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
3 Kuprat T, Ortjohann M, Johnsen U, Schönheit P. Glucose Metabolism and Acetate Switch in Archaea: the Enzymes in Haloferax volcanii. J Bacteriol 2021;203:e00690-20. [PMID: 33558390 DOI: 10.1128/JB.00690-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Hwang S, Chavarria NE, Hackley RK, Schmid AK, Maupin-Furlow JA. Gene Expression of Haloferax volcanii on Intermediate and Abundant Sources of Fixed Nitrogen. Int J Mol Sci 2019;20:E4784. [PMID: 31561502 DOI: 10.3390/ijms20194784] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Koendjbiharie JG, van Kranenburg R, Kengen SWM. The PEP-pyruvate-oxaloacetate node: variation at the heart of metabolism. FEMS Microbiol Rev 2021;45:fuaa061. [PMID: 33289792 DOI: 10.1093/femsre/fuaa061] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Wagner M, Shen L, Albersmeier A, van der Kolk N, Kim S, Cha J, Bräsen C, Kalinowski J, Siebers B, Albers SV. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway. Appl Environ Microbiol 2018;84:e01273-17. [PMID: 29150511 DOI: 10.1128/AEM.01273-17] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
7 Deutscher J, Aké FM, Derkaoui M, Zébré AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2014;78:231-56. [PMID: 24847021 DOI: 10.1128/MMBR.00001-14] [Cited by in Crossref: 209] [Cited by in F6Publishing: 121] [Article Influence: 29.9] [Reference Citation Analysis]
8 Johnsen U, Sutter JM, Reinhardt A, Pickl A, Wang R, Xiang H, Schönheit P. d-Ribose Catabolism in Archaea: Discovery of a Novel Oxidative Pathway in Haloarcula Species. J Bacteriol 2020;202:e00608-19. [PMID: 31712277 DOI: 10.1128/JB.00608-19] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
9 Kuprat T, Johnsen U, Ortjohann M, Schönheit P. Acetate Metabolism in Archaea: Characterization of an Acetate Transporter and of Enzymes Involved in Acetate Activation and Gluconeogenesis in Haloferax volcanii. Front Microbiol 2020;11:604926. [PMID: 33343547 DOI: 10.3389/fmicb.2020.604926] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Schmid AK. Conserved principles of transcriptional networks controlling metabolic flexibility in archaea. Emerg Top Life Sci 2018;2:659-69. [PMID: 33525832 DOI: 10.1042/ETLS20180036] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Cai L, Cai S, Zhao D, Wu J, Wang L, Liu X, Li M, Hou J, Zhou J, Liu J, Han J, Xiang H. Analysis of the transcriptional regulator GlpR, promoter elements, and posttranscriptional processing involved in fructose-induced activation of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Haloferax mediterranei. Appl Environ Microbiol 2014;80:1430-40. [PMID: 24334671 DOI: 10.1128/AEM.03372-13] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
12 Eichler J, Maupin-Furlow J. Post-translation modification in Archaea: lessons from Haloferax volcanii and other haloarchaea. FEMS Microbiol Rev 2013;37:583-606. [PMID: 23167813 DOI: 10.1111/1574-6976.12012] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
13 Martin JH, Sherwood Rawls K, Chan JC, Hwang S, Martinez-Pastor M, McMillan LJ, Prunetti L, Schmid AK, Maupin-Furlow JA. GlpR Is a Direct Transcriptional Repressor of Fructose Metabolic Genes in Haloferax volcanii. J Bacteriol 2018;200:e00244-18. [PMID: 29914986 DOI: 10.1128/JB.00244-18] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
14 Pfeiffer F, Dyall-Smith M. Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes (Basel) 2021;12:963. [PMID: 34202810 DOI: 10.3390/genes12070963] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Russum S, Lam KJK, Wong NA, Iddamsetty V, Hendargo KJ, Wang J, Dubey A, Zhang Y, Medrano-Soto A, Saier MH Jr. Comparative population genomic analyses of transporters within the Asgard archaeal superphylum. PLoS One 2021;16:e0247806. [PMID: 33770091 DOI: 10.1371/journal.pone.0247806] [Reference Citation Analysis]
16 Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep 2017;7:10480. [PMID: 28874689 DOI: 10.1038/s41598-017-09654-8] [Cited by in Crossref: 315] [Cited by in F6Publishing: 254] [Article Influence: 63.0] [Reference Citation Analysis]
17 Saier MH Jr. The Bacterial Phosphotransferase System: New Frontiers 50 Years after Its Discovery. J Mol Microbiol Biotechnol 2015;25:73-8. [PMID: 26159069 DOI: 10.1159/000381215] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
18 Williams TJ, Allen MA, Liao Y, Raftery MJ, Cavicchioli R. Sucrose Metabolism in Haloarchaea: Reassessment Using Genomics, Proteomics, and Metagenomics. Appl Environ Microbiol 2019;85:e02935-18. [PMID: 30658981 DOI: 10.1128/AEM.02935-18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]