BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sharma B, Fermanian S, Gibson M, Unterman S, Herzka DA, Cascio B, Coburn J, Hui AY, Marcus N, Gold GE. Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med. 2013;5:167ra6. [PMID: 23303605 DOI: 10.1126/scitranslmed.3004838] [Cited by in Crossref: 189] [Cited by in F6Publishing: 196] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Fang Y, Zhou W, He J, Zhai X, He F, Wei W. Effect of chemical modification on physicochemical and biological properties of chondroitin sulfate. Polymer Testing 2022;115:107747. [DOI: 10.1016/j.polymertesting.2022.107747] [Reference Citation Analysis]
2 Liu Y, Li Y, Shang H, Zhong W, Wang Q, Mequanint K, Zhu C, Xing M, Wei H. Underwater instant adhesion mechanism of self-assembled amphiphilic hemostatic granular hydrogel from Andrias davidianus skin secretion. iScience 2022;25:105106. [DOI: 10.1016/j.isci.2022.105106] [Reference Citation Analysis]
3 Kim WH, Han Y, Lee IS, Won N, Na YH. Development of hydrogel adhesion system for propagation of aquatic organisms. Polymer 2022;255:125112. [DOI: 10.1016/j.polymer.2022.125112] [Reference Citation Analysis]
4 Mazur M, Zakrzewski W, Szymonowicz M, Rybak Z. Medical Adhesives and Their Role in Laparoscopic Surgery—A Review of Literature. Materials 2022;15:5215. [DOI: 10.3390/ma15155215] [Reference Citation Analysis]
5 Bu Y, Pandit A. Cohesion mechanisms for bioadhesives. Bioactive Materials 2022;13:105-18. [DOI: 10.1016/j.bioactmat.2021.11.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
6 Merrild NG, Holzmann V, Ariosa-Morejon Y, Faull PA, Coleman J, Barrell WB, Young G, Fischer R, Kelly DJ, Addison O, Vincent TL, Grigoriadis AE, Gentleman E. Local depletion of proteoglycans mediates cartilage tissue repair in an ex vivo integration model. Acta Biomater 2022:S1742-7061(22)00371-3. [PMID: 35779773 DOI: 10.1016/j.actbio.2022.06.032] [Reference Citation Analysis]
7 Yang J, Yu H, Wang L, Liu J, Liu X, Hong Y, Huang Y, Ren S. Advances in adhesive hydrogels for tissue engineering. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111241] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Frejo L, Goldstein T, Swami P, Patel NA, Grande DA, Zeltsman D, Smith LP. A two-stage in vivo approach for implanting a 3D printed tissue-engineered tracheal replacement graft: A proof of concept. International Journal of Pediatric Otorhinolaryngology 2022;155:111066. [DOI: 10.1016/j.ijporl.2022.111066] [Reference Citation Analysis]
9 Deng C, Zhou Q, Zhang M, Li T, Chen H, Xu C, Feng Q, Wang X, Yin F, Cheng Y, Wu C. Bioceramic Scaffolds with Antioxidative Functions for ROS Scavenging and Osteochondral Regeneration. Adv Sci (Weinh) 2022;9:e2105727. [PMID: 35182053 DOI: 10.1002/advs.202105727] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Zhao T, Wei Z, Zhu W, Weng X. Recent Developments and Current Applications of Hydrogels in Osteoarthritis. Bioengineering 2022;9:132. [DOI: 10.3390/bioengineering9040132] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 Wong CC, Lu CX, Cho EC, Lee PW, Chi NW, Lin PY, Jheng PR, Chen HL, Mansel BW, Chen YM, Chen CH, Chuang EY. Calcium peroxide aids tyramine-alginate gel to crosslink with tyrosinase for efficient cartilage repair. Int J Biol Macromol 2022:S0141-8130(22)00510-4. [PMID: 35288166 DOI: 10.1016/j.ijbiomac.2022.03.044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Xiao Y, Li Q, Yao X, Bai R, Hong W, Yang C. Fatigue of amorphous hydrogels with dynamic covalent bonds. Extreme Mechanics Letters 2022. [DOI: 10.1016/j.eml.2022.101679] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Zhang Z, Zhou J, Liu C, Zhang J, Shibata Y, Kong N, Corbo C, Harris MB, Tao W. Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities. Trends in Chemistry 2022. [DOI: 10.1016/j.trechm.2022.02.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
14 Fernandez-Yague MA, Hymel LA, Olingy CE, McClain C, Ogle ME, García JR, Minshew D, Vyshnya S, Lim HS, Qiu P, García AJ, Botchwey EA. Analyzing immune response to engineered hydrogels by hierarchical clustering of inflammatory cell subsets. Sci Adv 2022;8:eabd8056. [PMID: 35213226 DOI: 10.1126/sciadv.abd8056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wu J, Yuk H, Sarrafian TL, Guo CF, Griffiths LG, Nabzdyk CS, Zhao X. An off-the-shelf bioadhesive patch for sutureless repair of gastrointestinal defects. Sci Transl Med 2022;14:eabh2857. [PMID: 35108064 DOI: 10.1126/scitranslmed.abh2857] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
16 Mredha MTI, Jeon I. Biomimetic anisotropic hydrogels: Advanced fabrication strategies, extraordinary functionalities, and broad applications. Progress in Materials Science 2022;124:100870. [DOI: 10.1016/j.pmatsci.2021.100870] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
17 Li M, Pan G, Zhang H, Guo B. Hydrogel adhesives for generalized wound treatment: Design and applications. Journal of Polymer Science. [DOI: 10.1002/pol.20210916] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
18 Jelodari S, Ebrahimi Sadrabadi A, Zarei F, Jahangir S, Azami M, Sheykhhasan M, Hosseini S, Gao Y. New Insights into Cartilage Tissue Engineering: Improvement of Tissue-Scaffold Integration to Enhance Cartilage Regeneration. BioMed Research International 2022;2022:1-13. [DOI: 10.1155/2022/7638245] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Li Q, Song W, Li J, Ma C, Zhao X, Jiao J, Mrowczynski O, Webb BS, Rizk EB, Lu D, Liu C. Bioinspired super-strong aqueous synthetic tissue adhesives. Matter 2022. [DOI: 10.1016/j.matt.2021.12.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Wei W, Ma Y, Zhang X, Zhou W, Wu H, Zhang J, Lin J, Tang C, Liao Y, Li C, Wang X, Yao X, Koh YW, Huang W, Ouyang H. Biomimetic Joint Paint for Efficient Cartilage Repair by Simultaneously Regulating Cartilage Degeneration and Regeneration in Pigs. ACS Appl Mater Interfaces 2021;13:54801-16. [PMID: 34706537 DOI: 10.1021/acsami.1c17629] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
21 Wagenbrenner M, Mayer-Wagner S, Rudert M, Holzapfel BM, Weissenberger M. Combinations of Hydrogels and Mesenchymal Stromal Cells (MSCs) for Cartilage Tissue Engineering-A Review of the Literature. Gels 2021;7:217. [PMID: 34842678 DOI: 10.3390/gels7040217] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Nguyen TPT, Li F, Shrestha S, Tuan RS, Thissen H, Forsythe JS, Frith JE. Cell-laden injectable microgels: Current status and future prospects for cartilage regeneration. Biomaterials 2021;279:121214. [PMID: 34736147 DOI: 10.1016/j.biomaterials.2021.121214] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
23 Wang X, Li X, Duffy P, Mcmahon S, Wang X, Lyu J, Xu Q, A S, Chen NN, Bi V, Dürig T, Wang W. Resveratrol‐Loaded Poly( d , l ‐Lactide‐ Co ‐Glycolide) Microspheres Integrated in a Hyaluronic Acid Injectable Hydrogel for Cartilage Regeneration. Advanced NanoBiomed Research 2022;2:2100070. [DOI: 10.1002/anbr.202100070] [Reference Citation Analysis]
24 Chen T, Weng W, Liu Y, Aspera-Werz RH, Nüssler AK, Xu J. Update on Novel Non-Operative Treatment for Osteoarthritis: Current Status and Future Trends. Front Pharmacol 2021;12:755230. [PMID: 34603064 DOI: 10.3389/fphar.2021.755230] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Hua Y, Xia H, Jia L, Zhao J, Zhao D, Yan X, Zhang Y, Tang S, Zhou G, Zhu L, Lin Q. Ultrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopy. Sci Adv 2021;7:eabg0628. [PMID: 34433558 DOI: 10.1126/sciadv.abg0628] [Cited by in Crossref: 1] [Cited by in F6Publishing: 21] [Article Influence: 1.0] [Reference Citation Analysis]
26 Yuk H, Wu J, Sarrafian TL, Mao X, Varela CE, Roche ET, Griffiths LG, Nabzdyk CS, Zhao X. Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue. Nat Biomed Eng 2021. [PMID: 34373600 DOI: 10.1038/s41551-021-00769-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 35] [Article Influence: 1.0] [Reference Citation Analysis]
27 Zhu X, Wang Z, Teng F. A review of regulated self-organizing approaches for tissue regeneration. Prog Biophys Mol Biol 2021:S0079-6107(21)00087-0. [PMID: 34293337 DOI: 10.1016/j.pbiomolbio.2021.07.006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Koëter M, van Hugten PPW, Emans PJ, Ten Bosch JA. Treatment of a coronal shear injury of the trochlea using a modified hedgehog-based technique through an anterior neurovascular interval approach: A case report. Int J Surg Case Rep 2021;85:106211. [PMID: 34293656 DOI: 10.1016/j.ijscr.2021.106211] [Reference Citation Analysis]
29 Guo Y, Wang Y, Zhao X, Li X, Wang Q, Zhong W, Mequanint K, Zhan R, Xing M, Luo G. Snake extract-laden hemostatic bioadhesive gel cross-linked by visible light. Sci Adv 2021;7:eabf9635. [PMID: 34261653 DOI: 10.1126/sciadv.abf9635] [Cited by in F6Publishing: 21] [Reference Citation Analysis]
30 Shojarazavi N, Mashayekhan S, Pazooki H, Mohsenifard S, Baniasadi H. Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering. J Biomater Appl 2021;:8853282211024020. [PMID: 34121491 DOI: 10.1177/08853282211024020] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
31 Li X, Xu Q, Johnson M, Wang X, Lyu J, Li Y, McMahon S, Greiser U, A S, Wang W. A chondroitin sulfate based injectable hydrogel for delivery of stem cells in cartilage regeneration. Biomater Sci 2021;9:4139-48. [PMID: 33955435 DOI: 10.1039/d1bm00482d] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
32 Ma Z, Bao G, Li J. Multifaceted Design and Emerging Applications of Tissue Adhesives. Adv Mater 2021;33:e2007663. [PMID: 33956371 DOI: 10.1002/adma.202007663] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 26.0] [Reference Citation Analysis]
33 Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. Adv Mater 2021;33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 20.0] [Reference Citation Analysis]
34 Khandaker M, Kotturi H, Progri H, Tummala S, Nikfarjam S, Rao P, Hosna A, Arasu DT, Williams W, Haleem AM. In vitroandin vivoeffect of polycaprolactone nanofiber coating on polyethylene glycol diacrylate scaffolds for intervertebral disc repair. Biomed Mater 2021;16. [PMID: 33915528 DOI: 10.1088/1748-605X/abfd12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
35 Jiang Z, Li Y, Shen Y, Yang J, Zhang Z, You Y, Lv Z, Yao L. Robust Hydrogel Adhesive with Dual Hydrogen Bond Networks. Molecules 2021;26:2688. [PMID: 34064401 DOI: 10.3390/molecules26092688] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Sharifi S, Islam MM, Sharifi H, Islam R, Koza D, Reyes-Ortega F, Alba-Molina D, Nilsson PH, Dohlman CH, Mollnes TE, Chodosh J, Gonzalez-Andrades M. Tuning gelatin-based hydrogel towards bioadhesive ocular tissue engineering applications. Bioact Mater 2021;6:3947-61. [PMID: 33937594 DOI: 10.1016/j.bioactmat.2021.03.042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 21] [Article Influence: 1.0] [Reference Citation Analysis]
37 Bovone G, Dudaryeva OY, Marco-Dufort B, Tibbitt MW. Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomater Sci Eng 2021. [PMID: 33792286 DOI: 10.1021/acsbiomaterials.0c01677] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
38 Sun Z, Li Z, Qu K, Zhang Z, Niu Y, Xu W, Ren C. A review on recent advances in gel adhesion and their potential applications. Journal of Molecular Liquids 2021;325:115254. [DOI: 10.1016/j.molliq.2020.115254] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
39 Chen K, Lin Q, Wang L, Zhuang Z, Zhang Y, Huang D, Wang H. An All-in-One Tannic Acid-Containing Hydrogel Adhesive with High Toughness, Notch Insensitivity, Self-Healability, Tailorable Topography, and Strong, Instant, and On-Demand Underwater Adhesion. ACS Appl Mater Interfaces 2021;13:9748-61. [DOI: 10.1021/acsami.1c00637] [Cited by in Crossref: 6] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
40 Shin J, Kang EH, Choi S, Jeon EJ, Cho JH, Kang D, Lee H, Yun IS, Cho SW. Tissue-Adhesive Chondroitin Sulfate Hydrogel for Cartilage Reconstruction. ACS Biomater Sci Eng 2021;7:4230-43. [PMID: 33538598 DOI: 10.1021/acsbiomaterials.0c01414] [Cited by in Crossref: 3] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
41 Zhang W, Hu J, Yang H, Suo Z, Lu T. Fatigue-resistant adhesion II: Swell tolerance. Extreme Mechanics Letters 2021;43:101182. [DOI: 10.1016/j.eml.2021.101182] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Nam S, Mooney D. Polymeric Tissue Adhesives. Chem Rev 2021;121:11336-84. [PMID: 33507740 DOI: 10.1021/acs.chemrev.0c00798] [Cited by in Crossref: 12] [Cited by in F6Publishing: 70] [Article Influence: 12.0] [Reference Citation Analysis]
43 Liu J, Lu Y, Xing F, Liang J, Wang Q, Fan Y, Zhang X. Cell-free scaffolds functionalized with bionic cartilage acellular matrix microspheres to enhance the microfracture treatment of articular cartilage defects. J Mater Chem B 2021;9:1686-97. [PMID: 33491727 DOI: 10.1039/d0tb02616f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
44 Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. Food Reviews International 2021;37:313-72. [DOI: 10.1080/87559129.2020.1858313] [Cited by in Crossref: 10] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
45 Deng Z, Jin J, Wang S, Qi F, Chen X, Liu C, Li Y, Ma Y, Lyu F, Zheng Q. Narrative review of the choices of stem cell sources and hydrogels for cartilage tissue engineering. Ann Transl Med 2020;8:1598. [PMID: 33437797 DOI: 10.21037/atm-20-2342] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
46 Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 2021;9:535-73. [DOI: 10.1039/d0bm00973c] [Cited by in Crossref: 22] [Cited by in F6Publishing: 85] [Article Influence: 22.0] [Reference Citation Analysis]
47 Sodhi H, Panitch A. Glycosaminoglycans in Tissue Engineering: A Review. Biomolecules 2020;11:E29. [PMID: 33383795 DOI: 10.3390/biom11010029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
48 Liu S, Zhao Y, Hao W, Zhang X, Ming D. Micro- and nanotechnology for neural electrode-tissue interfaces. Biosensors and Bioelectronics 2020;170:112645. [DOI: 10.1016/j.bios.2020.112645] [Cited by in Crossref: 3] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
49 Chen J, Yang J, Wang L, Zhang X, Heng BC, Wang DA, Ge Z. Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration. Bioact Mater 2021;6:1689-98. [PMID: 33313448 DOI: 10.1016/j.bioactmat.2020.11.020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 42] [Article Influence: 3.0] [Reference Citation Analysis]
50 DiStefano TJ, Shmukler JO, Danias G, Iatridis JC. The Functional Role of Interface Tissue Engineering in Annulus Fibrosus Repair: Bridging Mechanisms of Hydrogel Integration with Regenerative Outcomes. ACS Biomater Sci Eng 2020;6:6556-86. [PMID: 33320618 DOI: 10.1021/acsbiomaterials.0c01320] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
51 Chocarro-Wrona C, de Vicente J, Antich C, Jiménez G, Martínez-Moreno D, Carrillo E, Montañez E, Gálvez-Martín P, Perán M, López-Ruiz E, Marchal JA. Validation of the 1,4-butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications. Bioeng Transl Med 2021;6:e10192. [PMID: 33532591 DOI: 10.1002/btm2.10192] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
52 Tarafder S, Park GY, Felix J, Lee CH. Bioadhesives for musculoskeletal tissue regeneration. Acta Biomater 2020;117:77-92. [PMID: 33031966 DOI: 10.1016/j.actbio.2020.09.050] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
53 Moore EM, Maestas DR Jr, Comeau HY, Elisseeff JH. The Immune System and Its Contribution to Variability in Regenerative Medicine. Tissue Eng Part B Rev 2021;27:39-47. [PMID: 32635878 DOI: 10.1089/ten.TEB.2019.0335] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
54 Wei W, Ma Y, Yao X, Zhou W, Wang X, Li C, Lin J, He Q, Leptihn S, Ouyang H. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater 2021;6:998-1011. [PMID: 33102942 DOI: 10.1016/j.bioactmat.2020.09.030] [Cited by in Crossref: 21] [Cited by in F6Publishing: 77] [Article Influence: 10.5] [Reference Citation Analysis]
55 Steck J, Kim J, Yang J, Hassan S, Suo Z. Topological adhesion. I. Rapid and strong topohesives. Extreme Mechanics Letters 2020;39:100803. [DOI: 10.1016/j.eml.2020.100803] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
56 Zhang W, Gao Y, Yang H, Suo Z, Lu T. Fatigue-resistant adhesion I. Long-chain polymers as elastic dissipaters. Extreme Mechanics Letters 2020;39:100813. [DOI: 10.1016/j.eml.2020.100813] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
57 Nele V, Wojciechowski JP, Armstrong JPK, Stevens MM. Tailoring Gelation Mechanisms for Advanced Hydrogel Applications. Adv Funct Mater 2020;30:2002759. [DOI: 10.1002/adfm.202002759] [Cited by in Crossref: 62] [Cited by in F6Publishing: 51] [Article Influence: 31.0] [Reference Citation Analysis]
58 DiStefano TJ, Shmukler JO, Danias G, Di Pauli von Treuheim T, Hom WW, Goldberg DA, Laudier DM, Nasser PR, Hecht AC, Nicoll SB, Iatridis JC. Development of a two-part biomaterial adhesive strategy for annulus fibrosus repair and ex vivo evaluation of implant herniation risk. Biomaterials 2020;258:120309. [PMID: 32823020 DOI: 10.1016/j.biomaterials.2020.120309] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
59 Wu J, Chen Q, Deng C, Xu B, Zhang Z, Yang Y, Lu T. Exquisite design of injectable Hydrogels in Cartilage Repair. Theranostics 2020;10:9843-64. [PMID: 32863963 DOI: 10.7150/thno.46450] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
60 Koo JH, Song J, Yoo S, Sunwoo S, Son D, Kim D. Unconventional Device and Material Approaches for Monolithic Biointegration of Implantable Sensors and Wearable Electronics. Adv Mater Technol 2020;5:2000407. [DOI: 10.1002/admt.202000407] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
61 Naderi A, Bhattacharjee N, Folch A. Digital Manufacturing for Microfluidics. Annu Rev Biomed Eng 2019;21:325-64. [PMID: 31167099 DOI: 10.1146/annurev-bioeng-092618-020341] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 15.5] [Reference Citation Analysis]
62 Li J, Pan K, Tian H, Yin L. The Potential of Electrospinning/Electrospraying Technology in the Rational Design of Hydrogel Structures. Macromol Mater Eng 2020;305:2000285. [DOI: 10.1002/mame.202000285] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
63 Kim HS, Mandakhbayar N, Kim HW, Leong KW, Yoo HS. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. Biomaterials 2021;269:120214. [PMID: 32736808 DOI: 10.1016/j.biomaterials.2020.120214] [Cited by in Crossref: 5] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
64 Li X, A S, Xu Q, Alshehri F, Zeng M, Zhou D, Li J, Zhou G, Wang W. Cartilage-Derived Progenitor Cell-Laden Injectable Hydrogel—An Approach for Cartilage Tissue Regeneration. ACS Appl Bio Mater 2020;3:4756-65. [DOI: 10.1021/acsabm.0c00294] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
65 Öztürk E, Stauber T, Levinson C, Cavalli E, Arlov Ø, Zenobi-wong M. Tyrosinase-crosslinked, tissue adhesive and biomimetic alginate sulfate hydrogels for cartilage repair. Biomed Mater 2020;15:045019. [DOI: 10.1088/1748-605x/ab8318] [Cited by in Crossref: 5] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
66 Bannerman AD, Davenport Huyer L, Montgomery M, Zhao N, Velikonja C, Bender TP, Radisic M. Elastic Biomaterial Scaffold with Spatially Varying Adhesive Design. Adv Biosyst 2020;4:e2000046. [PMID: 32567253 DOI: 10.1002/adbi.202000046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
67 Gegg C, Tong X, Yang F. Mixed Composition Microribbon Hydrogels Induce Rapid and Synergistic Cartilage Regeneration by Mesenchymal Stem Cells in 3D via Paracrine Signaling Exchange. ACS Biomater Sci Eng 2020;6:4166-78. [PMID: 33463346 DOI: 10.1021/acsbiomaterials.0c00131] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
68 Lin J, Zheng SY, Xiao R, Yin J, Wu ZL, Zheng Q, Qian J. Constitutive behaviors of tough physical hydrogels with dynamic metal-coordinated bonds. Journal of the Mechanics and Physics of Solids 2020;139:103935. [DOI: 10.1016/j.jmps.2020.103935] [Cited by in Crossref: 13] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]
69 Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering: R: Reports 2020;140:100543. [DOI: 10.1016/j.mser.2020.100543] [Cited by in Crossref: 125] [Cited by in F6Publishing: 156] [Article Influence: 62.5] [Reference Citation Analysis]
70 Fan X, Wang S, Fang Y, Li P, Zhou W, Wang Z, Chen M, Liu H. Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Materials Science and Engineering: C 2020;109:110649. [DOI: 10.1016/j.msec.2020.110649] [Cited by in Crossref: 12] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
71 Zhang J, Yun S, Du Y, Zannettino ACW, Zhang H. Fabrication of a Cartilage Patch by Fusing Hydrogel-Derived Cell Aggregates onto Electrospun Film. Tissue Eng Part A 2020;26:863-71. [PMID: 32008467 DOI: 10.1089/ten.TEA.2019.0318] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
72 Yang YK, Ogando CR, Barabino GA. In Vitro Evaluation of the Influence of Substrate Mechanics on Matrix-Assisted Human Chondrocyte Transplantation. J Funct Biomater 2020;11:E5. [PMID: 31963629 DOI: 10.3390/jfb11010005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
73 da Cunha CB, Andrade R, Veloso TR, Learmonth DA, Espregueira-Mendes J, Sousa RA. Enhanced microfracture using acellular scaffolds improves results after treatment of symptomatic focal grade III/IV knee cartilage lesions but current clinical evidence does not allow unequivocal recommendation. Knee Surg Sports Traumatol Arthrosc 2020;28:3245-57. [PMID: 31894366 DOI: 10.1007/s00167-019-05832-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
74 Tang X, Gu X, Wang Y, Chen X, Ling J, Yang Y. Stable antibacterial polysaccharide-based hydrogels as tissue adhesives for wound healing. RSC Adv 2020;10:17280-7. [DOI: 10.1039/d0ra02017f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
75 Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ bioprinting - Bioprinting from benchside to bedside? Acta Biomater 2020;101:14-25. [PMID: 31476384 DOI: 10.1016/j.actbio.2019.08.045] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 33.5] [Reference Citation Analysis]
76 Galarraga JH, Kwon MY, Burdick JA. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Sci Rep 2019;9:19987. [PMID: 31882612 DOI: 10.1038/s41598-019-56117-3] [Cited by in Crossref: 40] [Cited by in F6Publishing: 52] [Article Influence: 13.3] [Reference Citation Analysis]
77 Satapathy MK, Manga YB, Ostrikov KK, Chiang WH, Pandey A, R L, Nyambat B, Chuang EY, Chen CH. Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery. ACS Appl Mater Interfaces 2020;12:86-95. [PMID: 31809008 DOI: 10.1021/acsami.9b14073] [Cited by in Crossref: 6] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
78 Li Z, Wang D, Bai H, Zhang S, Ma P, Dong W. Photo‐Crosslinking Strategy Constructs Adhesive, Superabsorbent, and Tough PVA‐Based Hydrogel through Controlling the Balance of Cohesion and Adhesion. Macromol Mater Eng 2019;305:1900623. [DOI: 10.1002/mame.201900623] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
79 Gao D, Parida K, Lee PS. Emerging Soft Conductors for Bioelectronic Interfaces. Adv Funct Mater 2020;30:1907184. [DOI: 10.1002/adfm.201907184] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 12.7] [Reference Citation Analysis]
80 Torzilli PA, Azimulla A. Ultraviolet light (365 nm) transmission properties of articular cartilage as a function of depth, extracellular matrix, and swelling. J Biomed Mater Res A 2020;108:327-39. [PMID: 31622534 DOI: 10.1002/jbm.a.36819] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
81 Chen T, McCarthy MM, Guo H, Warren R, Maher SA. The Scaffold-Articular Cartilage Interface: A Combined In Vitro and In Silico Analysis Under Controlled Loading Conditions. J Biomech Eng 2018;140. [PMID: 29801169 DOI: 10.1115/1.4040121] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
82 Feng Q, Li Q, Wen H, Chen J, Liang M, Huang H, Lan D, Dong H, Cao X. Injection and Self‐Assembly of Bioinspired Stem Cell‐Laden Gelatin/Hyaluronic Acid Hybrid Microgels Promote Cartilage Repair In Vivo. Adv Funct Mater 2019;29:1906690. [DOI: 10.1002/adfm.201906690] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 14.3] [Reference Citation Analysis]
83 Young SA, Riahinezhad H, Amsden BG. In situ-forming, mechanically resilient hydrogels for cell delivery. J Mater Chem B 2019;7:5742-61. [PMID: 31531443 DOI: 10.1039/c9tb01398a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
84 Huang MJ, Zhao JY, Xu JJ, Li J, Zhuang YF, Zhang XL. lncRNA ADAMTS9-AS2 Controls Human Mesenchymal Stem Cell Chondrogenic Differentiation and Functions as a ceRNA. Mol Ther Nucleic Acids 2019;18:533-45. [PMID: 31671346 DOI: 10.1016/j.omtn.2019.08.027] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
85 Krishnadoss V, Melillo A, Kanjilal B, Hannah T, Ellis E, Kapetanakis A, Hazelton J, San Roman J, Masoumi A, Leijten J, Noshadi I. Bioionic Liquid Conjugation as Universal Approach To Engineer Hemostatic Bioadhesives. ACS Appl Mater Interfaces 2019;11:38373-84. [DOI: 10.1021/acsami.9b08757] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
86 Chen K, Feng Y, Zhang Y, Yu L, Hao X, Shao F, Dou Z, An C, Zhuang Z, Luo Y, Wang Y, Wu J, Ji P, Chen T, Wang H. Entanglement-Driven Adhesion, Self-Healing, and High Stretchability of Double-Network PEG-Based Hydrogels. ACS Appl Mater Interfaces 2019;11:36458-68. [DOI: 10.1021/acsami.9b14348] [Cited by in Crossref: 18] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
87 Christman KL. Biomaterials for tissue repair. Science 2019;363:340-1. [PMID: 30679357 DOI: 10.1126/science.aar2955] [Cited by in Crossref: 51] [Cited by in F6Publishing: 57] [Article Influence: 17.0] [Reference Citation Analysis]
88 Yang J, Bai R, Li J, Yang C, Yao X, Liu Q, Vlassak JJ, Mooney DJ, Suo Z. Design Molecular Topology for Wet–Dry Adhesion. ACS Appl Mater Interfaces 2019;11:24802-11. [DOI: 10.1021/acsami.9b07522] [Cited by in Crossref: 31] [Cited by in F6Publishing: 48] [Article Influence: 10.3] [Reference Citation Analysis]
89 Li J, Chen G, Xu X, Abdou P, Jiang Q, Shi D, Gu Z. Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regen Biomater 2019;6:129-40. [PMID: 31198581 DOI: 10.1093/rb/rbz022] [Cited by in Crossref: 46] [Cited by in F6Publishing: 67] [Article Influence: 15.3] [Reference Citation Analysis]
90 Yang J, Bai R, Chen B, Suo Z. Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Adv Funct Mater 2020;30:1901693. [DOI: 10.1002/adfm.201901693] [Cited by in Crossref: 242] [Cited by in F6Publishing: 233] [Article Influence: 80.7] [Reference Citation Analysis]
91 Demarteau J, Debuigne A, Detrembleur C. Organocobalt Complexes as Sources of Carbon-Centered Radicals for Organic and Polymer Chemistries. Chem Rev 2019;119:6906-55. [DOI: 10.1021/acs.chemrev.8b00715] [Cited by in Crossref: 53] [Cited by in F6Publishing: 75] [Article Influence: 17.7] [Reference Citation Analysis]
92 Tang C, Holt BD, Wright ZM, Arnold AM, Moy AC, Sydlik SA. Injectable amine functionalized graphene and chondroitin sulfate hydrogel with potential for cartilage regeneration. J Mater Chem B 2019;7:2442-53. [PMID: 32255121 DOI: 10.1039/c8tb02967a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
93 Liu B, Yang F, Wei X, Zhang X, Zhang Y, Wang B, Liu G, Xie H, Yang J, Wang W, Qin K, Zhao D. An exploratory study of articular cartilage and subchondral bone reconstruction with bone marrow mesenchymal stem cells combined with porous tantalum/Bio-Gide collagen membrane in osteonecrosis of the femoral head. Mater Sci Eng C Mater Biol Appl 2019;99:1123-32. [PMID: 30889646 DOI: 10.1016/j.msec.2019.02.072] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
94 Xiang Y, Bunpetch V, Zhou W, Ouyang H. Optimization strategies for ACI: A step-chronicle review. J Orthop Translat 2019;17:3-14. [PMID: 31194027 DOI: 10.1016/j.jot.2018.12.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
95 Liu Y, Liu J, Chen S, Lei T, Kim Y, Niu S, Wang H, Wang X, Foudeh AM, Tok JB, Bao Z. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 2019;3:58-68. [DOI: 10.1038/s41551-018-0335-6] [Cited by in Crossref: 183] [Cited by in F6Publishing: 252] [Article Influence: 61.0] [Reference Citation Analysis]
96 Teng L, Chen Y, Jia Y, Ren L. Supramolecular and dynamic covalent hydrogel scaffolds: from gelation chemistry to enhanced cell retention and cartilage regeneration. J Mater Chem B 2019;7:6705-36. [DOI: 10.1039/c9tb01698h] [Cited by in Crossref: 21] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
97 Li H, Ma T, Zhang M, Zhu J, Liu J, Tan F. Fabrication of sulphonated poly(ethylene glycol)-diacrylate hydrogel as a bone grafting scaffold. J Mater Sci: Mater Med 2018;29. [DOI: 10.1007/s10856-018-6199-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
98 Choi Y, Park JH, Jang J, Cho D. 3D bioprinting technologies and bioinks for therapeutic and tissue engineering applications. Journal of 3D Printing in Medicine 2018;2:187-203. [DOI: 10.2217/3dp-2018-0014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
99 Wu D, Yu Y, Tan J, Huang L, Luo B, Lu L, Zhou C. 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials & Design 2018;160:486-95. [DOI: 10.1016/j.matdes.2018.09.040] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
100 Sun X, Yin H, Wang Y, Lu J, Shen X, Lu C, Tang H, Meng H, Yang S, Yu W, Zhu Y, Guo Q, Wang A, Xu W, Liu S, Lu S, Wang X, Peng J. In Situ Articular Cartilage Regeneration through Endogenous Reparative Cell Homing Using a Functional Bone Marrow-Specific Scaffolding System. ACS Appl Mater Interfaces 2018;10:38715-28. [DOI: 10.1021/acsami.8b11687] [Cited by in Crossref: 25] [Cited by in F6Publishing: 34] [Article Influence: 6.3] [Reference Citation Analysis]
101 Wolf MT, Zhang H, Sharma B, Marcus NA, Pietzner U, Fickert S, Lueth A, Albers GHR, Elisseeff JH. Two-Year Follow-Up and Remodeling Kinetics of ChonDux Hydrogel for Full-Thickness Cartilage Defect Repair in the Knee. Cartilage 2020;11:447-57. [PMID: 30280586 DOI: 10.1177/1947603518800547] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
102 Li J, Huang Y, Song J, Li X, Zhang X, Zhou Z, Chen D, Ma PX, Peng W, Wang W, Zhou G. Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel. Acta Biomater 2018;79:202-15. [PMID: 30165202 DOI: 10.1016/j.actbio.2018.08.029] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 9.8] [Reference Citation Analysis]
103 Yan Q, Dong H, Su J, Han J, Song B, Wei Q, Shi Y. A Review of 3D Printing Technology for Medical Applications. Engineering 2018;4:729-42. [DOI: 10.1016/j.eng.2018.07.021] [Cited by in Crossref: 175] [Cited by in F6Publishing: 152] [Article Influence: 43.8] [Reference Citation Analysis]
104 Fan L, Lin C, Zhao P, Wen X, Li G. An Injectable Bioorthogonal Dextran Hydrogel for Enhanced Chondrogenesis of Primary Stem Cells. Tissue Engineering Part C: Methods 2018;24:504-13. [DOI: 10.1089/ten.tec.2018.0085] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
105 Han L, Wang M, Li P, Gan D, Yan L, Xu J, Wang K, Fang L, Chan CW, Zhang H, Yuan H, Lu X. Mussel-Inspired Tissue-Adhesive Hydrogel Based on the Polydopamine–Chondroitin Sulfate Complex for Growth-Factor-Free Cartilage Regeneration. ACS Appl Mater Interfaces 2018;10:28015-26. [DOI: 10.1021/acsami.8b05314] [Cited by in Crossref: 94] [Cited by in F6Publishing: 135] [Article Influence: 23.5] [Reference Citation Analysis]
106 Miron RJ, Zhang Y. Autologous liquid platelet rich fibrin: A novel drug delivery system. Acta Biomater 2018;75:35-51. [PMID: 29772345 DOI: 10.1016/j.actbio.2018.05.021] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 10.8] [Reference Citation Analysis]
107 Mohanraj B, Huang AH, Yeger-McKeever MJ, Schmidt MJ, Dodge GR, Mauck RL. Chondrocyte and mesenchymal stem cell derived engineered cartilage exhibits differential sensitivity to pro-inflammatory cytokines. J Orthop Res 2018;36:2901-10. [PMID: 29809295 DOI: 10.1002/jor.24061] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
108 Qi C, Liu J, Jin Y, Xu L, Wang G, Wang Z, Wang L. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials 2018;163:89-104. [DOI: 10.1016/j.biomaterials.2018.02.016] [Cited by in Crossref: 82] [Cited by in F6Publishing: 112] [Article Influence: 20.5] [Reference Citation Analysis]
109 Shirzaei Sani E, Portillo-lara R, Spencer A, Yu W, Geilich BM, Noshadi I, Webster TJ, Annabi N. Engineering Adhesive and Antimicrobial Hyaluronic Acid/Elastin-like Polypeptide Hybrid Hydrogels for Tissue Engineering Applications. ACS Biomater Sci Eng 2018;4:2528-40. [DOI: 10.1021/acsbiomaterials.8b00408] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 11.0] [Reference Citation Analysis]
110 Foyt DA, Norman MDA, Yu TTL, Gentleman E. Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine. Adv Healthc Mater 2018;7:e1700939. [PMID: 29316363 DOI: 10.1002/adhm.201700939] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 15.0] [Reference Citation Analysis]
111 Ashtikar M, Wacker MG. Nanopharmaceuticals for wound healing - Lost in translation? Adv Drug Deliv Rev 2018;129:194-218. [PMID: 29567397 DOI: 10.1016/j.addr.2018.03.005] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 10.8] [Reference Citation Analysis]
112 Gionet-Gonzales MA, Leach JK. Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin. Biomed Mater 2018;13:034109. [PMID: 29460842 DOI: 10.1088/1748-605X/aab0b3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
113 Pipino G, Risitano S, Alviano F, Wu EJ, Bonsi L, Vaccarisi DC, Indelli PF. Microfractures and hydrogel scaffolds in the treatment of osteochondral knee defects: A clinical and histological evaluation. J Clin Orthop Trauma 2019;10:67-75. [PMID: 30705535 DOI: 10.1016/j.jcot.2018.03.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 5.8] [Reference Citation Analysis]
114 Ruskowitz ER, Deforest CA. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat Rev Mater 2018;3. [DOI: 10.1038/natrevmats.2017.87] [Cited by in Crossref: 169] [Cited by in F6Publishing: 145] [Article Influence: 42.3] [Reference Citation Analysis]
115 Li J, Celiz AD, Yang J, Yang Q, Wamala I, Whyte W, Seo BR, Vasilyev NV, Vlassak JJ, Suo Z, Mooney DJ. Tough adhesives for diverse wet surfaces. Science 2017;357:378-81. [PMID: 28751604 DOI: 10.1126/science.aah6362] [Cited by in Crossref: 497] [Cited by in F6Publishing: 656] [Article Influence: 124.3] [Reference Citation Analysis]
116 Armiento AR, Stoddart MJ, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater 2018;65:1-20. [PMID: 29128537 DOI: 10.1016/j.actbio.2017.11.021] [Cited by in Crossref: 271] [Cited by in F6Publishing: 262] [Article Influence: 67.8] [Reference Citation Analysis]
117 Paschos NK, Sennett ML. Update on mesenchymal stem cell therapies for cartilage disorders. World J Orthop 2017; 8(12): 853-860 [PMID: 29312843 DOI: 10.5312/wjo.v8.i12.853] [Cited by in CrossRef: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
118 Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel) 2017;9:E671. [PMID: 30965974 DOI: 10.3390/polym9120671] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 7.2] [Reference Citation Analysis]
119 Pascual-Garrido C, Rodriguez-Fontan F, Aisenbrey EA, Payne KA, Chahla J, Goodrich LR, Bryant SJ. Current and novel injectable hydrogels to treat focal chondral lesions: Properties and applicability. J Orthop Res 2018;36:64-75. [PMID: 28975658 DOI: 10.1002/jor.23760] [Cited by in Crossref: 3] [Cited by in F6Publishing: 16] [Article Influence: 0.6] [Reference Citation Analysis]
120 Zhan Y, Pan Y, Chen B, Lu J, Zhong Z, Niu X. Strain rate dependent hyperelastic stress-stretch behavior of a silica nanoparticle reinforced poly (ethylene glycol) diacrylate nanocomposite hydrogel. Journal of the Mechanical Behavior of Biomedical Materials 2017;75:236-43. [DOI: 10.1016/j.jmbbm.2017.07.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
121 Xiao T, Guo W, Chen M, Hao C, Gao S, Huang J, Yuan Z, Zhang Y, Wang M, Li P, Peng J, Wang A, Wang Y, Sui X, Zhang L, Xu W, Lu S, Yin H, Yang J, Liu S, Guo Q. Fabrication and In Vitro Study of Tissue-Engineered Cartilage Scaffold Derived from Wharton's Jelly Extracellular Matrix. Biomed Res Int 2017;2017:5839071. [PMID: 29214173 DOI: 10.1155/2017/5839071] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
122 Wang L, Li B, Xu F, Xu Z, Wei D, Feng Y, Wang Y, Jia D, Zhou Y. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery. Carbohydrate Polymers 2017;174:904-14. [DOI: 10.1016/j.carbpol.2017.07.013] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 8.8] [Reference Citation Analysis]
123 Flégeau K, Pace R, Gautier H, Rethore G, Guicheux J, Le Visage C, Weiss P. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Adv Colloid Interface Sci 2017;247:589-609. [PMID: 28754381 DOI: 10.1016/j.cis.2017.07.012] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 9.0] [Reference Citation Analysis]
124 Di Bella C, Duchi S, O'Connell CD, Blanchard R, Augustine C, Yue Z, Thompson F, Richards C, Beirne S, Onofrillo C, Bauquier SH, Ryan SD, Pivonka P, Wallace GG, Choong PF. In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med 2018;12:611-21. [PMID: 28512850 DOI: 10.1002/term.2476] [Cited by in Crossref: 119] [Cited by in F6Publishing: 140] [Article Influence: 23.8] [Reference Citation Analysis]
125 Li L, Yu F, Shi J, Shen S, Teng H, Yang J, Wang X, Jiang Q. In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci Rep 2017;7:9416. [PMID: 28842703 DOI: 10.1038/s41598-017-10060-3] [Cited by in Crossref: 59] [Cited by in F6Publishing: 68] [Article Influence: 11.8] [Reference Citation Analysis]
126 Chen G, Taghavi S, Marecak D, Amsden BG. Tough and Enzyme-Degradable Hydrogels. Macromol Mater Eng 2018;303:1700162. [DOI: 10.1002/mame.201700162] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
127 Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 2017;57:1-25. [PMID: 28088667 DOI: 10.1016/j.actbio.2017.01.036] [Cited by in Crossref: 313] [Cited by in F6Publishing: 298] [Article Influence: 62.6] [Reference Citation Analysis]
128 Dwarshuis NJ, Parratt K, Santiago-Miranda A, Roy K. Cells as advanced therapeutics: State-of-the-art, challenges, and opportunities in large scale biomanufacturing of high-quality cells for adoptive immunotherapies. Adv Drug Deliv Rev 2017;114:222-39. [PMID: 28625827 DOI: 10.1016/j.addr.2017.06.005] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
129 Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, Chung JW, Kim DH, Poon Y, David N, Baker DJ, van Deursen JM, Campisi J, Elisseeff JH. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 2017;23:775-81. [PMID: 28436958 DOI: 10.1038/nm.4324] [Cited by in Crossref: 513] [Cited by in F6Publishing: 677] [Article Influence: 102.6] [Reference Citation Analysis]
130 Tosun HB, Gürger M, Gümüştaş SA, Uludag A, Üçer Ö, Serbest S, Çelik S. The effect of sodium hyaluronate-chondroitin sulfate combined solution on cartilage formation in osteochondral defects of the rabbit knee: an experimental study. Ther Clin Risk Manag 2017;13:523-32. [PMID: 28458555 DOI: 10.2147/TCRM.S133635] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
131 Wang X, Li Z, Shi T, Zhao P, An K, Lin C, Liu H. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering. Materials Science and Engineering: C 2017;73:21-30. [DOI: 10.1016/j.msec.2016.12.053] [Cited by in Crossref: 42] [Cited by in F6Publishing: 51] [Article Influence: 8.4] [Reference Citation Analysis]
132 Leach JK, Whitehead J. Materials-Directed Differentiation of Mesenchymal Stem Cells for Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2018;4:1115-27. [PMID: 30035212 DOI: 10.1021/acsbiomaterials.6b00741] [Cited by in Crossref: 53] [Cited by in F6Publishing: 64] [Article Influence: 10.6] [Reference Citation Analysis]
133 Donnelly PE, Chen T, Finch A, Brial C, Maher SA, Torzilli PA. Photocrosslinked tyramine-substituted hyaluronate hydrogels with tunable mechanical properties improve immediate tissue-hydrogel interfacial strength in articular cartilage. J Biomater Sci Polym Ed 2017;28:582-600. [PMID: 28134036 DOI: 10.1080/09205063.2017.1289035] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
134 Kim C, Shores L, Guo Q, Aly A, Jeon OH, Kim DH, Bernstein N, Bhattacharya R, Chae JJ, Yarema KJ, Elisseeff JH. Electrospun Microfiber Scaffolds with Anti-Inflammatory Tributanoylated N-Acetyl-d-Glucosamine Promote Cartilage Regeneration. Tissue Eng Part A 2016;22:689-97. [PMID: 27019285 DOI: 10.1089/ten.TEA.2015.0469] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
135 Chuah YJ, Peck Y, Lau JEJ, Hee HT, Wang D. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomater Sci 2017;5:613-31. [DOI: 10.1039/c6bm00863a] [Cited by in Crossref: 56] [Cited by in F6Publishing: 69] [Article Influence: 11.2] [Reference Citation Analysis]
136 Han L, Xu J, Lu X, Gan D, Wang Z, Wang K, Zhang H, Yuan H, Weng J. Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. J Mater Chem B 2017;5:731-41. [DOI: 10.1039/c6tb02348g] [Cited by in Crossref: 73] [Cited by in F6Publishing: 76] [Article Influence: 14.6] [Reference Citation Analysis]
137 Rahimnejad M, Zhong W. Mussel-inspired hydrogel tissue adhesives for wound closure. RSC Adv 2017;7:47380-96. [DOI: 10.1039/c7ra06743g] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
138 Bayrak ES, Akar B, Somo SI, Lu C, Xiao N, Brey EM, Cinar A. Computational Model-Based Analysis of Strategies to Enhance Scaffold Vascularization. Biores Open Access 2016;5:342-55. [PMID: 27965914 DOI: 10.1089/biores.2016.0039] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
139 Huang W, Wang Y, Chen Y, Zhao Y, Zhang Q, Zheng X, Chen L, Zhang L. Strong and Rapidly Self-Healing Hydrogels: Potential Hemostatic Materials. Adv Healthc Mater 2016;5:2813-22. [PMID: 27717239 DOI: 10.1002/adhm.201600720] [Cited by in Crossref: 98] [Cited by in F6Publishing: 93] [Article Influence: 16.3] [Reference Citation Analysis]
140 Jacobs HN, Rathod S, Wolf MT, Elisseeff JH. Intra-articular Injection of Urinary Bladder Matrix Reduces Osteoarthritis Development. AAPS J 2017;19:141-9. [PMID: 27778194 DOI: 10.1208/s12248-016-9999-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
141 Ondrésik M, Azevedo Maia FR, da Silva Morais A, Gertrudes AC, Dias Bacelar AH, Correia C, Gonçalves C, Radhouani H, Amandi Sousa R, Oliveira JM, Reis RL. Management of knee osteoarthritis. Current status and future trends: Management of Knee Osteoarthritis. Biotechnol Bioeng 2017;114:717-39. [DOI: 10.1002/bit.26182] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 7.2] [Reference Citation Analysis]
142 Pfeifer CG, Fisher MB, Carey JL, Mauck RL. Impact of guidance documents on translational large animal studies of cartilage repair. Sci Transl Med 2015;7:310re9. [PMID: 26491080 DOI: 10.1126/scitranslmed.aac7019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
143 Fischer S, Kisser A. Single-step scaffold-based cartilage repair in the knee: A systematic review. J Orthop 2016;13:246-53. [PMID: 27408497 DOI: 10.1016/j.jor.2016.06.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
144 Sadtler K, Singh A, Wolf MT, Wang X, Pardoll DM, Elisseeff JH. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat Rev Mater 2016;1. [DOI: 10.1038/natrevmats.2016.40] [Cited by in Crossref: 107] [Cited by in F6Publishing: 94] [Article Influence: 17.8] [Reference Citation Analysis]
145 Urrios A, Parra-Cabrera C, Bhattacharjee N, Gonzalez-Suarez AM, Rigat-Brugarolas LG, Nallapatti U, Samitier J, DeForest CA, Posas F, Garcia-Cordero JL, Folch A. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip 2016;16:2287-94. [PMID: 27217203 DOI: 10.1039/c6lc00153j] [Cited by in Crossref: 127] [Cited by in F6Publishing: 153] [Article Influence: 21.2] [Reference Citation Analysis]
146 Yang Y, Zhang J, Liu Z, Lin Q, Liu X, Bao C, Wang Y, Zhu L. Tissue-Integratable and Biocompatible Photogelation by the Imine Crosslinking Reaction. Adv Mater 2016;28:2724-30. [PMID: 26840751 DOI: 10.1002/adma.201505336] [Cited by in Crossref: 132] [Cited by in F6Publishing: 136] [Article Influence: 22.0] [Reference Citation Analysis]
147 Huang H, Xu J, Wei K, Xu YJ, Choi CKK, Zhu M, Bian L. Bioactive Nanocomposite Poly (Ethylene Glycol) Hydrogels Crosslinked by Multifunctional Layered Double Hydroxides Nanocrosslinkers. Macromol Biosci 2016;16:1019-26. [DOI: 10.1002/mabi.201600054] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
148 Ching KY, Andriotis OG, Li S, Basnett P, Su B, Roy I, Tare RS, Sengers BG, Stolz M. Nanofibrous poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) scaffolds provide a functional microenvironment for cartilage repair. J Biomater Appl 2016;31:77-91. [DOI: 10.1177/0885328216639749] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
149 O’connell CD, Di Bella C, Thompson F, Augustine C, Beirne S, Cornock R, Richards CJ, Chung J, Gambhir S, Yue Z, Bourke J, Zhang B, Taylor A, Quigley A, Kapsa R, Choong P, Wallace GG. Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication 2016;8:015019. [DOI: 10.1088/1758-5090/8/1/015019] [Cited by in Crossref: 101] [Cited by in F6Publishing: 121] [Article Influence: 16.8] [Reference Citation Analysis]
150 Magin CM, Alge DL, Anseth KS. Bio-inspired 3D microenvironments: a new dimension in tissue engineering. Biomed Mater 2016;11:022001. [DOI: 10.1088/1748-6041/11/2/022001] [Cited by in Crossref: 61] [Cited by in F6Publishing: 59] [Article Influence: 10.2] [Reference Citation Analysis]
151 Spector M, Lim TC. Injectable biomaterials: a perspective on the next wave of injectable therapeutics. Biomed Mater 2016;11:014110. [PMID: 26836246 DOI: 10.1088/1748-6041/11/1/014110] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
152 Wang J, Jokerst JV. Stem Cell Imaging: Tools to Improve Cell Delivery and Viability. Stem Cells Int 2016;2016:9240652. [PMID: 26880997 DOI: 10.1155/2016/9240652] [Cited by in Crossref: 17] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
153 Gantar A, Drnovšek N, Casuso P, Pérez-san Vicente A, Rodriguez J, Dupin D, Novak S, Loinaz I. Injectable and self-healing dynamic hydrogel containing bioactive glass nanoparticles as a potential biomaterial for bone regeneration. RSC Adv 2016;6:69156-66. [DOI: 10.1039/c6ra17327f] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
154 Schmocker A, Khoushabi A, Schizas C, Bourban P, Pioletti DP, Moser C. Miniature probe for the delivery and monitoring of a photopolymerizable material. J Biomed Opt 2015;20:127001. [DOI: 10.1117/1.jbo.20.12.127001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
155 Muhonen V, Salonius E, Haaparanta AM, Järvinen E, Paatela T, Meller A, Hannula M, Björkman M, Pyhältö T, Ellä V, Vasara A, Töyräs J, Kellomäki M, Kiviranta I. Articular cartilage repair with recombinant human type II collagen/polylactide scaffold in a preliminary porcine study. J Orthop Res 2016;34:745-53. [PMID: 26573959 DOI: 10.1002/jor.23099] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
156 Goldshmid R, Cohen S, Shachaf Y, Kupershmit I, Sarig-Nadir O, Seliktar D, Wechsler R. Steric Interference of Adhesion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair. Sci Rep 2015;5:12607. [PMID: 26411496 DOI: 10.1038/srep12607] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
157 Chiang CW, Chen WC, Liu HW, Wang IC, Chen CH. Evaluating Osteogenic Potential of Ligamentum Flavum Cells Cultivated in Photoresponsive Hydrogel that Incorporates Bone Morphogenetic Protein-2 for Spinal Fusion. Int J Mol Sci 2015;16:23318-36. [PMID: 26426006 DOI: 10.3390/ijms161023318] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
158 Kim IL, Pfeifer CG, Fisher MB, Saxena V, Meloni GR, Kwon MY, Kim M, Steinberg DR, Mauck RL, Burdick JA. Fibrous Scaffolds with Varied Fiber Chemistry and Growth Factor Delivery Promote Repair in a Porcine Cartilage Defect Model. Tissue Eng Part A 2015;21:2680-90. [PMID: 26401910 DOI: 10.1089/ten.tea.2015.0150] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
159 Ahadian S, Sadeghian RB, Salehi S, Ostrovidov S, Bae H, Ramalingam M, Khademhosseini A. Bioconjugated Hydrogels for Tissue Engineering and Regenerative Medicine. Bioconjugate Chem 2015;26:1984-2001. [DOI: 10.1021/acs.bioconjchem.5b00360] [Cited by in Crossref: 82] [Cited by in F6Publishing: 84] [Article Influence: 11.7] [Reference Citation Analysis]
160 Abdel-Sayed P, Pioletti DP. Strategies for improving the repair of focal cartilage defects. Nanomedicine (Lond) 2015;10:2893-905. [PMID: 26377158 DOI: 10.2217/nnm.15.119] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
161 Ravindran S, Kotecha M, Huang CC, Ye A, Pothirajan P, Yin Z, Magin R, George A. Biological and MRI characterization of biomimetic ECM scaffolds for cartilage tissue regeneration. Biomaterials 2015;71:58-70. [PMID: 26318817 DOI: 10.1016/j.biomaterials.2015.08.030] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 6.1] [Reference Citation Analysis]
162 Tomblyn S, Pettit Kneller EL, Walker SJ, Ellenburg MD, Kowalczewski CJ, Van Dyke M, Burnett L, Saul JM. Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells. J Biomed Mater Res B Appl Biomater 2016;104:864-79. [PMID: 25953729 DOI: 10.1002/jbm.b.33438] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
163 Ren K, He C, Xiao C, Li G, Chen X. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Biomaterials 2015;51:238-49. [DOI: 10.1016/j.biomaterials.2015.02.026] [Cited by in Crossref: 155] [Cited by in F6Publishing: 174] [Article Influence: 22.1] [Reference Citation Analysis]
164 Kadhirvel P, Machado C, Freitas A, Oliveira T, Dias RC, Costa MR. Molecular imprinting in hydrogels using reversible addition-fragmentation chain transfer polymerization and continuous flow micro-reactor: Molecular imprinting in hydrogels using reversible addition-fragmentation. J Chem Technol Biotechnol 2015;90:1552-64. [DOI: 10.1002/jctb.4681] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
165 Chian KS, Leong MF, Kono K. Regenerative medicine for oesophageal reconstruction after cancer treatment. Lancet Oncol 2015;16:e84-92. [PMID: 25638684 DOI: 10.1016/S1470-2045(14)70410-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
166 Bulman SE, Coleman CM, Murphy JM, Medcalf N, Ryan AE, Barry F. Pullulan: a new cytoadhesive for cell-mediated cartilage repair. Stem Cell Res Ther 2015;6:34. [PMID: 25889571 DOI: 10.1186/s13287-015-0011-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
167 Rodgers ZL, Hughes RM, Doherty LM, Shell JR, Molesky BP, Brugh AM, Forbes MD, Moran AM, Lawrence DS. B(12)-mediated, long wavelength photopolymerization of hydrogels. J Am Chem Soc 2015;137:3372-8. [PMID: 25697508 DOI: 10.1021/jacs.5b00182] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
168 Muhonen V, Narcisi R, Nystedt J, Korhonen M, van Osch GJ, Kiviranta I. Recombinant human type II collagen hydrogel provides a xeno-free 3D micro-environment for chondrogenesis of human bone marrow-derived mesenchymal stromal cells. J Tissue Eng Regen Med 2017;11:843-54. [PMID: 25643647 DOI: 10.1002/term.1983] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
169 Madeira C, Santhagunam A, Salgueiro JB, Cabral JM. Advanced cell therapies for articular cartilage regeneration. Trends in Biotechnology 2015;33:35-42. [DOI: 10.1016/j.tibtech.2014.11.003] [Cited by in Crossref: 119] [Cited by in F6Publishing: 118] [Article Influence: 17.0] [Reference Citation Analysis]
170 Fisher MB, Belkin NS, Milby AH, Henning EA, Bostrom M, Kim M, Pfeifer C, Meloni G, Dodge GR, Burdick JA, Schaer TP, Steinberg DR, Mauck RL. Cartilage repair and subchondral bone remodeling in response to focal lesions in a mini-pig model: implications for tissue engineering. Tissue Eng Part A 2015;21:850-60. [PMID: 25318414 DOI: 10.1089/ten.TEA.2014.0384] [Cited by in Crossref: 53] [Cited by in F6Publishing: 63] [Article Influence: 6.6] [Reference Citation Analysis]
171 Huang H, Zhang X, Hu X, Shao Z, Zhu J, Dai L, Man Z, Yuan L, Chen H, Zhou C, Ao Y. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration. Biomaterials 2014;35:9608-19. [DOI: 10.1016/j.biomaterials.2014.08.020] [Cited by in Crossref: 81] [Cited by in F6Publishing: 91] [Article Influence: 10.1] [Reference Citation Analysis]
172 Levett PA, Hutmacher DW, Malda J, Klein TJ. Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS One 2014;9:e113216. [PMID: 25438040 DOI: 10.1371/journal.pone.0113216] [Cited by in Crossref: 81] [Cited by in F6Publishing: 85] [Article Influence: 10.1] [Reference Citation Analysis]
173 Grenier S, Donnelly PE, Gittens J, Torzilli PA. Resurfacing damaged articular cartilage to restore compressive properties. J Biomech 2015;48:122-9. [PMID: 25468298 DOI: 10.1016/j.jbiomech.2014.10.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
174 Harrison RH, St-Pierre JP, Stevens MM. Tissue engineering and regenerative medicine: a year in review. Tissue Eng Part B Rev 2014;20:1-16. [PMID: 24410501 DOI: 10.1089/ten.TEB.2013.0668] [Cited by in Crossref: 88] [Cited by in F6Publishing: 81] [Article Influence: 11.0] [Reference Citation Analysis]
175 Suo H, Xu K, Zheng X. Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds. J Biomater Appl 2015;29:977-87. [DOI: 10.1177/0885328214551009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
176 Webber MJ, Khan OF, Sydlik SA, Tang BC, Langer R. A perspective on the clinical translation of scaffolds for tissue engineering. Ann Biomed Eng 2015;43:641-56. [PMID: 25201605 DOI: 10.1007/s10439-014-1104-7] [Cited by in Crossref: 108] [Cited by in F6Publishing: 106] [Article Influence: 13.5] [Reference Citation Analysis]
177 Ozdil D, Aydin HM. Polymers for medical and tissue engineering applications: Polymers for medical and tissue engineering applications. J Chem Technol Biotechnol 2014;89:1793-810. [DOI: 10.1002/jctb.4505] [Cited by in Crossref: 74] [Cited by in F6Publishing: 50] [Article Influence: 9.3] [Reference Citation Analysis]
178 Singh A, Corvelli M, Unterman SA, Wepasnick KA, McDonnell P, Elisseeff JH. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat Mater 2014;13:988-95. [PMID: 25087069 DOI: 10.1038/nmat4048] [Cited by in Crossref: 128] [Cited by in F6Publishing: 133] [Article Influence: 16.0] [Reference Citation Analysis]
179 Islam MR, Gao Y, Li X, Zhang QM, Wei M, Serpe MJ. Stimuli-responsive polymeric materials for human health applications. Chin Sci Bull 2014;59:4237-55. [DOI: 10.1007/s11434-014-0545-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
180 Moreira Teixeira LS, Patterson J, Luyten FP. Skeletal tissue regeneration: where can hydrogels play a role? Int Orthop 2014;38:1861-76. [PMID: 24968789 DOI: 10.1007/s00264-014-2402-2] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.5] [Reference Citation Analysis]
181 Jotz GP, da Luz Soster PR, Kunrath SO, Steffens D, Braghirolli DI, Zettler CG, Beck CA, Muccillo M, Lopes RFF, Mastella B, Pranke P. Mesenchymal stem cells and nanofibers as scaffolds for the regeneration of thyroid cartilage: The Regeneration of Thyroid Cartilage. The Laryngoscope 2014;124:E455-60. [DOI: 10.1002/lary.24805] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
182 Wei B, Jin C, Xu Y, Du X, Yan C, Tang C, Ansari M, Wang L. Chondrogenic differentiation of marrow clots after microfracture with BMSC-derived ECM scaffold in vitro. Tissue Eng Part A 2014;20:2646-55. [PMID: 24665837 DOI: 10.1089/ten.TEA.2013.0662] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
183 Chan KW, Liu G, van Zijl PC, Bulte JW, McMahon MT. Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. Biomaterials 2014;35:7811-8. [PMID: 24930848 DOI: 10.1016/j.biomaterials.2014.05.057] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
184 Chan KM, Li RH, Chapman JW, Trac EM, Kobler JB, Zeitels SM, Langer R, Karajanagi SS. Functionalizable hydrogel microparticles of tunable size and stiffness for soft-tissue filler applications. Acta Biomater 2014;10:2563-73. [PMID: 24561708 DOI: 10.1016/j.actbio.2014.02.021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
185 Guilak F, Butler DL, Goldstein SA, Baaijens FP. Biomechanics and mechanobiology in functional tissue engineering. J Biomech 2014;47:1933-40. [PMID: 24818797 DOI: 10.1016/j.jbiomech.2014.04.019] [Cited by in Crossref: 140] [Cited by in F6Publishing: 118] [Article Influence: 17.5] [Reference Citation Analysis]
186 Huang H, Zhang X, Hu X, Dai L, Zhu J, Man Z, Chen H, Zhou C, Ao Y. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering. Biomed Mater 2014;9:035008. [PMID: 24770944 DOI: 10.1088/1748-6041/9/3/035008] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
187 Wang R, Leber N, Buhl C, Verdonschot N, Dijkstra PJ, Karperien M. Cartilage adhesive and mechanical properties of enzymatically crosslinked polysaccharide tyramine conjugate hydrogels: CARTILAGE ADHESIVE POLYSACCHARIDE TYRAMINE CONJUGATE HYDROGELS. Polym Adv Technol 2014;25:568-74. [DOI: 10.1002/pat.3286] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
188 Lin H, Cheng AW, Alexander PG, Beck AM, Tuan RS. Cartilage tissue engineering application of injectable gelatin hydrogel with in situ visible-light-activated gelation capability in both air and aqueous solution. Tissue Eng Part A 2014;20:2402-11. [PMID: 24575844 DOI: 10.1089/ten.TEA.2013.0642] [Cited by in Crossref: 84] [Cited by in F6Publishing: 91] [Article Influence: 10.5] [Reference Citation Analysis]
189 Zhang W, Heng BC, Jiang Y, Ouyang H. Clinical translation of autologous cell-based tissue engineering techniques as Class III therapeutics in China: Taking cartilage tissue engineering as an example. Journal of Orthopaedic Translation 2014;2:56-65. [DOI: 10.1016/j.jot.2014.02.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
190 Perret D, Chang EY, Pang W, Shinada S, Panush RS. Reflecting on pain management for patients with osteoarthritis and other rheumatic disorders: there's more to pain management than managing pain. Pain Manag 2013;3:295-301. [PMID: 24654815 DOI: 10.2217/pmt.13.30] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
191 Sridhar BV, Doyle NR, Randolph MA, Anseth KS. Covalently tethered TGF-β1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J Biomed Mater Res A 2014;102:4464-72. [PMID: 24616326 DOI: 10.1002/jbm.a.35115] [Cited by in Crossref: 39] [Cited by in F6Publishing: 47] [Article Influence: 4.9] [Reference Citation Analysis]
192 Evans CH. Advances in regenerative orthopedics. Mayo Clin Proc 2013;88:1323-39. [PMID: 24182709 DOI: 10.1016/j.mayocp.2013.04.027] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
193 Jeon O, Samorezov JE, Alsberg E. Single and dual crosslinked oxidized methacrylated alginate/PEG hydrogels for bioadhesive applications. Acta Biomater 2014;10:47-55. [PMID: 24035886 DOI: 10.1016/j.actbio.2013.09.004] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 9.5] [Reference Citation Analysis]
194 Choi M, Choi JW, Kim S, Nizamoglu S, Hahn SK, Yun SH. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo.. Nat Photonics 2013;7:987-94. [PMID: 25346777 DOI: 10.1038/nphoton.2013.278] [Cited by in Crossref: 190] [Cited by in F6Publishing: 192] [Article Influence: 21.1] [Reference Citation Analysis]
195 Burdick JA, Mauck RL, Gorman JH 3rd, Gorman RC. Acellular biomaterials: an evolving alternative to cell-based therapies. Sci Transl Med 2013;5:176ps4. [PMID: 23486777 DOI: 10.1126/scitranslmed.3003997] [Cited by in Crossref: 89] [Cited by in F6Publishing: 89] [Article Influence: 9.9] [Reference Citation Analysis]
196 Moeinzadeh S, Barati D, Sarvestani SK, Karaman O, Jabbari E. Nanostructure formation and transition from surface to bulk degradation in polyethylene glycol gels chain-extended with short hydroxy acid segments. Biomacromolecules 2013;14:2917-28. [PMID: 23859006 DOI: 10.1021/bm4008315] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
197 Cully M. Adhesive-hydrogel composite developed to repair damaged cartilage. Nat Rev Rheumatol 2013;9:135-135. [DOI: 10.1038/nrrheum.2013.9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]