BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: De Clercq E, Li G. Approved Antiviral Drugs over the Past 50 Years. Clin Microbiol Rev. 2016;29:695-747. [PMID: 27281742 DOI: 10.1128/cmr.00102-15] [Cited by in Crossref: 592] [Cited by in F6Publishing: 276] [Article Influence: 98.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang L, Liang R, Gao Y, Li Y, Deng X, Xiang R, Zhang Y, Ying T, Jiang S, Yu F. Development of Small-Molecule Inhibitors Against Zika Virus Infection. Front Microbiol 2019;10:2725. [PMID: 31866959 DOI: 10.3389/fmicb.2019.02725] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
2 van Campenhout MJH, van Bömmel F, Pfefferkorn M, Fischer J, Deichsel D, Boonstra A, van Vuuren AJ, Berg T, Hansen BE, Janssen HLA. Serum hepatitis B virus RNA predicts response to peginterferon treatment in HBeAg-positive chronic hepatitis B. J Viral Hepat 2020;27:610-9. [PMID: 32052503 DOI: 10.1111/jvh.13272] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
3 Pruller J, Hofer I, Ganassi M, Heher P, Ma MT, Zammit PS. A human Myogenin promoter modified to be highly active in alveolar rhabdomyosarcoma drives an effective suicide gene therapy. Cancer Gene Ther 2021;28:427-41. [PMID: 32973362 DOI: 10.1038/s41417-020-00225-0] [Reference Citation Analysis]
4 Schandock F, Riber CF, Röcker A, Müller JA, Harms M, Gajda P, Zuwala K, Andersen AHF, Løvschall KB, Tolstrup M, Kreppel F, Münch J, Zelikin AN. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses. Adv Healthc Mater 2017;6. [PMID: 28945945 DOI: 10.1002/adhm.201700748] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
5 Bagg J, Roy K, Hopps L, Black I, Croser D, O'Halloran C, Ncube F. No longer 'written off' - times have changed for the BBV-infected dental professional. Br Dent J 2017;222:47-52. [PMID: 28084394 DOI: 10.1038/sj.bdj.2017.36] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation. Int J Mol Sci 2019;20:E5743. [PMID: 31731751 DOI: 10.3390/ijms20225743] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 10.7] [Reference Citation Analysis]
7 Garip Ustaoğlu Ş, Kaygusuz H, Bilgin MD, Severcan F. Novel approaches for COVID-19 diagnosis and treatment: a nonsystematic review. Turk J Biol 2021;45:358-71. [PMID: 34803440 DOI: 10.3906/biy-2105-45] [Reference Citation Analysis]
8 Aishwarya S, Gunasekaran K, Sagaya Jansi R, Sangeetha G. From genomes to molecular dynamics - A bottom up approach in extrication of SARS CoV-2 main protease inhibitors. Comput Toxicol 2021;18:100156. [PMID: 33532671 DOI: 10.1016/j.comtox.2021.100156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Gunaratne GS, Marchant JS. The ins and outs of virus trafficking through acidic Ca2+ stores. Cell Calcium 2022;102:102528. [DOI: 10.1016/j.ceca.2022.102528] [Reference Citation Analysis]
10 Chien M, Anderson TK, Jockusch S, Tao C, Li X, Kumar S, Russo JJ, Kirchdoerfer RN, Ju J. Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase, a Key Drug Target for COVID-19. J Proteome Res. 2020;19:4690-4697. [PMID: 32692185 DOI: 10.1021/acs.jproteome.0c00392] [Cited by in Crossref: 59] [Cited by in F6Publishing: 79] [Article Influence: 29.5] [Reference Citation Analysis]
11 Takayama-Ito M, Saijo M. Antiviral Drugs Against Severe Fever With Thrombocytopenia Syndrome Virus Infection. Front Microbiol 2020;11:150. [PMID: 32117168 DOI: 10.3389/fmicb.2020.00150] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
12 Matveev AV, Grebenkina LE, Prutkov AN, Chudinov MV. 5-Substituted 1,2,4-Triazole-3-Carboxylates and 5-Substituted Ribavirin Analogs Synthesis. Curr Protoc 2021;1:e281. [PMID: 34748276 DOI: 10.1002/cpz1.281] [Reference Citation Analysis]
13 Martinez MA. Clinical Trials of Repurposed Antivirals for SARS-CoV-2. Antimicrob Agents Chemother 2020;64:e01101-20. [PMID: 32631826 DOI: 10.1128/AAC.01101-20] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
14 Sahoo A, Fuloria S, Swain SS, Panda SK, Sekar M, Subramaniyan V, Panda M, Jena AK, Sathasivam KV, Fuloria NK. Potential of Marine Terpenoids against SARS-CoV-2: An In Silico Drug Development Approach. Biomedicines 2021;9:1505. [PMID: 34829734 DOI: 10.3390/biomedicines9111505] [Reference Citation Analysis]
15 Liang CS, Chen C, Lin ZY, Shen JL, Wang T, Jiang HF, Wang GX. Acyclovir inhibits white spot syndrome virus replication in crayfish Procambarus clarkii. Virus Res 2021;305:198570. [PMID: 34555435 DOI: 10.1016/j.virusres.2021.198570] [Reference Citation Analysis]
16 Khan MM, Noor A, Madni A, Shafiq M. Emergence of novel coronavirus and progress toward treatment and vaccine. Rev Med Virol 2020;30:e2116. [PMID: 32495979 DOI: 10.1002/rmv.2116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
17 Rahil Z, Leylek R, Schürch CM, Chen H, Bjornson-Hooper Z, Christensen SR, Gherardini PF, Bhate SS, Spitzer MH, Fragiadakis GK, Mukherjee N, Kim N, Jiang S, Yo J, Gaudilliere B, Affrime M, Bock B, Hensley SE, Idoyaga J, Aghaeepour N, Kim K, Nolan GP, McIlwain DR. Landscape of coordinated immune responses to H1N1 challenge in humans. J Clin Invest 2020;130:5800-16. [PMID: 33044226 DOI: 10.1172/JCI137265] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
18 Zhang S, Xing M, Li B. Recent advances in musculoskeletal local drug delivery. Acta Biomater 2019;93:135-51. [PMID: 30685475 DOI: 10.1016/j.actbio.2019.01.043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
19 Zuo LL, Zhang J, Liu LZ, Zhou Q, Du SJ, Xin SY, Ning ZP, Yang J, Yu HB, Yue WX, Wang J, Zhu FX, Li GY, Lu JH. Cadherin 6 is activated by Epstein-Barr virus LMP1 to mediate EMT and metastasis as an interplay node of multiple pathways in nasopharyngeal carcinoma. Oncogenesis 2017;6:402. [PMID: 29284791 DOI: 10.1038/s41389-017-0005-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 6.6] [Reference Citation Analysis]
20 Matthew AN, Leidner F, Lockbaum GJ, Henes M, Zephyr J, Hou S, Rao DN, Timm J, Rusere LN, Ragland DA, Paulsen JL, Prachanronarong K, Soumana DI, Nalivaika EA, Kurt Yilmaz N, Ali A, Schiffer CA. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chem Rev 2021;121:3238-70. [PMID: 33410674 DOI: 10.1021/acs.chemrev.0c00648] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Hamlow LA, Devereaux ZJ, Roy HA, Cunningham NA, Berden G, Oomens J, Rodgers MT. Impact of the 2'- and 3'-Sugar Hydroxyl Moieties on Gas-Phase Nucleoside Structure. J Am Soc Mass Spectrom 2019;30:832-45. [PMID: 30850972 DOI: 10.1007/s13361-019-02155-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
22 Nikonov OS, Chernykh ES, Garber MB, Nikonova EY. Enteroviruses: Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. Biochemistry (Mosc) 2017;82:1615-31. [PMID: 29523062 DOI: 10.1134/S0006297917130041] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
23 Aher UP, Srivastava D, Singh GP, S JB. Synthetic strategies toward 1,3-oxathiolane nucleoside analogues. Beilstein J Org Chem 2021;17:2680-715. [PMID: 34804240 DOI: 10.3762/bjoc.17.182] [Reference Citation Analysis]
24 Romanowski EG, Hussein ITM, Cardinale SC, Butler MM, Morin LR, Bowlin TL, Yates KA, Shanks RMQ, Kowalski RP. Filociclovir Is an Active Antiviral Agent against Ocular Adenovirus Isolates In Vitro and in the Ad5/NZW Rabbit Ocular Model. Pharmaceuticals (Basel) 2021;14:294. [PMID: 33810229 DOI: 10.3390/ph14040294] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Kalčic F, Zgarbová M, Hodek J, Chalupský K, Dračínský M, Dvořáková A, Strmeň T, Šebestík J, Baszczyňski O, Weber J, Mertlíková-Kaiserová H, Janeba Z. Discovery of Modified Amidate (ProTide) Prodrugs of Tenofovir with Enhanced Antiviral Properties. J Med Chem 2021;64:16425-49. [PMID: 34713696 DOI: 10.1021/acs.jmedchem.1c01444] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Mugimba KK, Byarugaba DK, Mutoloki S, Evensen Ø, Munang'andu HM. Challenges and Solutions to Viral Diseases of Finfish in Marine Aquaculture. Pathogens 2021;10:673. [PMID: 34070735 DOI: 10.3390/pathogens10060673] [Reference Citation Analysis]
27 Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021;13:1995. [PMID: 34959277 DOI: 10.3390/pharmaceutics13121995] [Reference Citation Analysis]
28 Jiménez de Oya N, Blázquez AB, Casas J, Saiz JC, Martín-Acebes MA. Direct Activation of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by PF-06409577 Inhibits Flavivirus Infection through Modification of Host Cell Lipid Metabolism. Antimicrob Agents Chemother 2018;62:e00360-18. [PMID: 29712653 DOI: 10.1128/AAC.00360-18] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
29 Zhang M, Li G, Shang J, Pan C, Zhang M, Yin Z, Xie Q, Peng Y, Mao Q, Xiao X, Jiang Y, Luo K, Xu Y, Ding H, Fan W, Diego V, Pourkarim MR, De Clercq E, Wang G, Gong G. Rapidly decreased HBV RNA predicts responses of pegylated interferons in HBeAg-positive patients: a longitudinal cohort study. Hepatol Int 2020;14:212-24. [PMID: 32100261 DOI: 10.1007/s12072-020-10015-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
30 Begum F, Srivastava AK, Ray U. Repurposing nonnucleoside antivirals against SARS-CoV2 NSP12 (RNA dependent RNA polymerase): In silico-molecular insight. Biochem Biophys Res Commun 2021;571:26-31. [PMID: 34303192 DOI: 10.1016/j.bbrc.2021.07.050] [Reference Citation Analysis]
31 Langer I, Latek D. Drug Repositioning For Allosteric Modulation of VIP and PACAP Receptors. Front Endocrinol (Lausanne) 2021;12:711906. [PMID: 34867774 DOI: 10.3389/fendo.2021.711906] [Reference Citation Analysis]
32 Reynolds D, Huesemann M, Edmundson S, Sims A, Hurst B, Cady S, Beirne N, Freeman J, Berger A, Gao S. Viral inhibitors derived from macroalgae, microalgae, and cyanobacteria: A review of antiviral potential throughout pathogenesis. Algal Res 2021;57:102331. [PMID: 34026476 DOI: 10.1016/j.algal.2021.102331] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Saxena A, Khare D, Agrawal S, Singh A, Dubey AK. Recent advances in materials science: a reinforced approach toward challenges against COVID-19. Emergent Mater 2021;:1-17. [PMID: 33644691 DOI: 10.1007/s42247-021-00179-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
34 Yates MK, Seley-Radtke KL. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res 2019;162:5-21. [PMID: 30529089 DOI: 10.1016/j.antiviral.2018.11.016] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 18.8] [Reference Citation Analysis]
35 Alanazi AS, James E, Mehellou Y. The ProTide Prodrug Technology: Where Next? ACS Med Chem Lett 2019;10:2-5. [PMID: 30655934 DOI: 10.1021/acsmedchemlett.8b00586] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
36 Tang Z, Kong N, Zhang X, Liu Y, Hu P, Mou S, Liljeström P, Shi J, Tan W, Kim JS, Cao Y, Langer R, Leong KW, Farokhzad OC, Tao W. A materials-science perspective on tackling COVID-19. Nat Rev Mater 2020;:1-14. [PMID: 33078077 DOI: 10.1038/s41578-020-00247-y] [Cited by in Crossref: 61] [Cited by in F6Publishing: 37] [Article Influence: 30.5] [Reference Citation Analysis]
37 Namasivayam V, Vanangamudi M, Kramer VG, Kurup S, Zhan P, Liu X, Kongsted J, Byrareddy SN. The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. J Med Chem 2019;62:4851-83. [PMID: 30516990 DOI: 10.1021/acs.jmedchem.8b00843] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 14.3] [Reference Citation Analysis]
38 Yeung SY, Mucha A, Deshmukh R, Boutrus M, Arnebrant T, Sellergren B. Reversible Self-Assembled Monolayers (rSAMs): Adaptable Surfaces for Enhanced Multivalent Interactions and Ultrasensitive Virus Detection. ACS Cent Sci 2017;3:1198-207. [PMID: 29202022 DOI: 10.1021/acscentsci.7b00412] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
39 Tvrdoňová M, Elečko J, Gonda J. A convenient synthesis of branched-chain nucleoside isothiocyanates via aza-Claisen rearrangement. Nucleosides Nucleotides Nucleic Acids 2021;40:943-67. [PMID: 34455922 DOI: 10.1080/15257770.2021.1966799] [Reference Citation Analysis]
40 Alanazi AS, Miccoli A, Mehellou Y. Aryloxy Pivaloyloxymethyl Prodrugs as Nucleoside Monophosphate Prodrugs. J Med Chem 2021;64:16703-10. [PMID: 34734726 DOI: 10.1021/acs.jmedchem.1c01490] [Reference Citation Analysis]
41 Elsaman T, Mohamed MS, Eltayib EM, Abdel-Aziz HA, Abdalla AE, Munir MU, Mohamed MA. Isatin derivatives as broad-spectrum antiviral agents: the current landscape. Med Chem Res 2022;:1-30. [PMID: 35039740 DOI: 10.1007/s00044-021-02832-4] [Reference Citation Analysis]
42 Zhang X, Cheng J, Ma J, Hu Z, Wu S, Hwang N, Kulp J, Du Y, Guo JT, Chang J. Discovery of Novel Hepatitis B Virus Nucleocapsid Assembly Inhibitors. ACS Infect Dis. 2019;5:759-768. [PMID: 30525438 DOI: 10.1021/acsinfecdis.8b00269] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
43 Malone B, Chen J, Wang Q, Llewellyn E, Choi YJ, Olinares PDB, Cao X, Hernandez C, Eng ET, Chait BT, Shaw DE, Landick R, Darst SA, Campbell EA. Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex. Proc Natl Acad Sci U S A 2021;118:e2102516118. [PMID: 33883267 DOI: 10.1073/pnas.2102516118] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
44 Wu Y, Chang KY, Lou L, Edwards LG, Doma BK, Xie ZR. In silico identification of drug candidates against COVID-19. Inform Med Unlocked 2020;21:100461. [PMID: 33102688 DOI: 10.1016/j.imu.2020.100461] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Khandazhinskaya AL, Alexandrova LA, Matyugina ES, Solyev PN, Efremenkova OV, Buckheit KW, Wilkinson M, Buckheit RW Jr, Chernousova LN, Smirnova TG, Andreevskaya SN, Leonova OG, Popenko VI, Kochetkov SN, Seley-Radtke KL. Novel 5'-Norcarbocyclic Pyrimidine Derivatives as Antibacterial Agents. Molecules 2018;23:E3069. [PMID: 30477147 DOI: 10.3390/molecules23123069] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
46 De Castro F, De Luca E, Benedetti M, Fanizzi FP. Platinum compounds as potential antiviral agents. Coordination Chemistry Reviews 2022;451:214276. [DOI: 10.1016/j.ccr.2021.214276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R, Ray AS, Cihlar T, Siegel D, Mackman RL, Clarke MO, Baric RS, Denison MR. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 2018;9. [PMID: 29511076 DOI: 10.1128/mbio.00221-18] [Cited by in Crossref: 699] [Cited by in F6Publishing: 491] [Article Influence: 174.8] [Reference Citation Analysis]
48 Shinde T, Hansbro PM, Sohal SS, Dingle P, Eri R, Stanley R. Microbiota Modulating Nutritional Approaches to Countering the Effects of Viral Respiratory Infections Including SARS-CoV-2 through Promoting Metabolic and Immune Fitness with Probiotics and Plant Bioactives. Microorganisms 2020;8:E921. [PMID: 32570850 DOI: 10.3390/microorganisms8060921] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
49 Kondo H, Koshizuka T, Majima R, Takahashi K, Ishioka K, Suzutani T, Inoue N. Characterization of a thiourea derivative that targets viral transactivators of cytomegalovirus and herpes simplex virus type 1. Antiviral Res 2021;196:105207. [PMID: 34774602 DOI: 10.1016/j.antiviral.2021.105207] [Reference Citation Analysis]
50 Cavallazzi R, Ramirez JA. Influenza and Viral Pneumonia. Clin Chest Med 2018;39:703-21. [PMID: 30390743 DOI: 10.1016/j.ccm.2018.07.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
51 D'Errico S, Falanga AP, Capasso D, Di Gaetano S, Marzano M, Terracciano M, Roviello GN, Piccialli G, Oliviero G, Borbone N. Probing the DNA Reactivity and the Anticancer Properties of a Novel Tubercidin-Pt(II) Complex. Pharmaceutics 2020;12:E627. [PMID: 32635488 DOI: 10.3390/pharmaceutics12070627] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Suwannarach N, Kumla J, Sujarit K, Pattananandecha T, Saenjum C, Lumyong S. Natural Bioactive Compounds from Fungi as Potential Candidates for Protease Inhibitors and Immunomodulators to Apply for Coronaviruses. Molecules 2020;25:E1800. [PMID: 32295300 DOI: 10.3390/molecules25081800] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 10.5] [Reference Citation Analysis]
53 Mohebbi A, Askari FS, Ebrahimi M, Zakeri M, Yasaghi M, Bagheri H, Javid N. Susceptibility of the Iranian population to severe acute respiratory syndrome coronavirus 2 infection based on variants of angiotensin I converting enzyme 2. Future Virology 2020;15:507-14. [DOI: 10.2217/fvl-2020-0160] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
54 Oslovsky VE, Drenichev MS, Sun L, Kurochkin NN, Kunetsky VE, Mirabelli C, Neyts J, Leyssen P, Mikhailov SN. Fluorination of Naturally Occurring N⁶-Benzyladenosine Remarkably Increased Its Antiviral Activity and Selectivity. Molecules 2017;22:E1219. [PMID: 28726764 DOI: 10.3390/molecules22071219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
55 Ye L, Qian Y, Yu W, Guo G, Wang H, Xue X. Functional Profile of Human Cytomegalovirus Genes and Their Associated Diseases: A Review. Front Microbiol 2020;11:2104. [PMID: 33013768 DOI: 10.3389/fmicb.2020.02104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
56 Lundstrom K. Viral Vectors Applied for RNAi-Based Antiviral Therapy. Viruses 2020;12:E924. [PMID: 32842491 DOI: 10.3390/v12090924] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
57 Velo-Gala I, Barceló-Oliver M, Gil DM, González-Pérez JM, Castiñeiras A, Domínguez-Martín A. Deciphering the H-Bonding Preference on Nucleoside Molecular Recognition through Model Copper(II) Compounds. Pharmaceuticals (Basel) 2021;14:244. [PMID: 33803177 DOI: 10.3390/ph14030244] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Kasprzak A, Koszytkowska-Stawińska M, Nowicka AM, Buchowicz W, Poplawska M. Supramolecular Interactions between β-Cyclodextrin and the Nucleobase Derivatives of Ferrocene. J Org Chem 2019;84:15900-14. [PMID: 31769672 DOI: 10.1021/acs.joc.9b02353] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
59 Passow KT, Caldwell HS, Ngo KA, Arnold JJ, Antczak NM, Narayanan A, Jose J, Sturla SJ, Cameron CE, Ciota AT, Harki DA. A Chemical Strategy for Intracellular Arming of an Endogenous Broad-Spectrum Antiviral Nucleotide. J Med Chem 2021;64:15429-39. [PMID: 34661397 DOI: 10.1021/acs.jmedchem.1c01481] [Reference Citation Analysis]
60 Md Nayeem S, Sohail EM, Srihari NV, Indira P, Srinivasa Reddy M. Target SARS-CoV-2: theoretical exploration on clinical suitability of certain drugs. J Biomol Struct Dyn 2021;:1-8. [PMID: 33988066 DOI: 10.1080/07391102.2021.1924262] [Reference Citation Analysis]
61 Banerjee NS, Wang HK, Beadle JR, Hostetler KY, Chow LT. Evaluation of ODE-Bn-PMEG, an acyclic nucleoside phosphonate prodrug, as an antiviral against productive HPV infection in 3D organotypic epithelial cultures. Antiviral Res 2018;150:164-73. [PMID: 29287913 DOI: 10.1016/j.antiviral.2017.12.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
62 Hashemian SMR, Pourhanifeh MH, Hamblin MR, Shahrzad MK, Mirzaei H. RdRp inhibitors and COVID-19: Is molnupiravir a good option? Biomed Pharmacother 2021;146:112517. [PMID: 34902743 DOI: 10.1016/j.biopha.2021.112517] [Reference Citation Analysis]
63 Kohli J, Veenstra I, Demaria M. The struggle of a good friend getting old: cellular senescence in viral responses and therapy. EMBO Rep 2021;22:e52243. [PMID: 33734564 DOI: 10.15252/embr.202052243] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
64 Bassetto M, Van Dycke J, Neyts J, Brancale A, Rocha-Pereira J. Targeting the Viral Polymerase of Diarrhea-Causing Viruses as a Strategy to Develop a Single Broad-Spectrum Antiviral Therapy. Viruses 2019;11:E173. [PMID: 30791582 DOI: 10.3390/v11020173] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
65 Xu X, Zhang QY, Chu XY, Quan Y, Lv BM, Zhang HY. Facilitating Antiviral Drug Discovery Using Genetic and Evolutionary Knowledge. Viruses 2021;13:2117. [PMID: 34834924 DOI: 10.3390/v13112117] [Reference Citation Analysis]
66 King CR, Tessier TM, Dodge MJ, Weinberg JB, Mymryk JS. Inhibition of Human Adenovirus Replication by the Importin α/β1 Nuclear Import Inhibitor Ivermectin. J Virol 2020;94:e00710-20. [PMID: 32641484 DOI: 10.1128/JVI.00710-20] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
67 Campos EVR, Pereira AES, de Oliveira JL, Carvalho LB, Guilger-Casagrande M, de Lima R, Fraceto LF. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J Nanobiotechnology 2020;18:125. [PMID: 32891146 DOI: 10.1186/s12951-020-00685-4] [Cited by in Crossref: 58] [Cited by in F6Publishing: 41] [Article Influence: 29.0] [Reference Citation Analysis]
68 Sánchez A, Mejía SP, Orozco J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020;25:E3760. [PMID: 32824757 DOI: 10.3390/molecules25163760] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
69 Hay RT. An all-out assault on SARS-CoV-2 replication. Biochem J 2021;478:2399-403. [PMID: 34198321 DOI: 10.1042/BCJ20210256] [Reference Citation Analysis]
70 Pai A, Weinberger LS. Fate-Regulating Circuits in Viruses: From Discovery to New Therapy Targets. Annu Rev Virol 2017;4:469-90. [PMID: 28800289 DOI: 10.1146/annurev-virology-110615-035606] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
71 Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N, Tsatsakis A. Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). Int J Mol Med 2020;46:467-88. [PMID: 32468014 DOI: 10.3892/ijmm.2020.4608] [Cited by in Crossref: 46] [Cited by in F6Publishing: 53] [Article Influence: 23.0] [Reference Citation Analysis]
72 Zusinaite E, Ianevski A, Niukkanen D, Poranen MM, Bjørås M, Afset JE, Tenson T, Velagapudi V, Merits A, Kainov DE. A Systems Approach to Study Immuno- and Neuro-Modulatory Properties of Antiviral Agents. Viruses 2018;10:E423. [PMID: 30103549 DOI: 10.3390/v10080423] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
73 Liou AT, Liao CC, Chou SF, Chang YS, Chang CS, Shih C. Hypoxia and therapeutic treatment of EV-A71 with an immune modulator TLR7 agonist in a new immunocompetent mouse model. J Biomed Sci 2019;26:93. [PMID: 31711481 DOI: 10.1186/s12929-019-0585-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
74 Selisko B, Papageorgiou N, Ferron F, Canard B. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases. Viruses 2018;10:E59. [PMID: 29385764 DOI: 10.3390/v10020059] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 7.8] [Reference Citation Analysis]
75 Musharrafieh R, Ma C, Zhang J, Hu Y, Diesing JM, Marty MT, Wang J. Validating Enterovirus D68-2Apro as an Antiviral Drug Target and the Discovery of Telaprevir as a Potent D68-2Apro Inhibitor. J Virol 2019;93:e02221-18. [PMID: 30674624 DOI: 10.1128/JVI.02221-18] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 7.7] [Reference Citation Analysis]
76 Dong X, Tang J, Hu C, Bai J, Ding H, Xiao Q. An Expeditious Total Synthesis of 5'-Deoxy-toyocamycin and 5'-Deoxysangivamycin. Molecules 2019;24:E737. [PMID: 30791372 DOI: 10.3390/molecules24040737] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
77 Venkataraman S, Prasad BVLS, Selvarajan R. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Viruses 2018;10:E76. [PMID: 29439438 DOI: 10.3390/v10020076] [Cited by in Crossref: 108] [Cited by in F6Publishing: 88] [Article Influence: 27.0] [Reference Citation Analysis]
78 Tharayil A, Rajakumari R, Kumar A, Choudhary MD, Palit P, Thomas S. New insights into application of nanoparticles in the diagnosis and screening of novel coronavirus (SARS-CoV-2). Emergent Mater 2021;:1-17. [PMID: 33817553 DOI: 10.1007/s42247-021-00182-w] [Reference Citation Analysis]
79 Olsen ME, Connor JH. Hypusination of eIF5A as a Target for Antiviral Therapy. DNA Cell Biol 2017;36:198-201. [PMID: 28080131 DOI: 10.1089/dna.2016.3611] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
80 Albentosa-González L, Jimenez de Oya N, Arias A, Clemente-Casares P, Martin-Acebes MÁ, Saiz JC, Sabariegos R, Mas A. Akt Kinase Intervenes in Flavivirus Replication by Interacting with Viral Protein NS5. Viruses 2021;13:896. [PMID: 34066055 DOI: 10.3390/v13050896] [Reference Citation Analysis]
81 Shatskiy A, Axelsson A, Stepanova EV, Liu JQ, Temerdashev AZ, Kore BP, Blomkvist B, Gardner JM, Dinér P, Kärkäs MD. Stereoselective synthesis of unnatural α-amino acid derivatives through photoredox catalysis. Chem Sci 2021;12:5430-7. [PMID: 34168785 DOI: 10.1039/d1sc00658d] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
82 Pitakbut T, Nguyen GN, Kayser O. Activity of THC, CBD, and CBN on Human ACE2 and SARS-CoV1/2 Main Protease to Understand Antiviral Defense Mechanism. Planta Med 2021. [PMID: 34638139 DOI: 10.1055/a-1581-3707] [Reference Citation Analysis]
83 Fink K, Nitsche A, Neumann M, Grossegesse M, Eisele KH, Danysz W. Amantadine Inhibits SARS-CoV-2 In Vitro. Viruses 2021;13:539. [PMID: 33804989 DOI: 10.3390/v13040539] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
84 Ju J, Li X, Kumar S, Jockusch S, Chien M, Tao C, Morozova I, Kalachikov S, Kirchdoerfer RN, Russo JJ. Nucleotide analogues as inhibitors of SARS-CoV Polymerase. Pharmacol Res Perspect 2020;8:e00674. [PMID: 33124786 DOI: 10.1002/prp2.674] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
85 Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS, Yozwiak NL, Zhang F, Sabeti PC. Programmable Inhibition and Detection of RNA Viruses Using Cas13. Mol Cell 2019;76:826-837.e11. [PMID: 31607545 DOI: 10.1016/j.molcel.2019.09.013] [Cited by in Crossref: 124] [Cited by in F6Publishing: 109] [Article Influence: 41.3] [Reference Citation Analysis]
86 Vasou A, Paulus C, Narloch J, Gage ZO, Rameix-Welti MA, Eléouët JF, Nevels M, Randall RE, Adamson CS. Modular cell-based platform for high throughput identification of compounds that inhibit a viral interferon antagonist of choice. Antiviral Res 2018;150:79-92. [PMID: 29037975 DOI: 10.1016/j.antiviral.2017.10.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
87 Hall MD, Anderson JM, Anderson A, Baker D, Bradner J, Brimacombe KR, Campbell EA, Corbett KS, Carter K, Cherry S, Chiang L, Cihlar T, de Wit E, Denison M, Disney M, Fletcher CV, Ford-Scheimer SL, Götte M, Grossman AC, Hayden FG, Hazuda DJ, Lanteri CA, Marston H, Mesecar AD, Moore S, Nwankwo JO, O'Rear J, Painter G, Singh Saikatendu K, Schiffer CA, Sheahan TP, Shi PY, Smyth HD, Sofia MJ, Weetall M, Weller SK, Whitley R, Fauci AS, Austin CP, Collins FS, Conley AJ, Davis MI. Report of the National Institutes of Health SARS-CoV-2 Antiviral Therapeutics Summit. J Infect Dis 2021;224:S1-S21. [PMID: 34111271 DOI: 10.1093/infdis/jiab305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
88 Tripathi D, Sodani M, Gupta PK, Kulkarni S. Host directed therapies: COVID-19 and beyond. Curr Res Pharmacol Drug Discov 2021;2:100058. [PMID: 34870156 DOI: 10.1016/j.crphar.2021.100058] [Reference Citation Analysis]
89 Magyar-Tábori K, Mendler-Drienyovszki N, Hanász A, Zsombik L, Dobránszki J. Phytotoxicity and Other Adverse Effects on the In Vitro Shoot Cultures Caused by Virus Elimination Treatments: Reasons and Solutions. Plants (Basel) 2021;10:670. [PMID: 33807286 DOI: 10.3390/plants10040670] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
90 Gediz Erturk A, Sahin A, Bati Ay E, Pelit E, Bagdatli E, Kulu I, Gul M, Mesci S, Eryilmaz S, Oba Ilter S, Yildirim T. A Multidisciplinary Approach to Coronavirus Disease (COVID-19). Molecules 2021;26:3526. [PMID: 34207756 DOI: 10.3390/molecules26123526] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
91 Chien M, Anderson TK, Jockusch S, Tao C, Kumar S, Li X, Russo JJ, Kirchdoerfer RN, Ju J. Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase. bioRxiv. 2020;. [PMID: 32511320 DOI: 10.1101/2020.03.18.997585] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 8.5] [Reference Citation Analysis]
92 Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. Nano Today 2021;36:101031. [PMID: 33519948 DOI: 10.1016/j.nantod.2020.101031] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
93 Todt D, Walter S, Brown RJ, Steinmann E. Mutagenic Effects of Ribavirin on Hepatitis E Virus-Viral Extinction versus Selection of Fitness-Enhancing Mutations. Viruses 2016;8:E283. [PMID: 27754363 DOI: 10.3390/v8100283] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
94 Mehellou Y, Rattan HS, Balzarini J. The ProTide Prodrug Technology: From the Concept to the Clinic. J Med Chem 2018;61:2211-26. [PMID: 28792763 DOI: 10.1021/acs.jmedchem.7b00734] [Cited by in Crossref: 89] [Cited by in F6Publishing: 85] [Article Influence: 17.8] [Reference Citation Analysis]
95 Bugert JJ, Hucke F, Zanetta P, Bassetto M, Brancale A. Antivirals in medical biodefense. Virus Genes 2020;56:150-67. [PMID: 32076918 DOI: 10.1007/s11262-020-01737-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
96 Sokullu E, Gauthier MS, Coulombe B. Discovery of Antivirals Using Phage Display. Viruses 2021;13:1120. [PMID: 34200959 DOI: 10.3390/v13061120] [Reference Citation Analysis]
97 Biliavska L, Pankivska Y, Povnitsa O, Zagorodnya S. Antiviral Activity of Exopolysaccharides Produced by Lactic Acid Bacteria of the Genera Pediococcus, Leuconostoc and Lactobacillus against Human Adenovirus Type 5. Medicina (Kaunas) 2019;55:E519. [PMID: 31443536 DOI: 10.3390/medicina55090519] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
98 Balasubramaniam M, Reis RJS. Computational target-based drug repurposing of elbasvir, an antiviral drug predicted to bind multiple SARS-CoV-2 proteins. ChemRxiv 2020. [PMID: 32511290 DOI: 10.26434/chemrxiv.12084822] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
99 Cho SY, Lee DG, Kim HJ. Cytomegalovirus Infections after Hematopoietic Stem Cell Transplantation: Current Status and Future Immunotherapy. Int J Mol Sci 2019;20:E2666. [PMID: 31151230 DOI: 10.3390/ijms20112666] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
100 Zelikin AN, Stellacci F. Broad-Spectrum Antiviral Agents Based on Multivalent Inhibitors of Viral Infectivity. Adv Healthc Mater 2021;10:e2001433. [PMID: 33491915 DOI: 10.1002/adhm.202001433] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
101 Kwarteng A, Asiedu E, Sakyi SA, Asiedu SO. Targeting the SARS-CoV2 nucleocapsid protein for potential therapeutics using immuno-informatics and structure-based drug discovery techniques. Biomed Pharmacother 2020;132:110914. [PMID: 33254432 DOI: 10.1016/j.biopha.2020.110914] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
102 Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, Akram M, Riaz M, Rasool G, Hamid Khan A, Saleem I, Shamim S, Malik A. A review: Mechanism of action of antiviral drugs. Int J Immunopathol Pharmacol 2021;35:20587384211002621. [PMID: 33726557 DOI: 10.1177/20587384211002621] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
103 Yu J, Kuwentrai C, Huang JD, Xu C. Carbon-based nanomaterials for viral infection management. Biomicrofluidics 2021;15:011501. [PMID: 33425089 DOI: 10.1063/5.0032427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
104 Miao Z, Cai Y, Meng J, Zhou W. Therapeutic Options and Treatment Strategies Against COVID-19 in China. Curr Org Synth 2020;17:413-4. [PMID: 33003993 DOI: 10.2174/157017941706200925091306] [Reference Citation Analysis]
105 Sticher ZM, Lu G, Mitchell DG, Marlow J, Moellering L, Bluemling GR, Guthrie DB, Natchus MG, Painter GR, Kolykhalov AA. Analysis of the Potential for N 4-Hydroxycytidine To Inhibit Mitochondrial Replication and Function. Antimicrob Agents Chemother 2020;64:e01719-19. [PMID: 31767721 DOI: 10.1128/AAC.01719-19] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
106 Horvath D, Orlov A, Osolodkin DI, Ishmukhametov AA, Marcou G, Varnek A. A Chemographic Audit of anti-Coronavirus Structure-activity Information from Public Databases (ChEMBL). Mol Inform 2020;39:e2000080. [PMID: 32363750 DOI: 10.1002/minf.202000080] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
107 Khater I, Nassar A. In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease. Biochem Biophys Rep 2021;27:101032. [PMID: 34099985 DOI: 10.1016/j.bbrep.2021.101032] [Reference Citation Analysis]
108 Lai Y, Han T, Zhan S, Jiang Y, Liu X, Li G. Antiviral Activity of Isoimperatorin Against Influenza A Virus in vitro and its Inhibition of Neuraminidase. Front Pharmacol 2021;12:657826. [PMID: 33927632 DOI: 10.3389/fphar.2021.657826] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Tse LV, Meganck RM, Graham RL, Baric RS. The Current and Future State of Vaccines, Antivirals and Gene Therapies Against Emerging Coronaviruses. Front Microbiol 2020;11:658. [PMID: 32390971 DOI: 10.3389/fmicb.2020.00658] [Cited by in Crossref: 60] [Cited by in F6Publishing: 47] [Article Influence: 30.0] [Reference Citation Analysis]
110 Qin Y, Xue B, Liu C, Wang X, Tian R, Xie Q, Guo M, Li G, Yang D, Zhu H. NLRX1 Mediates MAVS Degradation To Attenuate the Hepatitis C Virus-Induced Innate Immune Response through PCBP2. J Virol 2017;91:e01264-17. [PMID: 28956771 DOI: 10.1128/JVI.01264-17] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 7.4] [Reference Citation Analysis]
111 Geant PY, Uttaro JP, Périgaud C, Mathé C. Synthesis and Antiviral Evaluation of 3'-Fluoro-5'-norcarbocyclic Nucleoside Phosphonates Bearing Uracil and Cytosine as Potential Antiviral Agents. Molecules 2020;25:E3708. [PMID: 32823897 DOI: 10.3390/molecules25163708] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
112 Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduct Target Ther 2021;6:177. [PMID: 33986257 DOI: 10.1038/s41392-021-00566-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Kumari S, Chatterjee K. Biomaterials-based formulations and surfaces to combat viral infectious diseases. APL Bioeng 2021;5:011503. [PMID: 33598595 DOI: 10.1063/5.0029486] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
114 Abu-Zaied MA, Hammad SF, Halaweish FT, Elgemeie GH. Sofosbuvir Thio-analogues: Synthesis and Antiviral Evaluation of the First Novel Pyridine- and Pyrimidine-Based Thioglycoside Phosphoramidates. ACS Omega. 2020;5:14645-14655. [PMID: 32596602 DOI: 10.1021/acsomega.0c01364] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Lin N, Verma D, Saini N, Arbi R, Munir M, Jovic M, Turak A. Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. Nano Today 2021;40:101267. [PMID: 34404999 DOI: 10.1016/j.nantod.2021.101267] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
116 Park SJ, Kim J, Kang S, Cha HJ, Shin H, Park J, Jang YS, Woo JS, Won C, Min DH. Discovery of direct-acting antiviral agents with a graphene-based fluorescent nanosensor. Sci Adv 2020;6:eaaz8201. [PMID: 32523995 DOI: 10.1126/sciadv.aaz8201] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
117 Poljak M. Next-Generation Sequencing: a Diagnostic One-Stop Shop for Hepatitis C? J Clin Microbiol 2016;54:2427-30. [PMID: 27510828 DOI: 10.1128/JCM.01423-16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
118 Ippolito JA, Niu H, Bertoletti N, Carter ZJ, Jin S, Spasov KA, Cisneros JA, Valhondo M, Cutrona KJ, Anderson KS, Jorgensen WL. Covalent Inhibition of Wild-Type HIV-1 Reverse Transcriptase Using a Fluorosulfate Warhead. ACS Med Chem Lett 2021;12:249-55. [PMID: 33603971 DOI: 10.1021/acsmedchemlett.0c00612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
119 Chaturvedi P, Kelich P, Nitka TA, Vuković L. Computational Modeling of the Virucidal Inhibition Mechanism for Broad-Spectrum Antiviral Nanoparticles and HPV16 Capsid Segments. J Phys Chem B 2021;125:13122-31. [PMID: 34845905 DOI: 10.1021/acs.jpcb.1c07436] [Reference Citation Analysis]
120 Zenchenko AA, Drenichev MS, Il'icheva IA, Mikhailov SN. Antiviral and Antimicrobial Nucleoside Derivatives: Structural Features and Mechanisms of Action. Mol Biol 2021;55:786-812. [PMID: 34955556 DOI: 10.1134/S0026893321040105] [Reference Citation Analysis]
121 Masomian M, Lalani S, Poh CL. Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71). Molecules 2021;26:6576. [PMID: 34770987 DOI: 10.3390/molecules26216576] [Reference Citation Analysis]
122 Manaresi E, Gallinella G. Advances in the Development of Antiviral Strategies against Parvovirus B19. Viruses 2019;11:E659. [PMID: 31323869 DOI: 10.3390/v11070659] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
123 Agostini ML, Pruijssers AJ, Chappell JD, Gribble J, Lu X, Andres EL, Bluemling GR, Lockwood MA, Sheahan TP, Sims AC, Natchus MG, Saindane M, Kolykhalov AA, Painter GR, Baric RS, Denison MR. Small-Molecule Antiviral β-d-N 4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance. J Virol 2019;93:e01348-19. [PMID: 31578288 DOI: 10.1128/JVI.01348-19] [Cited by in Crossref: 69] [Cited by in F6Publishing: 44] [Article Influence: 23.0] [Reference Citation Analysis]
124 Albentosa-González L, Clemente-Casares P, Sabariegos R, Mas A. Polymerase Activity, Protein-Protein Interaction, and Cellular Localization of the Usutu Virus NS5 Protein. Antimicrob Agents Chemother 2019;64:e01573-19. [PMID: 31685463 DOI: 10.1128/AAC.01573-19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
125 Kirby SA, Dowd CS. Phosphoryl prodrugs: characteristics to improve drug development. Med Chem Res 2022;31:207-16. [DOI: 10.1007/s00044-021-02766-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Pęcak P, Orzechowska B, Chrobak E, Boryczka S. Novel betulin dicarboxylic acid ester derivatives as potent antiviral agents: Design, synthesis, biological evaluation, structure-activity relationship and in-silico study. Eur J Med Chem 2021;225:113738. [PMID: 34425312 DOI: 10.1016/j.ejmech.2021.113738] [Reference Citation Analysis]
127 Li X, Yang Y, Liu L, Yang X, Zhao X, Li Y, Ge Y, Shi Y, Lv P, Zhang J, Bai T, Zhou H, Luo P, Huang S. Effect of combination antiviral therapy on hematological profiles in 151 adults hospitalized with severe coronavirus disease 2019. Pharmacol Res. 2020;160:105036. [PMID: 32565309 DOI: 10.1016/j.phrs.2020.105036] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
128 Klapars A, Chung JYL, Limanto J, Calabria R, Campeau LC, Campos KR, Chen W, Dalby SM, Davis TA, DiRocco DA, Hyde AM, Kassim AM, Larsen MU, Liu G, Maligres PE, Moment A, Peng F, Ruck RT, Shevlin M, Simmons BL, Song ZJ, Tan L, Wright TJ, Zultanski SL. Efficient synthesis of antiviral agent uprifosbuvir enabled by new synthetic methods. Chem Sci 2021;12:9031-6. [PMID: 34276931 DOI: 10.1039/d1sc01978c] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Madelain V, Mentré F, Baize S, Anglaret X, Laouénan C, Oestereich L, Nguyen THT, Malvy D, Piorkowski G, Graw F, Günther S, Raoul H, de Lamballerie X, Guedj J. Modeling Favipiravir Antiviral Efficacy Against Emerging Viruses: From Animal Studies to Clinical Trials. CPT Pharmacometrics Syst Pharmacol 2020;9:258-71. [PMID: 32198838 DOI: 10.1002/psp4.12510] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
130 Awad SM, Ali SM, Mansour YE, Fatahala SS. Synthesis and Evaluation of Some Uracil Nucleosides as Promising Anti-Herpes Simplex Virus 1 Agents. Molecules 2021;26:2988. [PMID: 34069874 DOI: 10.3390/molecules26102988] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Mei M, Tan X. Current Strategies of Antiviral Drug Discovery for COVID-19. Front Mol Biosci 2021;8:671263. [PMID: 34055887 DOI: 10.3389/fmolb.2021.671263] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
132 Zhu W, Xu M, Chen CZ, Guo H, Shen M, Hu X, Shinn P, Klumpp-Thomas C, Michael SG, Zheng W. Identification of SARS-CoV-2 3CL Protease Inhibitors by a Quantitative High-Throughput Screening. ACS Pharmacol Transl Sci 2020;3:1008-16. [PMID: 33062953 DOI: 10.1021/acsptsci.0c00108] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 20.0] [Reference Citation Analysis]
133 Etemadi A, Moradi HR, Mohammadian F, Karimi-Jafari MH, Negahdari B, Asgari Y, Mazloomi M. Binder design for targeting SARS-CoV-2 spike protein: An in silico perspective. Gene Rep 2022;26:101452. [PMID: 34849425 DOI: 10.1016/j.genrep.2021.101452] [Reference Citation Analysis]
134 Lu G, Bluemling GR, Mao S, Hager M, Gurale BP, Collop P, Kuiper D, Sana K, Painter GR, De La Rosa A, Kolykhalov AA. Simple In Vitro Assay To Evaluate the Incorporation Efficiency of Ribonucleotide Analog 5'-Triphosphates into RNA by Human Mitochondrial DNA-Dependent RNA Polymerase. Antimicrob Agents Chemother 2018;62:e01830-17. [PMID: 29180528 DOI: 10.1128/AAC.01830-17] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
135 Bischof E, Broek JAC, Cantor CR, Duits AJ, Ferro A, Gao HW, Li Z, de Maria SL, Maria NI, Mishra B, Mishra KI, van der Ploeg L, Rudolph L, Schlick T; RxCOVEA Framework. ANERGY TO SYNERGY-THE ENERGY FUELING THE RXCOVEA FRAMEWORK. Int J Multiscale Comput Eng 2020;18:329-33. [PMID: 32831809 DOI: 10.1615/intjmultcompeng.2020035097] [Reference Citation Analysis]
136 Baltina LA, Kondratenko RM, Baltina LA Jr, Plyasunova OA. Synthesis of Glycyrrhizic Acid Conjugates with S-Benzyl-L-Cysteine and Their Antiviral Activity. Pharm Chem J 2021;:1-4. [PMID: 34149108 DOI: 10.1007/s11094-021-02402-3] [Reference Citation Analysis]
137 Grebenkina LE, Matveev AV, Chudinov MV. Parallel synthesis of derivatives of 1H-1,2,4-triazole-3-carboxylic acids with heterocyclic substituents at position 5. Chem Heterocycl Comp 2020;56:1173-9. [DOI: 10.1007/s10593-020-02794-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
138 Krüger F, Kumar V, Monge P, Conzelmann C, Smith N, Gothelf KV, Tolstrup M, Münch J, Zelikin AN. Nucleic Acids as a Nature-Inspired Scaffold for Macromolecular Prodrugs of Nucleoside Analogues. Adv Sci (Weinh) 2019;6:1802095. [PMID: 30937274 DOI: 10.1002/advs.201802095] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
139 Balzarini J, Menni M, Das K, van Berckelaer L, Ford A, Maguire NM, Liekens S, Boehmer PE, Arnold E, Götte M, Maguire AR. Guanine α-carboxy nucleoside phosphonate (G-α-CNP) shows a different inhibitory kinetic profile against the DNA polymerases of human immunodeficiency virus (HIV) and herpes viruses. Biochem Pharmacol 2017;136:51-61. [PMID: 28390939 DOI: 10.1016/j.bcp.2017.04.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
140 Choudhary N, Singh V. Multi-scale mechanism of antiviral drug-alike phytoligands from Ayurveda in managing COVID-19 and associated metabolic comorbidities: insights from network pharmacology. Mol Divers 2022. [PMID: 34993740 DOI: 10.1007/s11030-021-10352-x] [Reference Citation Analysis]
141 De Lellis L, Veschi S, Tinari N, Mokini Z, Carradori S, Brocco D, Florio R, Grassadonia A, Cama A. Drug Repurposing, an Attractive Strategy in Pancreatic Cancer Treatment: Preclinical and Clinical Updates. Cancers (Basel) 2021;13:3946. [PMID: 34439102 DOI: 10.3390/cancers13163946] [Reference Citation Analysis]
142 Fintelman-Rodrigues N, Sacramento CQ, Ribeiro Lima C, Souza da Silva F, Ferreira AC, Mattos M, de Freitas CS, Cardoso Soares V, da Silva Gomes Dias S, Temerozo JR, Miranda MD, Matos AR, Bozza FA, Carels N, Alves CR, Siqueira MM, Bozza PT, Souza TML. Atazanavir, Alone or in Combination with Ritonavir, Inhibits SARS-CoV-2 Replication and Proinflammatory Cytokine Production. Antimicrob Agents Chemother 2020;64:e00825-20. [PMID: 32759267 DOI: 10.1128/AAC.00825-20] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 17.0] [Reference Citation Analysis]
143 Scheuch G, Canisius S, Nocker K, Hofmann T, Naumann R, Pleschka S, Ludwig S, Welte T, Planz O. Targeting intracellular signaling as an antiviral strategy: aerosolized LASAG for the treatment of influenza in hospitalized patients. Emerg Microbes Infect 2018;7:21. [PMID: 29511170 DOI: 10.1038/s41426-018-0023-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
144 Boldescu V, Behnam MAM, Vasilakis N, Klein CD. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov 2017;16:565-86. [PMID: 28473729 DOI: 10.1038/nrd.2017.33] [Cited by in Crossref: 147] [Cited by in F6Publishing: 122] [Article Influence: 29.4] [Reference Citation Analysis]
145 Falco A, Bello-Perez M, Díaz-Puertas R, Mold M, Adamek M. Update on the Inactivation Procedures for the Vaccine Development Prospects of a New Highly Virulent RGNNV Isolate. Vaccines (Basel) 2021;9:1441. [PMID: 34960187 DOI: 10.3390/vaccines9121441] [Reference Citation Analysis]
146 Mongia A, Saha SK, Chouzenoux E, Majumdar A. A computational approach to aid clinicians in selecting anti-viral drugs for COVID-19 trials. Sci Rep 2021;11:9047. [PMID: 33907209 DOI: 10.1038/s41598-021-88153-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
147 Seddon AM. Materials Science in the time of Coronavirus. J Mater Sci 2020;:1-3. [PMID: 32398884 DOI: 10.1007/s10853-020-04694-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
148 Zamzami MA. Molecular docking, molecular dynamics simulation and MM-GBSA studies of the activity of glycyrrhizin relevant substructures on SARS-CoV-2 RNA-dependent-RNA polymerase. J Biomol Struct Dyn 2022;:1-13. [PMID: 35037842 DOI: 10.1080/07391102.2021.2025147] [Reference Citation Analysis]
149 Frydrych J, Poštová Slavětínská L, Dračínský M, Janeba Z. Efficient Synthesis of α-Branched Purine-Based Acyclic Nucleosides: Scopes and Limitations of the Method. Molecules 2020;25:E4307. [PMID: 32961820 DOI: 10.3390/molecules25184307] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
150 Mule S, Singh A, Greish K, Sahebkar A, Kesharwani P, Shukla R. Drug repurposing strategies and key challenges for COVID-19 management. J Drug Target 2021;:1-17. [PMID: 34854327 DOI: 10.1080/1061186X.2021.2013852] [Reference Citation Analysis]
151 Zuwala K, Riber CF, Løvschall KB, Andersen AHF, Sørensen L, Gajda P, Tolstrup M, Zelikin AN. Macromolecular prodrugs of ribavirin: Polymer backbone defines blood safety, drug release, and efficacy of anti-inflammatory effects. J Control Release 2018;275:53-66. [PMID: 29432822 DOI: 10.1016/j.jconrel.2018.02.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
152 Zhu Y, Huang P, Yang N, Liu R, Liu X, Dai H, Zhang L, Song F, Sun C. Establishment and Application of a High Throughput Screening System Targeting the Interaction between HCV Internal Ribosome Entry Site and Human Eukaryotic Translation Initiation Factor 3. Front Microbiol 2017;8:977. [PMID: 28611766 DOI: 10.3389/fmicb.2017.00977] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
153 Li J, Wang Y, Hao X, Li S, Jia J, Guan Y, Peng Z, Bi H, Xiao C, Cen S, Gan M. Broad-Spectrum Antiviral Natural Products from the Marine-Derived Penicillium sp. IMB17-046. Molecules 2019;24:E2821. [PMID: 31382398 DOI: 10.3390/molecules24152821] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
154 Nevers Q, Ruiz I, Ahnou N, Donati F, Brillet R, Softic L, Chazal M, Jouvenet N, Fourati S, Baudesson C, Bruscella P, Gelin M, Guichou JF, Pawlotsky JM, Ahmed-Belkacem A. Characterization of the Anti-Hepatitis C Virus Activity of New Nonpeptidic Small-Molecule Cyclophilin Inhibitors with the Potential for Broad Anti-Flaviviridae Activity. Antimicrob Agents Chemother 2018;62:e00126-18. [PMID: 29760125 DOI: 10.1128/AAC.00126-18] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
155 Jin YH, Min JS, Jeon S, Lee J, Kim S, Park T, Park D, Jang MS, Park CM, Song JH, Kim HR, Kwon S. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections. Phytomedicine 2021;86:153440. [PMID: 33376043 DOI: 10.1016/j.phymed.2020.153440] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
156 Takizawa N, Yamasaki M. Current landscape and future prospects of antiviral drugs derived from microbial products. J Antibiot (Tokyo) 2017. [PMID: 29018267 DOI: 10.1038/ja.2017.115] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.4] [Reference Citation Analysis]
157 Limonta D, Dyna-Dagman L, Branton W, Mancinelli V, Makio T, Wozniak RW, Power C, Hobman TC. Nodosome Inhibition as a Novel Broad-Spectrum Antiviral Strategy against Arboviruses, Enteroviruses, and SARS-CoV-2. Antimicrob Agents Chemother 2021;65:e0049121. [PMID: 34001511 DOI: 10.1128/AAC.00491-21] [Reference Citation Analysis]
158 Abdelnabi R, Delang L. Antiviral Strategies against Arthritogenic Alphaviruses. Microorganisms 2020;8:E1365. [PMID: 32906603 DOI: 10.3390/microorganisms8091365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
159 Eyer L, Kondo H, Zouharova D, Hirano M, Valdés JJ, Muto M, Kastl T, Kobayashi S, Haviernik J, Igarashi M, Kariwa H, Vaculovicova M, Cerny J, Kizek R, Kröger A, Lienenklaus S, Dejmek M, Nencka R, Palus M, Salat J, De Clercq E, Yoshii K, Ruzek D. Escape of Tick-Borne Flavivirus from 2'-C-Methylated Nucleoside Antivirals Is Mediated by a Single Conservative Mutation in NS5 That Has a Dramatic Effect on Viral Fitness. J Virol 2017;91:e01028-17. [PMID: 28814513 DOI: 10.1128/JVI.01028-17] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 3.4] [Reference Citation Analysis]
160 Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, Li Y, Zhao L, Li W, Sun X, Yang X, Shi Z, Deng F, Hu Z, Zhong W, Wang M. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov 2020;6:28. [PMID: 32373347 DOI: 10.1038/s41421-020-0169-8] [Cited by in Crossref: 113] [Cited by in F6Publishing: 110] [Article Influence: 56.5] [Reference Citation Analysis]
161 Jia Z, Song X, Shi J, Wang W, He K. Transcriptome-based drug repositioning for coronavirus disease 2019 (COVID-19). Pathog Dis. 2020;78. [PMID: 32667665 DOI: 10.1093/femspd/ftaa036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
162 Fawad M, Mubarik S, Malik SS, Hao Y, Yu C, Ren J. Trend Dynamics of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmission in 16 Cities of Hubei Province, China. Clin Epidemiol 2020;12:699-709. [PMID: 32669878 DOI: 10.2147/CLEP.S254806] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
163 Sadeghian I, Heidari R, Sadeghian S, Raee MJ, Negahdaripour M. Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines. Eur J Pharm Sci 2021;169:106094. [PMID: 34896590 DOI: 10.1016/j.ejps.2021.106094] [Reference Citation Analysis]
164 Pirzada RH, Haseeb M, Batool M, Kim M, Choi S. Remdesivir and Ledipasvir among the FDA-Approved Antiviral Drugs Have Potential to Inhibit SARS-CoV-2 Replication. Cells 2021;10:1052. [PMID: 33946869 DOI: 10.3390/cells10051052] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
165 De Martini W, Rahman R, Ojegba E, Jungwirth E, Macias J, Ackerly F, Fowler M, Cottrell J, Chu T, Chang SL. Kinases: Understanding Their Role in HIV Infection. World J AIDS 2019;9:142-60. [PMID: 32257606 DOI: 10.4236/wja.2019.93011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
166 Andersen PI, Ianevski A, Lysvand H, Vitkauskiene A, Oksenych V, Bjørås M, Telling K, Lutsar I, Dumpis U, Irie Y, Tenson T, Kantele A, Kainov DE. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020;93:268-76. [PMID: 32081774 DOI: 10.1016/j.ijid.2020.02.018] [Cited by in Crossref: 73] [Cited by in F6Publishing: 58] [Article Influence: 36.5] [Reference Citation Analysis]
167 Zuo L, Yue W, Du S, Xin S, Zhang J, Liu L, Li G, Lu J. An update: Epstein-Barr virus and immune evasion via microRNA regulation. Virol Sin 2017;32:175-87. [PMID: 28669004 DOI: 10.1007/s12250-017-3996-5] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 6.4] [Reference Citation Analysis]
168 Liatsos GD. Controversies’ clarification regarding ribavirin efficacy in measles and coronaviruses: Comprehensive therapeutic approach strictly tailored to COVID-19 disease stages. World J Clin Cases 2021; 9(19): 5135-5178 [PMID: 34307564 DOI: 10.12998/wjcc.v9.i19.5135] [Reference Citation Analysis]
169 Sherin DR, Manojkumar TK. Exploring the selectivity of guanine scaffold in anticancer drug development by computational repurposing approach. Sci Rep 2021;11:16251. [PMID: 34376738 DOI: 10.1038/s41598-021-95507-4] [Reference Citation Analysis]
170 Wang X, Zou P, Wu F, Lu L, Jiang S. Development of small-molecule viral inhibitors targeting various stages of the life cycle of emerging and re-emerging viruses. Front Med 2017;11:449-61. [PMID: 29170916 DOI: 10.1007/s11684-017-0589-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
171 Lee SH, Moon JS, Pak BY, Kim GW, Lee W, Cho H, Kim S, Kim SJ, Oh JW. HA1077 displays synergistic activity with daclatasvir against hepatitis C virus and suppresses the emergence of NS5A resistance-associated substitutions in mice. Sci Rep 2018;8:12469. [PMID: 30127498 DOI: 10.1038/s41598-018-30460-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
172 Li G, De Clercq E. Current therapy for chronic hepatitis C: The role of direct-acting antivirals. Antiviral Res. 2017;142:83-122. [PMID: 28238877 DOI: 10.1016/j.antiviral.2017.02.014] [Cited by in Crossref: 93] [Cited by in F6Publishing: 83] [Article Influence: 18.6] [Reference Citation Analysis]
173 Albentosa-González L, Sabariegos R, Arias A, Clemente-Casares P, Mas A. Akt Interacts with Usutu Virus Polymerase, and Its Activity Modulates Viral Replication. Pathogens 2021;10:244. [PMID: 33672588 DOI: 10.3390/pathogens10020244] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
174 Khan AM, Agnihotri NK, Singh VK, Mohapatra SC, Mathur D, Kumar M, Kumar R. Biocatalyst-mediated selective acylation and deacylation chemistry on the secondary hydroxyl/amine groups of nucleosides. Nucleosides Nucleotides Nucleic Acids 2021;40:1220-36. [PMID: 34636267 DOI: 10.1080/15257770.2021.1986222] [Reference Citation Analysis]
175 Huff S, Kummetha IR, Tiwari SK, Huante MB, Clark AE, Wang S, Bray W, Smith D, Carlin AF, Endsley M, Rana TM. Discovery and Mechanism of SARS-CoV-2 Main Protease Inhibitors. J Med Chem 2021. [PMID: 34570513 DOI: 10.1021/acs.jmedchem.1c00566] [Reference Citation Analysis]
176 Wang B, Svetlov V, Wolf YI, Koonin EV, Nudler E, Artsimovitch I. Allosteric activation of SARS-CoV-2 RdRp by remdesivir triphosphate and other phosphorylated nucleotides. bioRxiv 2021:2021. [PMID: 33948598 DOI: 10.1101/2021.01.24.428004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
177 Denel-bobrowska M, Olejniczak AB. Non-nucleoside structured compounds with antiviral activity—past 10 years (2010–2020). European Journal of Medicinal Chemistry 2022;231:114136. [DOI: 10.1016/j.ejmech.2022.114136] [Reference Citation Analysis]
178 Hu Y, Musharrafieh R, Zheng M, Wang J. Enterovirus D68 Antivirals: Past, Present, and Future. ACS Infect Dis 2020;6:1572-86. [PMID: 32352280 DOI: 10.1021/acsinfecdis.0c00120] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
179 Zhai X, Wang S, Zhu M, He W, Pan Z, Su S. Antiviral Effect of Lithium Chloride and Diammonium Glycyrrhizinate on Porcine Deltacoronavirus In Vitro. Pathogens 2019;8:E144. [PMID: 31505777 DOI: 10.3390/pathogens8030144] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
180 Nishii R, Mizuno T, Rehling D, Smith C, Clark BL, Zhao X, Brown SA, Smart B, Moriyama T, Yamada Y, Ichinohe T, Onizuka M, Atsuta Y, Yang L, Yang W, Thomas PG, Stenmark P, Kato M, Yang JJ. NUDT15 polymorphism influences the metabolism and therapeutic effects of acyclovir and ganciclovir. Nat Commun 2021;12:4181. [PMID: 34234136 DOI: 10.1038/s41467-021-24509-7] [Reference Citation Analysis]
181 Chitalia VC, Munawar AH. A painful lesson from the COVID-19 pandemic: the need for broad-spectrum, host-directed antivirals. J Transl Med 2020;18:390. [PMID: 33059719 DOI: 10.1186/s12967-020-02476-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
182 Hussein AFA, Cheng H, Tundup S, Antanasijevic A, Varhegyi E, Perez J, AbdulRahman EM, Elenany MG, Helal S, Caffrey M, Peet N, Manicassamy B, Rong L. Identification of entry inhibitors with 4-aminopiperidine scaffold targeting group 1 influenza A virus. Antiviral Res 2020;177:104782. [PMID: 32222293 DOI: 10.1016/j.antiviral.2020.104782] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
183 Serban G. Synthetic Compounds with 2-Amino-1,3,4-Thiadiazole Moiety Against Viral Infections. Molecules 2020;25:E942. [PMID: 32093125 DOI: 10.3390/molecules25040942] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
184 Kockler ZW, Gordenin DA. From RNA World to SARS-CoV-2: The Edited Story of RNA Viral Evolution. Cells 2021;10:1557. [PMID: 34202997 DOI: 10.3390/cells10061557] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
185 Xie X, Zou J, Shan C, Shi PY. Small Molecules and Antibodies for Zika Therapy. J Infect Dis 2017;216:S945-50. [PMID: 29267911 DOI: 10.1093/infdis/jix406] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
186 Kozlovskaya LI, Volok VP, Shtro AA, Nikolaeva YV, Chistov AA, Matyugina ES, Belyaev ES, Jegorov AV, Snoeck R, Korshun VA, Andrei G, Osolodkin DI, Ishmukhametov AA, Aralov AV. Phenoxazine nucleoside derivatives with a multiple activity against RNA and DNA viruses. Eur J Med Chem 2021;220:113467. [PMID: 33894564 DOI: 10.1016/j.ejmech.2021.113467] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
187 Seley-Radtke KL, Yates MK. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res 2018;154:66-86. [PMID: 29649496 DOI: 10.1016/j.antiviral.2018.04.004] [Cited by in Crossref: 146] [Cited by in F6Publishing: 108] [Article Influence: 36.5] [Reference Citation Analysis]
188 Ariav Y, Ch'ng JH, Christofk HR, Ron-Harel N, Erez A. Targeting nucleotide metabolism as the nexus of viral infections, cancer, and the immune response. Sci Adv 2021;7:eabg6165. [PMID: 34138729 DOI: 10.1126/sciadv.abg6165] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
189 Coelho C, Gallo G, Campos CB, Hardy L, Würtele M. Biochemical screening for SARS-CoV-2 main protease inhibitors. PLoS One 2020;15:e0240079. [PMID: 33022015 DOI: 10.1371/journal.pone.0240079] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
190 Mazur-Marzec H, Cegłowska M, Konkel R, Pyrć K. Antiviral Cyanometabolites-A Review. Biomolecules 2021;11:474. [PMID: 33810129 DOI: 10.3390/biom11030474] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
191 Varizhuk IV, Oslovsky VE, Solyev PN, Drenichev MS, Mikhailov SN. Synthesis of α-D-Ribose 1-Phosphate and 2-Deoxy-α-D-Ribose 1-Phosphate Via Enzymatic Phosphorolysis of 7-Methylguanosine and 7-Methyldeoxyguanosine. Curr Protoc 2022;2:e347. [PMID: 35050551 DOI: 10.1002/cpz1.347] [Reference Citation Analysis]
192 Smith D, Gill D. Antivirals against SARS-CoV-2 by autumn? BMJ 2021;373:n1215. [PMID: 34001499 DOI: 10.1136/bmj.n1215] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
193 Choudhury A, Mukherjee G, Mukherjee S. Chemotherapy vs. Immunotherapy in combating nCOVID19: An update. Hum Immunol 2021;82:649-58. [PMID: 34020832 DOI: 10.1016/j.humimm.2021.05.001] [Reference Citation Analysis]
194 Shin HJ, Kim MH, Lee JY, Hwang I, Yoon GY, Kim HS, Kwon YC, Ahn DG, Kim KD, Kim BT, Kim SJ, Kim C. Structure-Based Virtual Screening: Identification of a Novel NS2B-NS3 Protease Inhibitor with Potent Antiviral Activity against Zika and Dengue Viruses. Microorganisms 2021;9:545. [PMID: 33800763 DOI: 10.3390/microorganisms9030545] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
195 Baba M, Toyama M, Sakakibara N, Okamoto M, Arima N, Saijo M. Establishment of an antiviral assay system and identification of severe fever with thrombocytopenia syndrome virus inhibitors. Antivir Chem Chemother 2017;25:83-9. [PMID: 29096526 DOI: 10.1177/2040206617740303] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
196 Frediansyah A, Tiwari R, Sharun K, Dhama K, Harapan H. Antivirals for COVID-19: A critical review. Clin Epidemiol Glob Health 2021;9:90-8. [PMID: 33521390 DOI: 10.1016/j.cegh.2020.07.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 19.0] [Reference Citation Analysis]
197 Daikopoulou V, Apostolou P, Mourati S, Vlachou I, Gougousi M, Papasotiriou I. Targeting SARS-CoV-2 Polymerase with New Nucleoside Analogues. Molecules 2021;26:3461. [PMID: 34200204 DOI: 10.3390/molecules26113461] [Reference Citation Analysis]
198 Reynolds N, Dearnley M, Hinton TM. Polymers in the Delivery of siRNA for the Treatment of Virus Infections. Top Curr Chem (Cham) 2017;375:38. [PMID: 28324594 DOI: 10.1007/s41061-017-0127-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
199 Vincetti P, Kaptein SJF, Costantino G, Neyts J, Radi M. Scaffold Morphing Approach To Expand the Toolbox of Broad-Spectrum Antivirals Blocking Dengue/Zika Replication. ACS Med Chem Lett 2019;10:558-63. [PMID: 30996796 DOI: 10.1021/acsmedchemlett.8b00583] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
200 Shin YH, Park CM, Yoon CH. An Overview of Human Immunodeficiency Virus-1 Antiretroviral Drugs: General Principles and Current Status. Infect Chemother 2021;53:29-45. [PMID: 34409780 DOI: 10.3947/ic.2020.0100] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
201 Lee J, Parvathareddy J, Yang D, Bansal S, O'Connell K, Golden JE, Jonsson CB. Emergence and Magnitude of ML336 Resistance in Venezuelan Equine Encephalitis Virus Depend on the Microenvironment. J Virol 2020;94:e00317-20. [PMID: 32878897 DOI: 10.1128/JVI.00317-20] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
202 Jia X, Ganter B, Meier C. Improving properties of the nucleobase analogs T-705/T-1105 as potential antiviral. Annu Rep Med Chem 2021;57:1-47. [PMID: 34728864 DOI: 10.1016/bs.armc.2021.08.002] [Reference Citation Analysis]
203 Jiang C, Wang Y, Hu M, Wen L, Wen C, Wang Y, Zhu W, Tai S, Jiang Z, Xiao K, Faria NR, De Clercq E, Xu J, Li G. Antibody seroconversion in asymptomatic and symptomatic patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Transl Immunology 2020;9:e1182. [PMID: 33005417 DOI: 10.1002/cti2.1182] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 13.5] [Reference Citation Analysis]
204 Franco EJ, Rodriquez JL, Pomeroy JJ, Hanrahan KC, Brown AN. The effectiveness of antiviral agents with broad-spectrum activity against chikungunya virus varies between host cell lines. Antivir Chem Chemother 2018;26:2040206618807580. [PMID: 30354193 DOI: 10.1177/2040206618807580] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
205 Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov 2018;17:35-56. [PMID: 28935918 DOI: 10.1038/nrd.2017.162] [Cited by in Crossref: 239] [Cited by in F6Publishing: 213] [Article Influence: 47.8] [Reference Citation Analysis]
206 Meléndez-Villanueva MA, Morán-Santibañez K, Martínez-Sanmiguel JJ, Rangel-López R, Garza-Navarro MA, Rodríguez-Padilla C, Zarate-Triviño DG, Trejo-Ávila LM. Virucidal Activity of Gold Nanoparticles Synthesized by Green Chemistry Using Garlic Extract. Viruses 2019;11:E1111. [PMID: 31801280 DOI: 10.3390/v11121111] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 11.7] [Reference Citation Analysis]
207 Park J, Gill KS, Aghajani AA, Heredia JD, Choi H, Oberstein A, Procko E. Engineered receptors for human cytomegalovirus that are orthogonal to normal human biology. PLoS Pathog 2020;16:e1008647. [PMID: 32559251 DOI: 10.1371/journal.ppat.1008647] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
208 Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramírez D, Alonso C, Campillo NE, Martinez A. COVID-19: Drug Targets and Potential Treatments. J Med Chem 2020;63:12359-86. [PMID: 32511912 DOI: 10.1021/acs.jmedchem.0c00606] [Cited by in Crossref: 119] [Cited by in F6Publishing: 97] [Article Influence: 59.5] [Reference Citation Analysis]
209 Zhao X, Ding Y, Du J, Fan Y. 2020 update on human coronaviruses: One health, one world. Med Nov Technol Devices 2020;8:100043. [PMID: 33521622 DOI: 10.1016/j.medntd.2020.100043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
210 Lisi F, Zelikin AN, Chandrawati R. Nitric Oxide to Fight Viral Infections. Adv Sci (Weinh) 2021;8:2003895. [PMID: 33850691 DOI: 10.1002/advs.202003895] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
211 Jockusch S, Tao C, Li X, Chien M, Kumar S, Morozova I, Kalachikov S, Russo JJ, Ju J. Sofosbuvir terminated RNA is more resistant to SARS-CoV-2 proofreader than RNA terminated by Remdesivir. Sci Rep. 2020;10:16577. [PMID: 33024223 DOI: 10.1038/s41598-020-73641-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
212 Ramos TI, Villacis-Aguirre CA, Santiago Vispo N, Santiago Padilla L, Pedroso Santana S, Parra NC, Alonso JRT. Forms and Methods for Interferon's Encapsulation. Pharmaceutics 2021;13:1533. [PMID: 34683824 DOI: 10.3390/pharmaceutics13101533] [Reference Citation Analysis]
213 Goldhill DH, Langat P, Xie H, Galiano M, Miah S, Kellam P, Zambon M, Lackenby A, Barclay WS. Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing. J Virol 2019;93:e01217-18. [PMID: 30381482 DOI: 10.1128/JVI.01217-18] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
214 Sengupta S, Das P. Application of diazonium chemistry in purine modifications: A focused review. Journal of Heterocyclic Chem 2022;59:5-21. [DOI: 10.1002/jhet.4352] [Reference Citation Analysis]
215 Andreeva OV, Garifullin BF, Zarubaev VV, Slita AV, Yesaulkova IL, Volobueva AS, Belenok MG, Man'kova MA, Saifina LF, Shulaeva MM, Voloshina AD, Lyubina AP, Semenov VE, Kataev VE. Synthesis and Antiviral Evaluation of Nucleoside Analogues Bearing One Pyrimidine Moiety and Two D-Ribofuranosyl Residues. Molecules 2021;26:3678. [PMID: 34208647 DOI: 10.3390/molecules26123678] [Reference Citation Analysis]
216 Casanova V, Sousa FH, Stevens C, Barlow PG. Antiviral therapeutic approaches for human rhinovirus infections. Future Virol 2018;13:505-18. [PMID: 30245735 DOI: 10.2217/fvl-2018-0016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
217 Hu Y, Meng X, Zhang F, Xiang Y, Wang J. The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerg Microbes Infect 2021;10:317-30. [PMID: 33560940 DOI: 10.1080/22221751.2021.1888660] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 25.0] [Reference Citation Analysis]
218 Emeji IC, Ama OM, Khoele K, Osifo PO, Ray SS. Electro-Fenton Degradation of Selected Antiretroviral Drugs Using a Low-Cost Iron-Modified Carbon-Cloth Electrode. Electrocatalysis 2021;12:327-39. [DOI: 10.1007/s12678-021-00654-x] [Reference Citation Analysis]
219 Madhvi A, Hingane S, Srivastav R, Joshi N, Subramani C, Muthumohan R, Khasa R, Varshney S, Kalia M, Vrati S, Surjit M, Ranjith-Kumar CT. A screen for novel hepatitis C virus RdRp inhibitor identifies a broad-spectrum antiviral compound. Sci Rep 2017;7:5816. [PMID: 28725041 DOI: 10.1038/s41598-017-04449-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
220 Chen Y, Ma J, Xu M, Liu S. Antiviral nanoagents: More attention and effort needed? Nano Today 2020;35:100976. [PMID: 32963581 DOI: 10.1016/j.nantod.2020.100976] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
221 Li J, Liu S, Shi J, Zhu HJ. Activation of Tenofovir Alafenamide and Sofosbuvir in the Human Lung and Its Implications in the Development of Nucleoside/Nucleotide Prodrugs for Treating SARS-CoV-2 Pulmonary Infection. Pharmaceutics 2021;13:1656. [PMID: 34683949 DOI: 10.3390/pharmaceutics13101656] [Reference Citation Analysis]
222 Mishra S, Pandey A, Manvati S. Coumarin: An emerging antiviral agent. Heliyon 2020;6:e03217. [PMID: 32042967 DOI: 10.1016/j.heliyon.2020.e03217] [Cited by in Crossref: 45] [Cited by in F6Publishing: 27] [Article Influence: 22.5] [Reference Citation Analysis]
223 Ianevski A, Zusinaite E, Kuivanen S, Strand M, Lysvand H, Teppor M, Kakkola L, Paavilainen H, Laajala M, Kallio-Kokko H, Valkonen M, Kantele A, Telling K, Lutsar I, Letjuka P, Metelitsa N, Oksenych V, Bjørås M, Nordbø SA, Dumpis U, Vitkauskiene A, Öhrmalm C, Bondeson K, Bergqvist A, Aittokallio T, Cox RJ, Evander M, Hukkanen V, Marjomaki V, Julkunen I, Vapalahti O, Tenson T, Merits A, Kainov D. Novel activities of safe-in-human broad-spectrum antiviral agents. Antiviral Res 2018;154:174-82. [PMID: 29698664 DOI: 10.1016/j.antiviral.2018.04.016] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 8.8] [Reference Citation Analysis]
224 Konč J, Tichý M, Pohl R, Hodek J, Džubák P, Hajdúch M, Hocek M. Sugar modified pyrimido[4,5-b]indole nucleosides: synthesis and antiviral activity. Medchemcomm 2017;8:1856-62. [PMID: 30108897 DOI: 10.1039/c7md00319f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
225 Rice AP. Cyclin-dependent kinases as therapeutic targets for HIV-1 infection. Expert Opin Ther Targets 2016;20:1453-61. [PMID: 27797603 DOI: 10.1080/14728222.2016.1254619] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
226 Min JS, Kim GW, Kwon S, Jin YH. A Cell-Based Reporter Assay for Screening Inhibitors of MERS Coronavirus RNA-Dependent RNA Polymerase Activity. J Clin Med 2020;9:E2399. [PMID: 32727069 DOI: 10.3390/jcm9082399] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
227 Nikitina AA, Orlov AA, Kozlovskaya LI, Palyulin VA, Osolodkin DI. Enhanced taxonomy annotation of antiviral activity data from ChEMBL. Database (Oxford) 2019;2019. [PMID: 30753475 DOI: 10.1093/database/bay139] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
228 Citarella A, Scala A, Piperno A, Micale N. SARS-CoV-2 Mpro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules 2021;11:607. [PMID: 33921886 DOI: 10.3390/biom11040607] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
229 Carravilla P, Cruz A, Martin-Ugarte I, Oar-Arteta IR, Torralba J, Apellaniz B, Pérez-Gil J, Requejo-Isidro J, Huarte N, Nieva JL. Effects of HIV-1 gp41-Derived Virucidal Peptides on Virus-like Lipid Membranes. Biophys J 2017;113:1301-10. [PMID: 28797705 DOI: 10.1016/j.bpj.2017.06.061] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
230 Cho JH, Bassit LC, Amblard F, Schinazi RF. Synthesis of 7-trifluoromethyl-7-deazapurine ribonucleoside analogs and their monophosphate prodrugs. Nucleosides Nucleotides Nucleic Acids 2020;39:671-87. [PMID: 31588837 DOI: 10.1080/15257770.2019.1674333] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
231 Bouma EM, van de Pol DPI, Sanders ID, Rodenhuis-Zybert IA, Smit JM. Serotonergic Drugs Inhibit Chikungunya Virus Infection at Different Stages of the Cell Entry Pathway. J Virol 2020;94:e00274-20. [PMID: 32321803 DOI: 10.1128/JVI.00274-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
232 Tong C, Chen Z, Liu F, Qiao Y, Chen T, Wang X. Antiviral activities of Radix isatidis polysaccharide against pseudorabies virus in swine testicle cells. BMC Complement Med Ther 2020;20:48. [PMID: 32046705 DOI: 10.1186/s12906-020-2838-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
233 Fical L, Khalikova M, Kočová Vlčková H, Lhotská I, Hadysová Z, Vokřál I, Červený L, Švec F, Nováková L. Determination of Antiviral Drugs and Their Metabolites Using Micro-Solid Phase Extraction and UHPLC-MS/MS in Reversed-Phase and Hydrophilic Interaction Chromatography Modes. Molecules 2021;26:2123. [PMID: 33917128 DOI: 10.3390/molecules26082123] [Reference Citation Analysis]
234 Kuroki A, Tay J, Lee GH, Yang YY. Broad-Spectrum Antiviral Peptides and Polymers. Adv Healthc Mater 2021;10:e2101113. [PMID: 34599850 DOI: 10.1002/adhm.202101113] [Reference Citation Analysis]
235 Adachi A. Grand Challenge in Human/Animal Virology: Unseen, Smallest Replicative Entities Shape the Whole Globe. Front Microbiol 2020;11:431. [PMID: 32256480 DOI: 10.3389/fmicb.2020.00431] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
236 Xu HT, Colby-Germinario SP, Hassounah SA, Fogarty C, Osman N, Palanisamy N, Han Y, Oliveira M, Quan Y, Wainberg MA. Evaluation of Sofosbuvir (β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methyluridine) as an inhibitor of Dengue virus replication<sup/>. Sci Rep 2017;7:6345. [PMID: 28740124 DOI: 10.1038/s41598-017-06612-2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
237 Leigh KE, Modis Y. Imaging and visualizing SARS-CoV-2 in a new era for structural biology. Interface Focus 2021;11:20210019. [PMID: 34956593 DOI: 10.1098/rsfs.2021.0019] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
238 Li Z, Yao Y, Cheng X, Chen Q, Zhao W, Ma S, Li Z, Zhou H, Li W, Fei T. A computational framework of host-based drug repositioning for broad-spectrum antivirals against RNA viruses. iScience 2021;24:102148. [PMID: 33665567 DOI: 10.1016/j.isci.2021.102148] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
239 Zhu W, Xu M, Chen CZ, Guo H, Shen M, Hu X, Shinn P, Klumpp-Thomas C, Michael SG, Zheng W. Identification of SARS-CoV-2 3CL Protease Inhibitors by a Quantitative High-throughput Screening. bioRxiv 2020:2020. [PMID: 32803196 DOI: 10.1101/2020.07.17.207019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
240 Zhang M, Zhong J, Xiong Y, Song X, Li C, He Z. Development of Broad-Spectrum Antiviral Agents-Inspiration from Immunomodulatory Natural Products. Viruses 2021;13:1257. [PMID: 34203182 DOI: 10.3390/v13071257] [Reference Citation Analysis]
241 Miller SR, Jilek JL, McGrath ME, Hau RK, Jennings EQ, Galligan JJ, Wright SH, Cherrington NJ. Testicular disposition of clofarabine in rats is dependent on equilibrative nucleoside transporters. Pharmacol Res Perspect 2021;9:e00831. [PMID: 34288585 DOI: 10.1002/prp2.831] [Reference Citation Analysis]
242 Ma J, Zhang X, Soloveva V, Warren T, Guo F, Wu S, Lu H, Guo J, Su Q, Shen H, Solon E, Comunale MA, Mehta A, Guo JT, Bavari S, Du Y, Block TM, Chang J. Enhancing the antiviral potency of ER α-glucosidase inhibitor IHVR-19029 against hemorrhagic fever viruses in vitro and in vivo. Antiviral Res 2018;150:112-22. [PMID: 29253498 DOI: 10.1016/j.antiviral.2017.12.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
243 Holmes EC, Hurt AC, Dobbie Z, Clinch B, Oxford JS, Piedra PA. Understanding the Impact of Resistance to Influenza Antivirals. Clin Microbiol Rev 2021;34:e00224-20. [PMID: 33568554 DOI: 10.1128/CMR.00224-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
244 Zhang Y, Xu Q, Sun Z, Zhou L. Current targeted therapeutics against COVID-19: Based on first-line experience in China. Pharmacol Res 2020;157:104854. [PMID: 32360585 DOI: 10.1016/j.phrs.2020.104854] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
245 Ghosh AK, Brindisi M, Sarkar A. The Curtius Rearrangement: Applications in Modern Drug Discovery and Medicinal Chemistry. ChemMedChem 2018;13:2351-73. [PMID: 30187672 DOI: 10.1002/cmdc.201800518] [Cited by in Crossref: 31] [Cited by in F6Publishing: 18] [Article Influence: 7.8] [Reference Citation Analysis]
246 Kasyanenko KV, Kozlov KV, Maltsev OV, Lapikov II, Gordienko VV, Sharabhanov VV, Sorokin PV, Zhdanov KV. Evaluation of the effectiveness of Riamilovir in the complex therapy of patients with COVID-19. Terapevticheskii arkhiv 2021;93:290-4. [DOI: 10.26442/00403660.2021.03.200719] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
247 Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm (Beijing) 2020. [PMID: 33173860 DOI: 10.1002/mco2.26] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
248 Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 2020;19:149-150. [PMID: 32127666 DOI: 10.1038/d41573-020-00016-0] [Cited by in Crossref: 829] [Cited by in F6Publishing: 714] [Article Influence: 414.5] [Reference Citation Analysis]
249 Altay O, Mohammadi E, Lam S, Turkez H, Boren J, Nielsen J, Uhlen M, Mardinoglu A. Current Status of COVID-19 Therapies and Drug Repositioning Applications. iScience 2020;23:101303. [PMID: 32622261 DOI: 10.1016/j.isci.2020.101303] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 19.0] [Reference Citation Analysis]
250 Martínez-Gualda B, Sun L, Martí-Marí O, Noppen S, Abdelnabi R, Bator CM, Quesada E, Delang L, Mirabelli C, Lee H, Schols D, Neyts J, Hafenstein S, Camarasa MJ, Gago F, San-Félix A. Scaffold Simplification Strategy Leads to a Novel Generation of Dual Human Immunodeficiency Virus and Enterovirus-A71 Entry Inhibitors. J Med Chem 2020;63:349-68. [PMID: 31809045 DOI: 10.1021/acs.jmedchem.9b01737] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
251 Wiciński M, Sawicka E, Gębalski J, Kubiak K, Malinowski B. Human Milk Oligosaccharides: Health Benefits, Potential Applications in Infant Formulas, and Pharmacology. Nutrients 2020;12:E266. [PMID: 31968617 DOI: 10.3390/nu12010266] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 17.5] [Reference Citation Analysis]
252 Neouchy Z, Verhoeven J, Kong H, Zhao Y, Wang W, Brambilla M, Van Hecke K, Meerpoel L, Thuring JW, Verniest G, Winne J. Stereodivergent Synthesis of Biologically Active Spironucleoside Scaffolds via Catalytic Cyclopropanation of 4-exo-Methylene Furanosides. J Org Chem 2021;86:17344-61. [PMID: 34748342 DOI: 10.1021/acs.joc.1c01611] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
253 Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front Immunol. 2018;9:2147. [PMID: 30319615 DOI: 10.3389/fimmu.2018.02147] [Cited by in Crossref: 84] [Cited by in F6Publishing: 78] [Article Influence: 21.0] [Reference Citation Analysis]
254 Fu Y, Jaarsma AH, Kuipers OP. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs). Cell Mol Life Sci 2021;78:3921-40. [PMID: 33532865 DOI: 10.1007/s00018-021-03759-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
255 Wu S, Zhao Q, Zhang P, Kulp J, Hu L, Hwang N, Zhang J, Block TM, Xu X, Du Y, Chang J, Guo JT. Discovery and Mechanistic Study of Benzamide Derivatives That Modulate Hepatitis B Virus Capsid Assembly. J Virol 2017;91:e00519-17. [PMID: 28566379 DOI: 10.1128/JVI.00519-17] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
256 Kataev VE, Garifullin BF. Antiviral nucleoside analogs. Chem Heterocycl Compd (N Y) 2021;:1-16. [PMID: 34007086 DOI: 10.1007/s10593-021-02912-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
257 Álvarez DM, Castillo E, Duarte LF, Arriagada J, Corrales N, Farías MA, Henríquez A, Agurto-Muñoz C, González PA. Current Antivirals and Novel Botanical Molecules Interfering With Herpes Simplex Virus Infection. Front Microbiol 2020;11:139. [PMID: 32117158 DOI: 10.3389/fmicb.2020.00139] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
258 Carey BD, Ammosova T, Pinkham C, Lin X, Zhou W, Liotta LA, Nekhai S, Kehn-Hall K. Protein Phosphatase 1α Interacts with Venezuelan Equine Encephalitis Virus Capsid Protein and Regulates Viral Replication through Modulation of Capsid Phosphorylation. J Virol 2018;92:e02068-17. [PMID: 29769351 DOI: 10.1128/JVI.02068-17] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
259 Ishimaru H, Hosokawa K, Sugimoto A, Tanaka R, Watanabe T, Fujimuro M. MG132 exerts anti-viral activity against HSV-1 by overcoming virus-mediated suppression of the ERK signaling pathway. Sci Rep 2020;10:6671. [PMID: 32317666 DOI: 10.1038/s41598-020-63438-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
260 Gurung AB. In silico structure modelling of SARS-CoV-2 Nsp13 helicase and Nsp14 and repurposing of FDA approved antiviral drugs as dual inhibitors. Gene Rep 2020;21:100860. [PMID: 32875166 DOI: 10.1016/j.genrep.2020.100860] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
261 Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018;36:557-76. [PMID: 29292156 DOI: 10.1016/j.biotechadv.2017.12.016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
262 Ruzsics Z, Hoffmann K, Riedl A, Krawczyk A, Widera M, Sertznig H, Schipper L, Kapper-Falcone V, Debreczeny M, Ernst W, Grabherr R, Hengel H, Harant H. A Novel, Broad-Acting Peptide Inhibitor of Double-Stranded DNA Virus Gene Expression and Replication. Front Microbiol 2020;11:601555. [PMID: 33281801 DOI: 10.3389/fmicb.2020.601555] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
263 Franco EJ, Pires de Mello CP, Brown AN. Antiviral Evaluation of UV-4B and Interferon-Alpha Combination Regimens against Dengue Virus. Viruses 2021;13:771. [PMID: 33925551 DOI: 10.3390/v13050771] [Reference Citation Analysis]
264 Nainu F, Shiratsuchi A, Nakanishi Y. Induction of Apoptosis and Subsequent Phagocytosis of Virus-Infected Cells As an Antiviral Mechanism. Front Immunol 2017;8:1220. [PMID: 29033939 DOI: 10.3389/fimmu.2017.01220] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 6.6] [Reference Citation Analysis]
265 Malone B, Chen J, Wang Q, Llewellyn E, Choi YJ, Olinares PDB, Cao X, Hernandez C, Eng ET, Chait BT, Shaw DE, Landick R, Darst SA, Campbell EA. Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex. bioRxiv 2021:2021. [PMID: 33758867 DOI: 10.1101/2021.03.13.435256] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
266 Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021;12:444-69. [PMID: 33660566 DOI: 10.1080/21505594.2021.1871823] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
267 Pastuch-Gawołek G, Gillner D, Król E, Walczak K, Wandzik I. Selected nucleos(t)ide-based prescribed drugs and their multi-target activity. Eur J Pharmacol 2019;865:172747. [PMID: 31634460 DOI: 10.1016/j.ejphar.2019.172747] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
268 Estrada E. COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. Phys Rep 2020;869:1-51. [PMID: 32834430 DOI: 10.1016/j.physrep.2020.07.005] [Cited by in Crossref: 56] [Cited by in F6Publishing: 31] [Article Influence: 28.0] [Reference Citation Analysis]
269 Kuhlmann FM, Robinson JI, Bluemling GR, Ronet C, Fasel N, Beverley SM. Antiviral screening identifies adenosine analogs targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor. Proc Natl Acad Sci U S A 2017;114:E811-9. [PMID: 28096399 DOI: 10.1073/pnas.1619114114] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
270 Mudgal R, Mahajan S, Tomar S. Inhibition of Chikungunya virus by an adenosine analog targeting the SAM-dependent nsP1 methyltransferase. FEBS Lett 2020;594:678-94. [PMID: 31623018 DOI: 10.1002/1873-3468.13642] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
271 Krishna G, Pillai VS, Veettil MV. Approaches and advances in the development of potential therapeutic targets and antiviral agents for the management of SARS-CoV-2 infection. Eur J Pharmacol 2020;885:173450. [PMID: 32739174 DOI: 10.1016/j.ejphar.2020.173450] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
272 Chellapandi P, Saranya S. Genomics insights of SARS-CoV-2 (COVID-19) into target-based drug discovery. Med Chem Res 2020;:1-15. [PMID: 32837137 DOI: 10.1007/s00044-020-02610-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
273 Liang B. Structures of the Mononegavirales Polymerases. J Virol 2020;94:e00175-20. [PMID: 32847861 DOI: 10.1128/JVI.00175-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
274 Andersen PI, Krpina K, Ianevski A, Shtaida N, Jo E, Yang J, Koit S, Tenson T, Hukkanen V, Anthonsen MW, Bjoras M, Evander M, Windisch MP, Zusinaite E, Kainov DE. Novel Antiviral Activities of Obatoclax, Emetine, Niclosamide, Brequinar, and Homoharringtonine. Viruses 2019;11:E964. [PMID: 31635418 DOI: 10.3390/v11100964] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
275 Xiao T, Cui M, Zheng C, Wang M, Sun R, Gao D, Bao J, Ren S, Yang B, Lin J, Li X, Li D, Yang C, Zhou H. Myricetin Inhibits SARS-CoV-2 Viral Replication by Targeting Mpro and Ameliorates Pulmonary Inflammation. Front Pharmacol 2021;12:669642. [PMID: 34220507 DOI: 10.3389/fphar.2021.669642] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
276 Miao M, Jing X, De Clercq E, Li G. Danoprevir for the Treatment of Hepatitis C Virus Infection: Design, Development, and Place in Therapy. Drug Des Devel Ther 2020;14:2759-74. [PMID: 32764876 DOI: 10.2147/DDDT.S254754] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
277 Cagno V, Andreozzi P, D'Alicarnasso M, Jacob Silva P, Mueller M, Galloux M, Le Goffic R, Jones ST, Vallino M, Hodek J, Weber J, Sen S, Janeček ER, Bekdemir A, Sanavio B, Martinelli C, Donalisio M, Rameix Welti MA, Eleouet JF, Han Y, Kaiser L, Vukovic L, Tapparel C, Král P, Krol S, Lembo D, Stellacci F. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater 2018;17:195-203. [PMID: 29251725 DOI: 10.1038/nmat5053] [Cited by in Crossref: 175] [Cited by in F6Publishing: 142] [Article Influence: 35.0] [Reference Citation Analysis]
278 Bhilare S, Shet H, Sanghvi YS, Kapdi AR. Discovery, Synthesis, and Scale-up of Efficient Palladium Catalysts Useful for the Modification of Nucleosides and Heteroarenes. Molecules 2020;25:E1645. [PMID: 32260100 DOI: 10.3390/molecules25071645] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
279 Biliavska L, Pankivska Y, Povnitsa O, Zagorodnya S, Gudz G, Shermolovich Y. Anti-Adenoviral Activity of 2-(3-Chlorotetrahydrofuran-2-yl)-4-Tosyl-5-(Perfluoropropyl)-1,2,3-Triazole. Medicina (Kaunas) 2018;54:E81. [PMID: 30400656 DOI: 10.3390/medicina54050081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
280 Hoffmann AR, Guha S, Wu E, Ghimire J, Wang Y, He J, Garry RF, Wimley WC. Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides. J Virol 2020;94:e01682-20. [PMID: 32907984 DOI: 10.1128/JVI.01682-20] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
281 Guerreiro MR, Fernandes AR, Coroadinha AS. Evaluation of Structurally Distorted Split GFP Fluorescent Sensors for Cell-Based Detection of Viral Proteolytic Activity. Sensors (Basel) 2020;21:E24. [PMID: 33374523 DOI: 10.3390/s21010024] [Reference Citation Analysis]
282 Vicenti I, Zazzi M, Saladini F. SARS-CoV-2 RNA-dependent RNA polymerase as a therapeutic target for COVID-19. Expert Opin Ther Pat 2021;31:325-37. [PMID: 33475441 DOI: 10.1080/13543776.2021.1880568] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
283 Holzer S, Rzechorzek NJ, Short IR, Jenkyn-Bedford M, Pellegrini L, Kilkenny ML. Structural Basis for Inhibition of Human Primase by Arabinofuranosyl Nucleoside Analogues Fludarabine and Vidarabine. ACS Chem Biol 2019;14:1904-12. [PMID: 31479243 DOI: 10.1021/acschembio.9b00367] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
284 Holmes AC, Basore K, Fremont DH, Diamond MS. A molecular understanding of alphavirus entry. PLoS Pathog 2020;16:e1008876. [PMID: 33091085 DOI: 10.1371/journal.ppat.1008876] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
285 Ianevski A, Yao R, Fenstad MH, Biza S, Zusinaite E, Reisberg T, Lysvand H, Løseth K, Landsem VM, Malmring JF, Oksenych V, Erlandsen SE, Aas PA, Hagen L, Pettersen CH, Tenson T, Afset JE, Nordbø SA, Bjørås M, Kainov DE. Potential Antiviral Options against SARS-CoV-2 Infection. Viruses 2020;12:E642. [PMID: 32545799 DOI: 10.3390/v12060642] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 21.0] [Reference Citation Analysis]
286 Desrochers GF, Pezacki JP. ABPP and Host-Virus Interactions. Curr Top Microbiol Immunol 2019;420:131-54. [PMID: 30244323 DOI: 10.1007/82_2018_139] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
287 Boukhatem MN, Setzer WN. Aromatic Herbs, Medicinal Plant-Derived Essential Oils, and Phytochemical Extracts as Potential Therapies for Coronaviruses: Future Perspectives. Plants (Basel) 2020;9:E800. [PMID: 32604842 DOI: 10.3390/plants9060800] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
288 Li G, Yue T, Zhang P, Gu W, Gao LJ, Tan L. Drug Discovery of Nucleos(t)ide Antiviral Agents: Dedicated to Prof. Dr. Erik De Clercq on Occasion of His 80th Birthday. Molecules 2021;26:923. [PMID: 33572409 DOI: 10.3390/molecules26040923] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
289 Jicsinszky L, Martina K, Cravotto G. Cyclodextrins in the antiviral therapy. J Drug Deliv Sci Technol 2021;64:102589. [PMID: 34035845 DOI: 10.1016/j.jddst.2021.102589] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
290 Xu XY, Wang DY, Li YP, Deyrup ST, Zhang HJ. Plant-derived lignans as potential antiviral agents: a systematic review. Phytochem Rev 2021;:1-51. [PMID: 34093097 DOI: 10.1007/s11101-021-09758-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
291 Tarn WY, Cheng Y, Ko SH, Huang LM. Antisense Oligonucleotide-Based Therapy of Viral Infections. Pharmaceutics 2021;13:2015. [PMID: 34959297 DOI: 10.3390/pharmaceutics13122015] [Reference Citation Analysis]
292 Jockusch S, Tao C, Li X, Anderson TK, Chien M, Kumar S, Russo JJ, Kirchdoerfer RN, Ju J. A library of nucleotide analogues terminate RNA synthesis catalyzed by polymerases of coronaviruses that cause SARS and COVID-19. Antiviral Res. 2020;180:104857. [PMID: 32562705 DOI: 10.1016/j.antiviral.2020.104857] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 18.5] [Reference Citation Analysis]
293 Bulanova D, Ianevski A, Bugai A, Akimov Y, Kuivanen S, Paavilainen H, Kakkola L, Nandania J, Turunen L, Ohman T, Ala-Hongisto H, Pesonen HM, Kuisma MS, Honkimaa A, Walton EL, Oksenych V, Lorey MB, Guschin D, Shim J, Kim J, Than TT, Chang SY, Hukkanen V, Kulesskiy E, Marjomaki VS, Julkunen I, Nyman TA, Matikainen S, Saarela JS, Sane F, Hober D, Gabriel G, De Brabander JK, Martikainen M, Windisch MP, Min JY, Bruzzone R, Aittokallio T, Vähä-Koskela M, Vapalahti O, Pulk A, Velagapudi V, Kainov DE. Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins. Viruses 2017;9:E271. [PMID: 28946654 DOI: 10.3390/v9100271] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 5.2] [Reference Citation Analysis]
294 Toscani A, Denaro R, Pacheco SFC, Biolatti M, Anselmi S, Dell'Oste V, Castagnolo D. Synthesis and Biological Evaluation of Amidinourea Derivatives against Herpes Simplex Viruses. Molecules 2021;26:4927. [PMID: 34443515 DOI: 10.3390/molecules26164927] [Reference Citation Analysis]
295 Mertinková P, Mochnáčová E, Bhide K, Kulkarni A, Tkáčová Z, Hruškovicová J, Bhide M. Development of peptides targeting receptor binding site of the envelope glycoprotein to contain the West Nile virus infection. Sci Rep 2021;11:20131. [PMID: 34635758 DOI: 10.1038/s41598-021-99696-w] [Reference Citation Analysis]
296 Askari H, Sanadgol N, Azarnezhad A, Tajbakhsh A, Rafiei H, Safarpour AR, Gheibihayat SM, Raeis-Abdollahi E, Savardashtaki A, Ghanbariasad A, Omidifar N. Kidney diseases and COVID-19 infection: causes and effect, supportive therapeutics and nutritional perspectives. Heliyon. 2021;7:e06008. [PMID: 33495739 DOI: 10.1016/j.heliyon.2021.e06008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
297 Bermek O, Williams RS. The three-component helicase/primase complex of herpes simplex virus-1. Open Biol 2021;11:210011. [PMID: 34102080 DOI: 10.1098/rsob.210011] [Reference Citation Analysis]
298 Bally M, Block S, Höök F, Larson G, Parveen N, Rydell GE. Physicochemical tools for studying virus interactions with targeted cell membranes in a molecular and spatiotemporally resolved context. Anal Bioanal Chem 2021. [PMID: 34490501 DOI: 10.1007/s00216-021-03510-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
299 Hulpia F, Mabille D, Campagnaro GD, Schumann G, Maes L, Roditi I, Hofer A, de Koning HP, Caljon G, Van Calenbergh S. Combining tubercidin and cordycepin scaffolds results in highly active candidates to treat late-stage sleeping sickness. Nat Commun 2019;10:5564. [PMID: 31804484 DOI: 10.1038/s41467-019-13522-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
300 Schoeman D, Fielding BC. Human Coronaviruses: Counteracting the Damage by Storm. Viruses 2021;13:1457. [PMID: 34452323 DOI: 10.3390/v13081457] [Reference Citation Analysis]
301 Martínez-Gualda B, Sun L, Martí-Marí O, Mirabelli C, Delang L, Neyts J, Schols D, Camarasa MJ, San-Félix A. Modifications in the branched arms of a class of dual inhibitors of HIV and EV71 replication expand their antiviral spectrum. Antiviral Res 2019;168:210-4. [PMID: 31228490 DOI: 10.1016/j.antiviral.2019.06.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
302 Luo Y, Jia T, Fang J, Liu D, Saikam V, Sheng X, Iyer SS. Rapid, user-friendly, and inexpensive detection of azidothymidine. Anal Bioanal Chem 2021;413:1999-2006. [PMID: 33484329 DOI: 10.1007/s00216-021-03168-z] [Reference Citation Analysis]
303 Wu CI, Wen H. Heightened protein-translation activities in mammalian cells and the disease/treatment implications. Natl Sci Rev 2020;7:1851-5. [PMID: 34691526 DOI: 10.1093/nsr/nwaa066] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
304 Kim JA, Seong RK, Kumar M, Shin OS. Favipiravir and Ribavirin Inhibit Replication of Asian and African Strains of Zika Virus in Different Cell Models. Viruses 2018;10:E72. [PMID: 29425176 DOI: 10.3390/v10020072] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 9.8] [Reference Citation Analysis]
305 Shukla BK, Tyagi H, Bhandari H, Garg S. Nanotechnology-Based Approach to Combat Pandemic COVID 19: A Review. Macromol Symp 2021;397:2000336. [PMID: 34511843 DOI: 10.1002/masy.202000336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
306 Li R, Liclican A, Xu Y, Pitts J, Niu C, Zhang J, Kim C, Zhao X, Soohoo D, Babusis D, Yue Q, Ma B, Murray BP, Subramanian R, Xie X, Zou J, Bilello JP, Li L, Schultz BE, Sakowicz R, Smith BJ, Shi PY, Murakami E, Feng JY. Key Metabolic Enzymes Involved in Remdesivir Activation in Human Lung Cells. Antimicrob Agents Chemother 2021;65:e0060221. [PMID: 34125594 DOI: 10.1128/AAC.00602-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
307 Huang B, Ginex T, Luque FJ, Jiang X, Gao P, Zhang J, Kang D, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Structure-Based Design and Discovery of Pyridyl-Bearing Fused Bicyclic HIV-1 Inhibitors: Synthesis, Biological Characterization, and Molecular Modeling Studies. J Med Chem 2021;64:13604-21. [PMID: 34496571 DOI: 10.1021/acs.jmedchem.1c00987] [Reference Citation Analysis]
308 Gu W, Martinez S, Nguyen H, Xu H, Herdewijn P, De Jonghe S, Das K. Tenofovir-Amino Acid Conjugates Act as Polymerase Substrates-Implications for Avoiding Cellular Phosphorylation in the Discovery of Nucleotide Analogues. J Med Chem 2021;64:782-96. [PMID: 33356231 DOI: 10.1021/acs.jmedchem.0c01747] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
309 Moeschler S, Locher S, Zimmer G. 1-Benzyl-3-cetyl-2-methylimidazolium Iodide (NH125) Is a Broad-Spectrum Inhibitor of Virus Entry with Lysosomotropic Features. Viruses 2018;10:E306. [PMID: 29874821 DOI: 10.3390/v10060306] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
310 Bayoumi M, Munir M. Potential Use of CRISPR/Cas13 Machinery in Understanding Virus-Host Interaction. Front Microbiol 2021;12:743580. [PMID: 34899631 DOI: 10.3389/fmicb.2021.743580] [Reference Citation Analysis]
311 Hoagland DA, Møller R, Uhl SA, Oishi K, Frere J, Golynker I, Horiuchi S, Panis M, Blanco-Melo D, Sachs D, Arkun K, Lim JK, tenOever BR. Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Immunity 2021;54:557-570.e5. [PMID: 33577760 DOI: 10.1016/j.immuni.2021.01.017] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 46.0] [Reference Citation Analysis]
312 Sztain T, Amaro R, McCammon JA. Elucidation of cryptic and allosteric pockets within the SARS-CoV-2 protease. bioRxiv 2020:2020. [PMID: 32743587 DOI: 10.1101/2020.07.23.218784] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
313 Laskar P, Yallapu MM, Chauhan SC. "Tomorrow Never Dies": Recent Advances in Diagnosis, Treatment, and Prevention Modalities against Coronavirus (COVID-19) amid Controversies. Diseases 2020;8:E30. [PMID: 32781617 DOI: 10.3390/diseases8030030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
314 Yuan J, Yu J, Huang Y, He Z, Luo J, Wu Y, Zheng Y, Wu J, Zhu X, Wang H, Li M. Antibiotic fidaxomicin is an RdRp inhibitor as a potential new therapeutic agent against Zika virus. BMC Med 2020;18:204. [PMID: 32731873 DOI: 10.1186/s12916-020-01663-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
315 Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M, Liu H. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J Feline Med Surg 2019;21:271-81. [PMID: 30755068 DOI: 10.1177/1098612X19825701] [Cited by in Crossref: 72] [Cited by in F6Publishing: 52] [Article Influence: 24.0] [Reference Citation Analysis]
316 Freidel MR, Armen RS. Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening: Identification of an allosteric small-molecule binding site on the Nsp13 helicase. PLoS One 2021;16:e0246181. [PMID: 33596235 DOI: 10.1371/journal.pone.0246181] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
317 Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci 2020;252:117652. [PMID: 32278693 DOI: 10.1016/j.lfs.2020.117652] [Cited by in Crossref: 140] [Cited by in F6Publishing: 118] [Article Influence: 70.0] [Reference Citation Analysis]
318 Zhu W, Chen CZ, Gorshkov K, Xu M, Lo DC, Zheng W. RNA-Dependent RNA Polymerase as a Target for COVID-19 Drug Discovery. SLAS Discov 2020;25:1141-51. [PMID: 32660307 DOI: 10.1177/2472555220942123] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
319 Paboriboune P, Vial T, Chassagne F, Sitbounlang P, Soundala S, Bertani S, Sengmanothong D, Babin FX, Steenkeste N, Dény P, Pineau P, Deharo E. A Seven-Year Retrospective Study on the Surveillance of Hepatitis B in Laos. Int J Hepatol 2018;2018:9462475. [PMID: 29805811 DOI: 10.1155/2018/9462475] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
320 Kinast V, Burkard TL, Todt D, Steinmann E. Hepatitis E Virus Drug Development. Viruses. 2019;11. [PMID: 31141919 DOI: 10.3390/v11060485] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
321 Dai H, Han J, Lichtfouse E. Smarter cures to combat COVID-19 and future pathogens: a review. Environ Chem Lett 2021;:1-13. [PMID: 33824633 DOI: 10.1007/s10311-021-01224-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
322 Lee W, Kim M, Lee SH, Jung HG, Oh JW. Prophylactic efficacy of orally administered Bacillus poly-γ-glutamic acid, a non-LPS TLR4 ligand, against norovirus infection in mice. Sci Rep 2018;8:8667. [PMID: 29875467 DOI: 10.1038/s41598-018-26935-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
323 Martinez MA, Franco S. Discovery and Development of Antiviral Therapies for Chronic Hepatitis C Virus Infection. Adv Exp Med Biol 2021;1322:139-57. [PMID: 34258740 DOI: 10.1007/978-981-16-0267-2_6] [Reference Citation Analysis]
324 Selcuk O, Demir Y, Erkmen C, Yıldırım S, Uslu B. Analytical Methods for Determination of Antiviral Drugs in Different Matrices: Recent Advances and Trends. Crit Rev Anal Chem 2021;:1-32. [PMID: 33983841 DOI: 10.1080/10408347.2021.1908111] [Reference Citation Analysis]
325 Glitscher M, Hildt E. Endosomal Cholesterol in Viral Infections - A Common Denominator? Front Physiol 2021;12:750544. [PMID: 34858206 DOI: 10.3389/fphys.2021.750544] [Reference Citation Analysis]
326 Nayeem SM, Sohail EM, Sudhir GP, Reddy MS. Computational and theoretical exploration for clinical suitability of Remdesivir drug to SARS-CoV-2. Eur J Pharmacol 2021;890:173642. [PMID: 33065096 DOI: 10.1016/j.ejphar.2020.173642] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
327 Nutho B, Mahalapbutr P, Hengphasatporn K, Pattaranggoon NC, Simanon N, Shigeta Y, Hannongbua S, Rungrotmongkol T. Why Are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms. Biochemistry 2020;59:1769-79. [PMID: 32293875 DOI: 10.1021/acs.biochem.0c00160] [Cited by in Crossref: 96] [Cited by in F6Publishing: 81] [Article Influence: 48.0] [Reference Citation Analysis]