BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rao A, Kosters A, Mells JE, Zhang W, Setchell KD, Amanso AM, Wynn GM, Xu T, Keller BT, Yin H, Banton S, Jones DP, Wu H, Dawson PA, Karpen SJ. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Sci Transl Med 2016;8:357ra122. [PMID: 27655848 DOI: 10.1126/scitranslmed.aaf4823] [Cited by in Crossref: 86] [Cited by in F6Publishing: 105] [Article Influence: 17.2] [Reference Citation Analysis]
Number Citing Articles
1 Wei D, Li Y, Che M, Li C, Wu Q, Sun C. Melatonin relieves hepatic lipid dysmetabolism caused by aging via modifying the secondary bile acid pattern of gut microbes. Cell Mol Life Sci 2022;79:527. [PMID: 36151409 DOI: 10.1007/s00018-022-04412-0] [Reference Citation Analysis]
2 Sun J, Fan J, Li T, Yan X, Jiang Y. Nuciferine Protects Against High-Fat Diet-Induced Hepatic Steatosis via Modulation of Gut Microbiota and Bile Acid Metabolism in Rats. J Agric Food Chem . [DOI: 10.1021/acs.jafc.2c04817] [Reference Citation Analysis]
3 Zhou S, You H, Qiu S, Yu D, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. A new perspective on NAFLD: Focusing on the crosstalk between peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR). Biomed Pharmacother 2022;154:113577. [PMID: 35988420 DOI: 10.1016/j.biopha.2022.113577] [Reference Citation Analysis]
4 Miao RR, Zhan S, Cui SX, Qu XJ. Intestinal aberrant sphingolipid metabolism shaped-gut microbiome and bile acids metabolome in the development of hepatic steatosis. FASEB J 2022;36:e22398. [PMID: 35792869 DOI: 10.1096/fj.202200148RR] [Reference Citation Analysis]
5 Truong JK, Bennett AL, Klindt C, Donepudi AC, Malla SR, Pachura KJ, Zaufel A, Moustafa T, Dawson PA, Karpen SJ. Ileal bile acid transporter inhibition in Cyp2c70 KO mice ameliorates cholestatic liver injury. Journal of Lipid Research 2022. [DOI: 10.1016/j.jlr.2022.100261] [Reference Citation Analysis]
6 Ahmed M. Functional, Diagnostic and Therapeutic Aspects of Bile. Clin Exp Gastroenterol 2022;15:105-20. [PMID: 35898963 DOI: 10.2147/CEG.S360563] [Reference Citation Analysis]
7 Zhou J, Zhang N, Aldhahrani A, Soliman MM, Zhang L, Zhou F. Puerarin ameliorates nonalcoholic fatty liver in rats by regulating hepatic lipid accumulation, oxidative stress, and inflammation. Front Immunol 2022;13:956688. [DOI: 10.3389/fimmu.2022.956688] [Reference Citation Analysis]
8 Li C, Yu S, Li X, Cao Y, Li M, Ji G, Zhang L. Medicinal Formula Huazhi-Rougan Attenuates Non-Alcoholic Steatohepatitis Through Enhancing Fecal Bile Acid Excretion in Mice. Front Pharmacol 2022;13:833414. [PMID: 35721143 DOI: 10.3389/fphar.2022.833414] [Reference Citation Analysis]
9 Machida K, Tahara SM. Immunotherapy and Microbiota for Targeting of Liver Tumor-Initiating Stem-like Cells. Cancers (Basel) 2022;14:2381. [PMID: 35625986 DOI: 10.3390/cancers14102381] [Reference Citation Analysis]
10 Lei S, Liu L, Yue P, Zheng B, Zhang Y, Zeng H. Lotus seed resistant starch decreases the blood lipid and regulates the serum bile acids profiles in hyperlipidemic rats. Journal of Functional Foods 2022;92:105040. [DOI: 10.1016/j.jff.2022.105040] [Reference Citation Analysis]
11 Jiao TY, Ma YD, Guo XZ, Ye YF, Xie C. Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease. Acta Pharmacol Sin 2022;43:1103-19. [PMID: 35217817 DOI: 10.1038/s41401-022-00880-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
12 Xu J, Ni B, Ma C, Rong S, Gao H, Zhang L, Xiang X, Huang Q, Deng Q, Huang F. Docosahexaenoic acid enhances hippocampal insulin sensitivity to promote cognitive function of aged rats on a high-fat diet. Journal of Advanced Research 2022. [DOI: 10.1016/j.jare.2022.04.015] [Reference Citation Analysis]
13 Daniel N, Nachbar RT, Tran TTT, Ouellette A, Varin TV, Cotillard A, Quinquis L, Gagné A, St-Pierre P, Trottier J, Marcotte B, Poirel M, Saccareau M, Dubois MJ, Joubert P, Barbier O, Koutnikova H, Marette A. Gut microbiota and fermentation-derived branched chain hydroxy acids mediate health benefits of yogurt consumption in obese mice. Nat Commun 2022;13:1343. [PMID: 35292630 DOI: 10.1038/s41467-022-29005-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wang X, Bai F, Niu X, Sun Y, Ye J. The Lipid-Lowering Effect of Dietary Taurine in Orange-Spotted Groupers (Epinephelus coioides) Involves Both Bile Acids and Lipid Metabolism. Front Mar Sci 2022;9:859428. [DOI: 10.3389/fmars.2022.859428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Liu S, Liu M, Zhang ML, Wang CZ, Zhang YL, Zhang YJ, Du CY, Sheng SF, Wang W, Fan YT, Song JN, Huang JC, Feng YY, Qiao W, Huang JL, Li YH, Zhou L, Zhang J, Chang YS. Transcription factor Klf9 controls bile acid reabsorption and enterohepatic circulation in mice via promoting intestinal Asbt expression. Acta Pharmacol Sin 2022. [PMID: 35105957 DOI: 10.1038/s41401-021-00850-x] [Reference Citation Analysis]
16 Li X, Khan I, Huang G, Lu Y, Wang L, Liu Y, Lu L, Hsiao WW, Liu Z. Kaempferol acts on bile acid signaling and gut microbiota to attenuate the tumor burden in ApcMin/+ mice. European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.174773] [Reference Citation Analysis]
17 Trauner M, Fuchs CD. Novel therapeutic targets for cholestatic and fatty liver disease. Gut 2022;71:194-209. [PMID: 34615727 DOI: 10.1136/gutjnl-2021-324305] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
18 Gillard J, Clerbaux LA, Nachit M, Sempoux C, Staels B, Bindels LB, Tailleux A, Leclercq IA. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice. JHEP Rep 2022;4:100387. [PMID: 34825156 DOI: 10.1016/j.jhepr.2021.100387] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Ma J, Hu W, Zhang D, Xie J, Duan C, Liu Y, Wang Y, Xu X, Cheng K, Jin B, Zhang Y, Zhuang R. CD226 knockout alleviates high-fat diet induced obesity by suppressing proinflammatory macrophage phenotype. J Transl Med 2021;19:477. [PMID: 34823548 DOI: 10.1186/s12967-021-03150-4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
20 Hong T, Chen Y, Li X, Lu Y. The Role and Mechanism of Oxidative Stress and Nuclear Receptors in the Development of NAFLD. Oxid Med Cell Longev 2021;2021:6889533. [PMID: 34745420 DOI: 10.1155/2021/6889533] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
21 Wang L, Luo Q, Zeng S, Lou Y, Li X, Hu M, Lu L, Liu Z. Disordered farnesoid X receptor signaling is associated with liver carcinogenesis in Abcb11-deficient mice. J Pathol 2021. [PMID: 34410012 DOI: 10.1002/path.5780] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
22 Radun R, Trauner M. Role of FXR in Bile Acid and Metabolic Homeostasis in NASH: Pathogenetic Concepts and Therapeutic Opportunities. Semin Liver Dis 2021. [PMID: 34289507 DOI: 10.1055/s-0041-1731707] [Reference Citation Analysis]
23 Matsui M, Fukunishi S, Nakano T, Ueno T, Higuchi K, Asai A. Ileal Bile Acid Transporter Inhibitor Improves Hepatic Steatosis by Ameliorating Gut Microbiota Dysbiosis in NAFLD Model Mice. mBio 2021;12:e0115521. [PMID: 34225483 DOI: 10.1128/mBio.01155-21] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
24 Lee H, Cho S, Kang A, Shin DH, Park HY, Jeong TS. Combination Treatment of Arazyme and Soy Leaf Extract Attenuates Hyperglycemia and Hepatic Steatosis in High-Fat Diet-Fed C57BL/6J Mice. Life (Basel) 2021;11:645. [PMID: 34357017 DOI: 10.3390/life11070645] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Li D, Cui Y, Wang X, Liu F, Li X. Apple Polyphenol Extract Improves High-Fat Diet-Induced Hepatic Steatosis by Regulating Bile Acid Synthesis and Gut Microbiota in C57BL/6 Male Mice. J Agric Food Chem 2021;69:6829-41. [PMID: 34124904 DOI: 10.1021/acs.jafc.1c02532] [Reference Citation Analysis]
26 Xiong F, Zheng Z, Xiao L, Su C, Chen J, Gu X, Tang J, Zhao Y, Luo H, Zha L. Soyasaponin A2 Alleviates Steatohepatitis Possibly through Regulating Bile Acids and Gut Microbiota in the Methionine and Choline-Deficient (MCD) Diet-induced Nonalcoholic Steatohepatitis (NASH) Mice. Mol Nutr Food Res 2021;65:e2100067. [PMID: 34047448 DOI: 10.1002/mnfr.202100067] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
27 Kunst RF, Verkade HJ, Oude Elferink RPJ, van de Graaf SFJ. Targeting the Four Pillars of Enterohepatic Bile Salt Cycling; Lessons From Genetics and Pharmacology. Hepatology 2021;73:2577-85. [PMID: 33222321 DOI: 10.1002/hep.31651] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
28 Qiao S, Bao L, Wang K, Sun S, Liao M, Liu C, Zhou N, Ma K, Zhang Y, Chen Y, Liu SJ, Liu H. Activation of a Specific Gut Bacteroides-Folate-Liver Axis Benefits for the Alleviation of Nonalcoholic Hepatic Steatosis. Cell Rep. 2020;32:108005. [PMID: 32783933 DOI: 10.1016/j.celrep.2020.108005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
29 Liu TC, Kern JT, Jain U, Sonnek NM, Xiong S, Simpson KF, VanDussen KL, Winkler ES, Haritunians T, Malique A, Lu Q, Sasaki Y, Storer C, Diamond MS, Head RD, McGovern DPB, Stappenbeck TS. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe 2021;29:988-1001.e6. [PMID: 34010595 DOI: 10.1016/j.chom.2021.04.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
30 Matye DJ, Li Y, Chen C, Chao X, Wang H, Ni H, Ding WX, Li T. Gut-restricted apical sodium-dependent bile acid transporter inhibitor attenuates alcohol-induced liver steatosis and injury in mice. Alcohol Clin Exp Res 2021;45:1188-99. [PMID: 33885179 DOI: 10.1111/acer.14619] [Reference Citation Analysis]
31 Matye DJ, Wang H, Luo W, Sharp RR, Chen C, Gu L, Jones KL, Ding WX, Friedman JE, Li T. Combined ASBT Inhibitor and FGF15 Treatment Improves Therapeutic Efficacy in Experimental Nonalcoholic Steatohepatitis. Cell Mol Gastroenterol Hepatol 2021;12:1001-19. [PMID: 33965587 DOI: 10.1016/j.jcmgh.2021.04.013] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of Bile Acids in the Regulation of Food Intake, and Their Dysregulation in Metabolic Disease. Nutrients 2021;13:1104. [PMID: 33800566 DOI: 10.3390/nu13041104] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 28.0] [Reference Citation Analysis]
33 Xiao X, Cheng Y, Fu J, Lu Z, Wang F, Jin M, Zong X, Wang Y. Gut Immunity and Microbiota Dysbiosis Are Associated with Altered Bile Acid Metabolism in LPS-Challenged Piglets. Oxid Med Cell Longev 2021;2021:6634821. [PMID: 33833852 DOI: 10.1155/2021/6634821] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
34 Sang C, Wang X, Zhou K, Sun T, Bian H, Gao X, Wang Y, Zhang H, Jia W, Liu P, Xie G, Chen T. Bile Acid Profiles Are Distinct among Patients with Different Etiologies of Chronic Liver Disease. J Proteome Res 2021;20:2340-51. [PMID: 33754726 DOI: 10.1021/acs.jproteome.0c00852] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
35 Cai H, Cheng Y, Zhu Q, Kong D, Chen X, Tamai I, Lu Y. Identification of Triterpene Acids in Poria cocos Extract as Bile Acid Uptake Transporter Inhibitors. Drug Metab Dispos 2021;49:353-60. [PMID: 33658229 DOI: 10.1124/dmd.120.000308] [Reference Citation Analysis]
36 Huang W, Kong D. The intestinal microbiota as a therapeutic target in the treatment of NAFLD and ALD. Biomedicine & Pharmacotherapy 2021;135:111235. [DOI: 10.1016/j.biopha.2021.111235] [Reference Citation Analysis]
37 Lefort C, Cani PD. The Liver under the Spotlight: Bile Acids and Oxysterols as Pivotal Actors Controlling Metabolism. Cells 2021;10:400. [PMID: 33669184 DOI: 10.3390/cells10020400] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
38 Zhu Q, Komori H, Imamura R, Tamai I. A Novel Fluorescence-Based Method to Evaluate Ileal Apical Sodium-Dependent Bile Acid Transporter ASBT. J Pharm Sci 2021;110:1392-400. [PMID: 33278408 DOI: 10.1016/j.xphs.2020.11.030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Jia W, Wei M, Rajani C, Zheng X. Targeting the alternative bile acid synthetic pathway for metabolic diseases. Protein Cell 2021;12:411-25. [PMID: 33252713 DOI: 10.1007/s13238-020-00804-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
40 Chen MJ, Liu C, Wan Y, Yang L, Jiang S, Qian DW, Duan JA. Enterohepatic circulation of bile acids and their emerging roles on glucolipid metabolism. Steroids 2021;165:108757. [PMID: 33161055 DOI: 10.1016/j.steroids.2020.108757] [Reference Citation Analysis]
41 van de Peppel IP, Verkade HJ, Jonker JW. Metabolic consequences of ileal interruption of the enterohepatic circulation of bile acids. American Journal of Physiology-Gastrointestinal and Liver Physiology 2020;319:G619-25. [DOI: 10.1152/ajpgi.00308.2020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
42 van de Peppel IP, Rao A, Dommerholt MB, Bongiovanni L, Thomas R, de Bruin A, Karpen SJ, Dawson PA, Verkade HJ, Jonker JW. The Beneficial Effects of Apical Sodium-Dependent Bile Acid Transporter Inactivation Depend on Dietary Fat Composition. Mol Nutr Food Res 2020;:e2000750. [PMID: 33079450 DOI: 10.1002/mnfr.202000750] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Dai X, Hou H, Zhang W, Liu T, Li Y, Wang S, Wang B, Cao H. Microbial Metabolites: Critical Regulators in NAFLD.Front Microbiol. 2020;11:567654. [PMID: 33117316 DOI: 10.3389/fmicb.2020.567654] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
44 Yang N, Dong YQ, Jia GX, Fan SM, Li SZ, Yang SS, Li YB. ASBT(SLC10A2): A promising target for treatment of diseases and drug discovery. Biomed Pharmacother 2020;132:110835. [PMID: 33035828 DOI: 10.1016/j.biopha.2020.110835] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
45 Kessoku T, Kobayashi T, Ozaki A, Iwaki M, Honda Y, Ogawa Y, Imajo K, Saigusa Y, Yamamoto K, Yamanaka T, Usuda H, Wada K, Yoneda M, Saito S, Nakajima A. Rationale and design of a randomised, double-blind, placebo-controlled, parallel-group, investigator-initiated phase 2a study to investigate the efficacy and safety of elobixibat in combination with cholestyramine for non-alcoholic fatty liver disease. BMJ Open 2020;10:e037961. [PMID: 32907904 DOI: 10.1136/bmjopen-2020-037961] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
46 Malhotra P, Gill RK, Saksena S, Alrefai WA. Disturbances in Cholesterol Homeostasis and Non-alcoholic Fatty Liver Diseases. Front Med (Lausanne) 2020;7:467. [PMID: 32984364 DOI: 10.3389/fmed.2020.00467] [Cited by in Crossref: 7] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
47 Shao M, Ye Z, Qin Y, Wu T. Abnormal metabolic processes involved in the pathogenesis of non-alcoholic fatty liver disease (Review). Exp Ther Med 2020;20:26. [PMID: 32934691 DOI: 10.3892/etm.2020.9154] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
48 Wang G, Wu B, Cui Y, Zhang B, Jiang C, Wang H. Teneligliptin Promotes Bile Acid Synthesis and Attenuates Lipid Accumulation in Obese Mice by Targeting the KLF15-Fgf15 Pathway. Chem Res Toxicol 2020;33:2164-71. [PMID: 32639145 DOI: 10.1021/acs.chemrestox.0c00192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
49 Li M, Wang Q, Li Y, Cao S, Zhang Y, Wang Z, Liu G, Li J, Gu B. Apical sodium-dependent bile acid transporter, drug target for bile acid related diseases and delivery target for prodrugs: Current and future challenges. Pharmacology & Therapeutics 2020;212:107539. [DOI: 10.1016/j.pharmthera.2020.107539] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
50 Wang Y, Gunewardena S, Li F, Matye DJ, Chen C, Chao X, Jung T, Zhang Y, Czerwiński M, Ni HM, Ding WX, Li T. An FGF15/19-TFEB regulatory loop controls hepatic cholesterol and bile acid homeostasis. Nat Commun 2020;11:3612. [PMID: 32681035 DOI: 10.1038/s41467-020-17363-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
51 Li P, Huang J, Xiao N, Cai X, Yang Y, Deng J, Zhang LH, Du B. Sacha inchi oil alleviates gut microbiota dysbiosis and improves hepatic lipid dysmetabolism in high-fat diet-fed rats. Food Funct 2020;11:5827-41. [PMID: 32648886 DOI: 10.1039/d0fo01178a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
52 Liu KH, Nellis M, Uppal K, Ma C, Tran V, Liang Y, Walker DI, Jones DP. Reference Standardization for Quantification and Harmonization of Large-Scale Metabolomics. Anal Chem 2020;92:8836-44. [PMID: 32490663 DOI: 10.1021/acs.analchem.0c00338] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 12.0] [Reference Citation Analysis]
53 Li H, Xi Y, Xin X, Tian H, Hu Y. Gypenosides regulate farnesoid X receptor-mediated bile acid and lipid metabolism in a mouse model of non-alcoholic steatohepatitis. Nutr Metab (Lond) 2020;17:34. [PMID: 32377219 DOI: 10.1186/s12986-020-00454-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
54 Gupta B, Liu Y, Chopyk DM, Rai RP, Desai C, Kumar P, Farris AB, Nusrat A, Parkos CA, Anania FA, Raeman R. Western diet-induced increase in colonic bile acids compromises epithelial barrier in nonalcoholic steatohepatitis. FASEB J 2020;34:7089-102. [PMID: 32275114 DOI: 10.1096/fj.201902687R] [Cited by in Crossref: 12] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
55 Li T, Chiang JYL. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr 2020;9:152-69. [PMID: 32355674 DOI: 10.21037/hbsn.2019.09.03] [Cited by in Crossref: 17] [Cited by in F6Publishing: 32] [Article Influence: 8.5] [Reference Citation Analysis]
56 Sumida Y, Yoneda M, Ogawa Y, Yoneda M, Okanoue T, Nakajima A. Current and new pharmacotherapy options for non-alcoholic steatohepatitis. Expert Opin Pharmacother 2020;21:953-67. [PMID: 32237916 DOI: 10.1080/14656566.2020.1744564] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
57 Newsome PN, Palmer M, Freilich B, Sheikh MY, Sheikh A, Sarles H, Herring R, Mantry P, Kayali Z, Hassanein T, Lee HM, Aithal GP; Volixibat in Adults study group. Volixibat in adults with non-alcoholic steatohepatitis: 24-week interim analysis from a randomized, phase II study. J Hepatol 2020;73:231-40. [PMID: 32234329 DOI: 10.1016/j.jhep.2020.03.024] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
58 Rao A, van de Peppel IP, Gumber S, Karpen SJ, Dawson PA. Attenuation of the Hepatoprotective Effects of Ileal Apical Sodium Dependent Bile Acid Transporter (ASBT) Inhibition in Choline-Deficient L-Amino Acid-Defined (CDAA) Diet-Fed Mice. Front Med (Lausanne) 2020;7:60. [PMID: 32158763 DOI: 10.3389/fmed.2020.00060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
59 Ticho AL, Malhotra P, Manzella CR, Dudeja PK, Saksena S, Gill RK, Alrefai WA. S-acylation modulates the function of the apical sodium-dependent bile acid transporter in human cells. J Biol Chem 2020;295:4488-97. [PMID: 32071081 DOI: 10.1074/jbc.RA119.011032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
60 Romero FA, Jones CT, Xu Y, Fenaux M, Halcomb RL. The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. J Med Chem 2020;63:5031-73. [PMID: 31930920 DOI: 10.1021/acs.jmedchem.9b01701] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 14.5] [Reference Citation Analysis]
61 Wang WW, Gallo L, Jadhav A, Hawkins R, Parker CG. The Druggability of Solute Carriers. J Med Chem 2020;63:3834-67. [PMID: 31774679 DOI: 10.1021/acs.jmedchem.9b01237] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
62 Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019;10:21-56. [PMID: 31853951 DOI: 10.1002/cphy.c190007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 42] [Article Influence: 5.0] [Reference Citation Analysis]
63 Hu H, Lin A, Kong M, Yao X, Yin M, Xia H, Ma J, Liu H. Intestinal microbiome and NAFLD: molecular insights and therapeutic perspectives. J Gastroenterol 2020;55:142-58. [PMID: 31845054 DOI: 10.1007/s00535-019-01649-8] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 16.0] [Reference Citation Analysis]
64 Chambers KF, Day PE, Aboufarrag HT, Kroon PA. Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 2019;11:E2588. [PMID: 31661763 DOI: 10.3390/nu11112588] [Cited by in Crossref: 39] [Cited by in F6Publishing: 65] [Article Influence: 13.0] [Reference Citation Analysis]
65 Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat Rev Endocrinol. 2019;15:701-712. [PMID: 31616073 DOI: 10.1038/s41574-019-0266-7] [Cited by in Crossref: 94] [Cited by in F6Publishing: 84] [Article Influence: 31.3] [Reference Citation Analysis]
66 Xie Y, Matsumoto H, Kennedy S, Newberry EP, Moritz W, DeBosch BJ, Moley KH, Rubin DC, Warner BW, Kau AL, Tarr PI, Wylie TN, Wylie KM, Davidson NO. Impaired Chylomicron Assembly Modifies Hepatic Metabolism Through Bile Acid-Dependent and Transmissible Microbial Adaptations. Hepatology 2019;70:1168-84. [PMID: 31004524 DOI: 10.1002/hep.30669] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
67 Duan Y, Zhang F, Yuan W, Wei Y, Wei M, Zhou Y, Yang Y, Chang Y, Wu X. Hepatic cholesterol accumulation ascribed to the activation of ileum Fxr-Fgf15 pathway inhibiting hepatic Cyp7a1 in high-fat diet-induced obesity rats. Life Sciences 2019;232:116638. [DOI: 10.1016/j.lfs.2019.116638] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
68 Kemis JH, Linke V, Barrett KL, Boehm FJ, Traeger LL, Keller MP, Rabaglia ME, Schueler KL, Stapleton DS, Gatti DM, Churchill GA, Amador-Noguez D, Russell JD, Yandell BS, Broman KW, Coon JJ, Attie AD, Rey FE. Genetic determinants of gut microbiota composition and bile acid profiles in mice. PLoS Genet 2019;15:e1008073. [PMID: 31465442 DOI: 10.1371/journal.pgen.1008073] [Cited by in Crossref: 27] [Cited by in F6Publishing: 41] [Article Influence: 9.0] [Reference Citation Analysis]
69 Alukal JJ, Thuluvath PJ. Reversal of NASH fibrosis with pharmacotherapy. Hepatol Int 2019;13:534-45. [PMID: 31363910 DOI: 10.1007/s12072-019-09970-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
70 Ge MX, Niu WX, Ren JF, Cai SY, Yu DK, Liu HT, Zhang N, Zhang YX, Wang YC, Shao RG, Wang JX, He HW. A novel ASBT inhibitor, IMB17-15, repressed nonalcoholic fatty liver disease development in high-fat diet-fed Syrian golden hamsters. Acta Pharmacol Sin 2019;40:895-907. [PMID: 30573812 DOI: 10.1038/s41401-018-0195-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
71 Woolbright BL, Jaeschke H. Inflammation and Cell Death During Cholestasis: The Evolving Role of Bile Acids. Gene Expr 2019;19:215-28. [PMID: 31253204 DOI: 10.3727/105221619X15614873062730] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
72 Salic K, Kleemann R, Wilkins-Port C, McNulty J, Verschuren L, Palmer M. Apical sodium-dependent bile acid transporter inhibition with volixibat improves metabolic aspects and components of non-alcoholic steatohepatitis in Ldlr-/-.Leiden mice. PLoS One 2019;14:e0218459. [PMID: 31233523 DOI: 10.1371/journal.pone.0218459] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
73 Xu J, Gao H, Zhang L, Rong S, Yang W, Ma C, Chen M, Huang Q, Deng Q, Huang F. Melatonin alleviates cognition impairment by antagonizing brain insulin resistance in aged rats fed a high‐fat diet. J Pineal Res 2019;67. [DOI: 10.1111/jpi.12584] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
74 Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol. 2019;12:851-861. [PMID: 30952999 DOI: 10.1038/s41385-019-0162-4] [Cited by in Crossref: 54] [Cited by in F6Publishing: 88] [Article Influence: 18.0] [Reference Citation Analysis]
75 Foley MH, O'Flaherty S, Barrangou R, Theriot CM. Bile salt hydrolases: Gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathog 2019;15:e1007581. [PMID: 30845232 DOI: 10.1371/journal.ppat.1007581] [Cited by in Crossref: 55] [Cited by in F6Publishing: 78] [Article Influence: 18.3] [Reference Citation Analysis]
76 Donkers JM, Roscam Abbing RLP, van de Graaf SFJ. Developments in bile salt based therapies: A critical overview. Biochem Pharmacol 2019;161:1-13. [PMID: 30582898 DOI: 10.1016/j.bcp.2018.12.018] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 7.5] [Reference Citation Analysis]
77 Kim YC, Byun S, Seok S, Guo G, Xu HE, Kemper B, Kemper JK. Small Heterodimer Partner and Fibroblast Growth Factor 19 Inhibit Expression of NPC1L1 in Mouse Intestine and Cholesterol Absorption. Gastroenterology 2019;156:1052-65. [PMID: 30521806 DOI: 10.1053/j.gastro.2018.11.061] [Cited by in Crossref: 19] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
78 Massafra V, Pellicciari R, Gioiello A, van Mil SW. Progress and challenges of selective Farnesoid X Receptor modulation. Pharmacology & Therapeutics 2018;191:162-77. [DOI: 10.1016/j.pharmthera.2018.06.009] [Cited by in Crossref: 39] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
79 Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, Mastrandrea L, Buck MJ, Baker RD, Genco RJ, Zhu R, Zhu L. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 2018;67:1881-91. [PMID: 28774887 DOI: 10.1136/gutjnl-2017-314307] [Cited by in Crossref: 228] [Cited by in F6Publishing: 234] [Article Influence: 57.0] [Reference Citation Analysis]
80 Soufi N, Kohli R. What's cold got to do with it? Cold-induced thermogenesis and microbiome modification may be regulated by bile acid physiology. Hepatology 2018;68:1644-6. [PMID: 29601095 DOI: 10.1002/hep.29899] [Reference Citation Analysis]
81 Zhang F, Hu Z, Li G, Huo S, Ma F, Cui A, Xue Y, Han Y, Gong Q, Gao J, Bian H, Meng Z, Wu H, Long G, Tan Y, Zhang Y, Lin X, Gao X, Xu A, Li Y. Hepatic CREBZF couples insulin to lipogenesis by inhibiting insig activity and contributes to hepatic steatosis in diet-induced insulin-resistant mice. Hepatology 2018;68:1361-75. [PMID: 29637572 DOI: 10.1002/hep.29926] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
82 Al-Dury S, Marschall HU. Ileal Bile Acid Transporter Inhibition for the Treatment of Chronic Constipation, Cholestatic Pruritus, and NASH. Front Pharmacol 2018;9:931. [PMID: 30186169 DOI: 10.3389/fphar.2018.00931] [Cited by in Crossref: 24] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
83 Siebers N, Palmer M, Silberg DG, Jennings L, Bliss C, Martin PT. Absorption, Distribution, Metabolism, and Excretion of [14C]-Volixibat in Healthy Men: Phase 1 Open-Label Study. Eur J Drug Metab Pharmacokinet 2018;43:91-101. [PMID: 28702877 DOI: 10.1007/s13318-017-0429-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
84 Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018;19:E2210. [PMID: 30060580 DOI: 10.3390/ijms19082210] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
85 Yao L, Seaton SC, Ndousse-Fetter S, Adhikari AA, DiBenedetto N, Mina AI, Banks AS, Bry L, Devlin AS. A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 2018;7:e37182. [PMID: 30014852 DOI: 10.7554/eLife.37182] [Cited by in Crossref: 71] [Cited by in F6Publishing: 102] [Article Influence: 17.8] [Reference Citation Analysis]
86 Lin CH, Kohli R. Bile acid metabolism and signaling: potential therapeutic target for nonalcoholic fatty liver disease. Clin Transl Gastroenterol 2018;9:164. [PMID: 29955036 DOI: 10.1038/s41424-018-0034-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
87 Ticho AL, Lee H, Gill RK, Dudeja PK, Saksena S, Lee D, Alrefai WA. A novel bioluminescence-based method to investigate uptake of bile acids in living cells. Am J Physiol Gastrointest Liver Physiol 2018;315:G529-37. [PMID: 29927324 DOI: 10.1152/ajpgi.00133.2018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
88 Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2019;1865:895-911. [PMID: 29782919 DOI: 10.1016/j.bbadis.2018.05.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
89 Chen MM, Hale C, Stanislaus S, Xu J, Véniant MM. FGF21 acts as a negative regulator of bile acid synthesis. Journal of Endocrinology 2018;237:139-52. [DOI: 10.1530/joe-17-0727] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
90 Yu Q, Jiang Z, Zhang L. Bile acid regulation: A novel therapeutic strategy in non-alcoholic fatty liver disease. Pharmacol Ther 2018;190:81-90. [PMID: 29684468 DOI: 10.1016/j.pharmthera.2018.04.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
91 Wang Y, Ding WX, Li T. Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2018;1863:726-33. [PMID: 29653253 DOI: 10.1016/j.bbalip.2018.04.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
92 Palmer M, Jennings L, Silberg DG, Bliss C, Martin P. A randomised, double-blind, placebo-controlled phase 1 study of the safety, tolerability and pharmacodynamics of volixibat in overweight and obese but otherwise healthy adults: implications for treatment of non-alcoholic steatohepatitis. BMC Pharmacol Toxicol 2018;19:10. [PMID: 29548345 DOI: 10.1186/s40360-018-0200-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
93 Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM, Mancini A. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biol 2018;15:467-79. [PMID: 29413959 DOI: 10.1016/j.redox.2018.01.009] [Cited by in Crossref: 81] [Cited by in F6Publishing: 82] [Article Influence: 20.3] [Reference Citation Analysis]
94 Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med 2018;215:383-96. [PMID: 29339445 DOI: 10.1084/jem.20171965] [Cited by in Crossref: 127] [Cited by in F6Publishing: 159] [Article Influence: 31.8] [Reference Citation Analysis]
95 Tiessen RG, Kennedy CA, Keller BT, Levin N, Acevedo L, Gedulin B, van Vliet AA, Dorenbaum A, Palmer M. Safety, tolerability and pharmacodynamics of apical sodium-dependent bile acid transporter inhibition with volixibat in healthy adults and patients with type 2 diabetes mellitus: a randomised placebo-controlled trial. BMC Gastroenterol 2018;18:3. [PMID: 29304731 DOI: 10.1186/s12876-017-0736-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
96 Molinaro A, Wahlström A, Marschall HU. Role of Bile Acids in Metabolic Control. Trends Endocrinol Metab 2018;29:31-41. [PMID: 29195686 DOI: 10.1016/j.tem.2017.11.002] [Cited by in Crossref: 128] [Cited by in F6Publishing: 123] [Article Influence: 25.6] [Reference Citation Analysis]
97 Malhi H, Camilleri M. Modulating bile acid pathways and TGR5 receptors for treating liver and GI diseases. Curr Opin Pharmacol 2017;37:80-6. [PMID: 29102744 DOI: 10.1016/j.coph.2017.09.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
98 Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15:111-128. [PMID: 29018272 DOI: 10.1038/nrgastro.2017.119] [Cited by in Crossref: 560] [Cited by in F6Publishing: 530] [Article Influence: 112.0] [Reference Citation Analysis]
99 Zhao LY, Xu JY, Shi Z, Englert NA, Zhang SY. Pregnane X receptor (PXR) deficiency improves high fat diet-induced obesity via induction of fibroblast growth factor 15 (FGF15) expression. Biochem Pharmacol 2017;142:194-203. [PMID: 28756207 DOI: 10.1016/j.bcp.2017.07.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
100 Townsend SA, Newsome PN. Review article: new treatments in non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2017;46:494-507. [PMID: 28677333 DOI: 10.1111/apt.14210] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
101 Panda S. Circadian physiology of metabolism. Science 2016;354:1008-15. [PMID: 27885007 DOI: 10.1126/science.aah4967] [Cited by in Crossref: 369] [Cited by in F6Publishing: 401] [Article Influence: 73.8] [Reference Citation Analysis]
102 Chow MD, Lee YH, Guo GL. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol Aspects Med. 2017;56:34-44. [PMID: 28442273 DOI: 10.1016/j.mam.2017.04.004] [Cited by in Crossref: 53] [Cited by in F6Publishing: 62] [Article Influence: 10.6] [Reference Citation Analysis]
103 Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 2017;152:1679-1694.e3. [PMID: 28214524 DOI: 10.1053/j.gastro.2017.01.055] [Cited by in Crossref: 269] [Cited by in F6Publishing: 351] [Article Influence: 53.8] [Reference Citation Analysis]
104 Ponnusamy S, Tran QT, Thiyagarajan T, Miller DD, Bridges D, Narayanan R. An estrogen receptor β-selective agonist inhibits non-alcoholic steatohepatitis in preclinical models by regulating bile acid and xenobiotic receptors. Exp Biol Med (Maywood) 2017;242:606-16. [PMID: 28092182 DOI: 10.1177/1535370216688569] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
105 Thomas H. Blocking ileal bile acid uptake safeguards against NAFLD. Nat Rev Gastroenterol Hepatol 2016;13:623-623. [DOI: 10.1038/nrgastro.2016.167] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]