BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Alzayady KJ, Wang L, Chandrasekhar R, Wagner LE 2nd, Van Petegem F, Yule DI. Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release. Sci Signal. 2016;9:ra35. [PMID: 27048566 DOI: 10.1126/scisignal.aad6281] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 14.7] [Reference Citation Analysis]
Number Citing Articles
1 Roest G, La Rovere RM, Bultynck G, Parys JB. IP3 Receptor Properties and Function at Membrane Contact Sites. Adv Exp Med Biol 2017;981:149-78. [PMID: 29594861 DOI: 10.1007/978-3-319-55858-5_7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
2 Bustos G, Ahumada-Castro U, Silva-Pavez E, Puebla A, Lovy A, Cesar Cardenas J. The ER-mitochondria Ca2+ signaling in cancer progression: Fueling the monster. Int Rev Cell Mol Biol 2021;363:49-121. [PMID: 34392932 DOI: 10.1016/bs.ircmb.2021.03.006] [Reference Citation Analysis]
3 Ivanova H, Wagner LE 2nd, Tanimura A, Vandermarliere E, Luyten T, Welkenhuyzen K, Alzayady KJ, Wang L, Hamada K, Mikoshiba K, De Smedt H, Martens L, Yule DI, Parys JB, Bultynck G. Bcl-2 and IP3 compete for the ligand-binding domain of IP3Rs modulating Ca2+ signaling output. Cell Mol Life Sci 2019;76:3843-59. [PMID: 30989245 DOI: 10.1007/s00018-019-03091-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
4 Concepcion AR, Vaeth M, Wagner LE 2nd, Eckstein M, Hecht L, Yang J, Crottes D, Seidl M, Shin HP, Weidinger C, Cameron S, Turvey SE, Issekutz T, Meyts I, Lacruz RS, Cuk M, Yule DI, Feske S. Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function. J Clin Invest 2016;126:4303-18. [PMID: 27721237 DOI: 10.1172/JCI89056] [Cited by in Crossref: 49] [Cited by in F6Publishing: 34] [Article Influence: 8.2] [Reference Citation Analysis]
5 Lagos-Cabré R, Ivanova A, Taylor CW. Ca2+ Release by IP3 Receptors Is Required to Orient the Mitotic Spindle. Cell Rep 2020;33:108483. [PMID: 33326774 DOI: 10.1016/j.celrep.2020.108483] [Reference Citation Analysis]
6 Márquez-Nogueras KM, Hortua Triana MA, Chasen NM, Kuo IY, Moreno SN. Calcium signaling through a transient receptor channel is important for Toxoplasma gondii growth. Elife 2021;10:e63417. [PMID: 34106044 DOI: 10.7554/eLife.63417] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Bootman MD, Chehab T, Bultynck G, Parys JB, Rietdorf K. The regulation of autophagy by calcium signals: Do we have a consensus? Cell Calcium 2018;70:32-46. [PMID: 28847414 DOI: 10.1016/j.ceca.2017.08.005] [Cited by in Crossref: 111] [Cited by in F6Publishing: 104] [Article Influence: 22.2] [Reference Citation Analysis]
8 Taylor CW. Regulation of IP3 receptors by cyclic AMP. Cell Calcium 2017;63:48-52. [PMID: 27836216 DOI: 10.1016/j.ceca.2016.10.005] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 6.7] [Reference Citation Analysis]
9 Mataragka S, Taylor CW. All three IP3 receptor subtypes generate Ca2+ puffs, the universal building blocks of IP3-evoked Ca2+ signals. J Cell Sci 2018;131:jcs220848. [PMID: 30097556 DOI: 10.1242/jcs.220848] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
10 Thillaiappan NB, Smith HA, Atakpa-Adaji P, Taylor CW. KRAP tethers IP3 receptors to actin and licenses them to evoke cytosolic Ca2+ signals. Nat Commun 2021;12:4514. [PMID: 34301929 DOI: 10.1038/s41467-021-24739-9] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Parys JB, Bultynck G, Vervliet T. IP3 Receptor Biology and Endoplasmic Reticulum Calcium Dynamics in Cancer. Prog Mol Subcell Biol 2021;59:215-37. [PMID: 34050869 DOI: 10.1007/978-3-030-67696-4_11] [Reference Citation Analysis]
12 Thillaiappan NB, Chakraborty P, Hasan G, Taylor CW. IP3 receptors and Ca2+ entry. Biochim Biophys Acta Mol Cell Res 2019;1866:1092-100. [PMID: 30448464 DOI: 10.1016/j.bbamcr.2018.11.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
13 Wang L, Yule DI. Differential regulation of ion channels function by proteolysis. Biochim Biophys Acta Mol Cell Res 2018;1865:1698-706. [PMID: 30009861 DOI: 10.1016/j.bbamcr.2018.07.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
14 Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021;11:1831-69. [PMID: 33792900 DOI: 10.1002/cphy.c200030] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Su X, Dohle W, Mills SJ, Watt JM, Rossi AM, Taylor CW, Potter BVL. Inositol Adenophostin: Convergent Synthesis of a Potent Agonist of d-myo-Inositol 1,4,5-Trisphosphate Receptors. ACS Omega 2020;5:28793-811. [PMID: 33195933 DOI: 10.1021/acsomega.0c04145] [Reference Citation Analysis]
16 Wang JB, Gu Y, Zhang MX, Yang S, Wang Y, Wang W, Li XR, Zhao YT, Wang HT. High expression of type I inositol 1,4,5-trisphosphate receptor in the kidney of rats with hepatorenal syndrome. World J Gastroenterol 2018; 24(29): 3273-3280 [PMID: 30090007 DOI: 10.3748/wjg.v24.i29.3273] [Reference Citation Analysis]
17 Berridge MJ. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiological Reviews 2016;96:1261-96. [DOI: 10.1152/physrev.00006.2016] [Cited by in Crossref: 267] [Cited by in F6Publishing: 232] [Article Influence: 44.5] [Reference Citation Analysis]
18 Wang L, Wagner LE 2nd, Alzayady KJ, Yule DI. Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity. J Biol Chem. 2017;292:11714-11726. [PMID: 28526746 DOI: 10.1074/jbc.m117.789917] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.6] [Reference Citation Analysis]
19 Rosa N, Shabardina V, Ivanova H, Sebé-Pedrós A, Yule DI, Bultynck G. Tracing the evolutionary history of Ca2+-signaling modulation by human Bcl-2: Insights from the Capsaspora owczarzaki IP3 receptor ortholog. Biochim Biophys Acta Mol Cell Res 2021;1868:119121. [PMID: 34400171 DOI: 10.1016/j.bbamcr.2021.119121] [Reference Citation Analysis]
20 Concepcion AR, Feske S. Regulation of epithelial ion transport in exocrine glands by store-operated Ca2+ entry. Cell Calcium 2017;63:53-9. [PMID: 28027799 DOI: 10.1016/j.ceca.2016.12.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
21 Thillaiappan NB, Chavda AP, Tovey SC, Prole DL, Taylor CW. Ca2+ signals initiate at immobile IP3 receptors adjacent to ER-plasma membrane junctions. Nat Commun 2017;8:1505. [PMID: 29138405 DOI: 10.1038/s41467-017-01644-8] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 13.8] [Reference Citation Analysis]
22 Lock JT, Parker I. IP3 mediated global Ca2+ signals arise through two temporally and spatially distinct modes of Ca2+ release. Elife 2020;9:e55008. [PMID: 32396066 DOI: 10.7554/eLife.55008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
23 Leybaert L. IP3, still on the move but now in the slow lane. Sci Signal 2016;9:fs17. [PMID: 27919025 DOI: 10.1126/scisignal.aal1929] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
24 Bicknell BA, Goodhill GJ. Emergence of ion channel modal gating from independent subunit kinetics. Proc Natl Acad Sci U S A 2016;113:E5288-97. [PMID: 27551100 DOI: 10.1073/pnas.1604090113] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
25 Yamashita M, Takenoya F, Hirabayashi T, Shibato J, Rakwal R, Takasaki I, Harvey BJ, Chiba Y, Shioda S. Effect of PACAP on sweat secretion by immortalized human sweat gland cells. Peptides 2021;146:170647. [PMID: 34562532 DOI: 10.1016/j.peptides.2021.170647] [Reference Citation Analysis]
26 Wojcikiewicz RJH. The Making and Breaking of Inositol 1,4,5-Trisphosphate Receptor Tetramers. Messenger (Los Angel) 2018;6:45-9. [PMID: 30581688 DOI: 10.1166/msr.2018.1073] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
27 Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Shipton ML, Riley AM, Rossi AM, Brearley CA, Taylor CW, Potter BVL. Both d- and l-Glucose Polyphosphates Mimic d-myo-Inositol 1,4,5-Trisphosphate: New Synthetic Agonists and Partial Agonists at the Ins(1,4,5)P3 Receptor. J Med Chem 2020;63:5442-57. [PMID: 32286062 DOI: 10.1021/acs.jmedchem.0c00215] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Jang H, Suh P, Lee YJ, Shin KJ, Cocco L, Chae YC. PLCγ1: Potential arbitrator of cancer progression. Advances in Biological Regulation 2018;67:179-89. [DOI: 10.1016/j.jbior.2017.11.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
30 Lemos FO, Florentino RM, Lima Filho ACM, Santos MLD, Leite MF. Inositol 1,4,5-trisphosphate receptor in the liver: Expression and function. World J Gastroenterol 2019; 25(44): 6483-6494 [PMID: 31802829 DOI: 10.3748/wjg.v25.i44.6483] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
31 Joseph SK, Young MP, Alzayady K, Yule DI, Ali M, Booth DM, Hajnóczky G. Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells. J Biol Chem 2018;293:17464-76. [PMID: 30228182 DOI: 10.1074/jbc.RA118.005624] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
32 Pierro C, Sneyers F, Bultynck G, Roderick HL. ER Ca2+ release and store-operated Ca2+ entry - partners in crime or independent actors in oncogenic transformation? Cell Calcium 2019;82:102061. [PMID: 31394337 DOI: 10.1016/j.ceca.2019.102061] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
33 Keebler MV, Taylor CW. Endogenous signalling pathways and caged IP3 evoke Ca2+ puffs at the same abundant immobile intracellular sites. J Cell Sci. 2017;130:3728-3739. [PMID: 28893841 DOI: 10.1242/jcs.208520] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
34 Taylor CW, Konieczny V. IP3 receptors: Take four IP3 to open. Sci Signal 2016;9:pe1. [PMID: 27048564 DOI: 10.1126/scisignal.aaf6029] [Cited by in Crossref: 46] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
35 Wang L, Wagner LE 2nd, Alzayady KJ, Yule DI. Region-specific proteolysis differentially modulates type 2 and type 3 inositol 1,4,5-trisphosphate receptor activity in models of acute pancreatitis. J Biol Chem 2018;293:13112-24. [PMID: 29970616 DOI: 10.1074/jbc.RA118.003421] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Zeng FS, Menardo F, Xue MF, Zhang XJ, Gong SJ, Yang LJ, Shi WQ, Yu DZ. Transcriptome Analyses Shed New Insights into Primary Metabolism and Regulation of Blumeria graminis f. sp. tritici during Conidiation. Front Plant Sci 2017;8:1146. [PMID: 28713408 DOI: 10.3389/fpls.2017.01146] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
37 Ellefsen KL, Lock JT, Settle B, Karsten CA, Parker I. Applications of FLIKA, a Python-based image processing and analysis platform, for studying local events of cellular calcium signaling. Biochim Biophys Acta Mol Cell Res 2019;1866:1171-9. [PMID: 30500432 DOI: 10.1016/j.bbamcr.2018.11.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
38 Kerkhofs M, Seitaj B, Ivanova H, Monaco G, Bultynck G, Parys JB. Pathophysiological consequences of isoform-specific IP3 receptor mutations. Biochim Biophys Acta Mol Cell Res 2018;1865:1707-17. [PMID: 29906486 DOI: 10.1016/j.bbamcr.2018.06.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
39 Ando H, Hirose M, Mikoshiba K. Aberrant IP3 receptor activities revealed by comprehensive analysis of pathological mutations causing spinocerebellar ataxia 29. Proc Natl Acad Sci U S A 2018;115:12259-64. [PMID: 30429331 DOI: 10.1073/pnas.1811129115] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
40 Wacquier B, Voorsluijs V, Combettes L, Dupont G. Coding and decoding of oscillatory Ca2+ signals. Semin Cell Dev Biol 2019;94:11-9. [PMID: 30659886 DOI: 10.1016/j.semcdb.2019.01.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
41 Riley AM, Unterlass J, Konieczny V, Taylor CW, Helleday T, Potter BVL. A synthetic diphosphoinositol phosphate analogue of inositol trisphosphate. Medchemcomm 2018;9:1105-13. [PMID: 30079174 DOI: 10.1039/C8MD00149A] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
42 Rossi AM, Riley AM, Dupont G, Rahman T, Potter BVL, Taylor CW. Quantal Ca2+ release mediated by very few IP3 receptors that rapidly inactivate allows graded responses to IP3. Cell Rep 2021;37:109932. [PMID: 34731613 DOI: 10.1016/j.celrep.2021.109932] [Reference Citation Analysis]
43 Rosa N, Sneyers F, Parys JB, Bultynck G. Type 3 IP3 receptors: The chameleon in cancer. Int Rev Cell Mol Biol 2020;351:101-48. [PMID: 32247578 DOI: 10.1016/bs.ircmb.2020.02.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
44 Sharma A, Hasan G. Modulation of flight and feeding behaviours requires presynaptic IP3Rs in dopaminergic neurons. Elife 2020;9:e62297. [PMID: 33155978 DOI: 10.7554/eLife.62297] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
45 Lunghi G, Fazzari M, Di Biase E, Mauri L, Sonnino S, Chiricozzi E. Modulation of calcium signaling depends on the oligosaccharide of GM1 in Neuro2a mouse neuroblastoma cells. Glycoconj J 2020;37:713-27. [PMID: 33201378 DOI: 10.1007/s10719-020-09963-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Zhai X, Sterea AM, Hiani YE. Lessons from the Endoplasmic Reticulum Ca2+ Transporters-A Cancer Connection. Cells 2020;9:E1536. [PMID: 32599788 DOI: 10.3390/cells9061536] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
47 Lemos FO, Bultynck G, Parys JB. A comprehensive overview of the complex world of the endo- and sarcoplasmic reticulum Ca2+-leak channels. Biochim Biophys Acta Mol Cell Res 2021;1868:119020. [PMID: 33798602 DOI: 10.1016/j.bbamcr.2021.119020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
48 Szczesniak LM, Bonzerato CG, Schulman JJ, Bah A, Wojcikiewicz RJH. Bok binds to a largely disordered loop in the coupling domain of type 1 inositol 1,4,5-trisphosphate receptor. Biochem Biophys Res Commun 2021;553:180-6. [PMID: 33773141 DOI: 10.1016/j.bbrc.2021.03.047] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Lee JH, Kang M, Park S, Perez-Flores MC, Zhang XD, Wang W, Gratton MA, Chiamvimonvat N, Yamoah EN. The local translation of KNa in dendritic projections of auditory neurons and the roles of KNa in the transition from hidden to overt hearing loss. Aging (Albany NY) 2019;11:11541-64. [PMID: 31812952 DOI: 10.18632/aging.102553] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
50 Alzugaray ME, Gavazzi MV, Ronderos JR. G protein-coupled receptor signal transduction and Ca2+ signaling pathways of the allatotropin/orexin system in Hydra. Gen Comp Endocrinol 2021;300:113637. [PMID: 33017583 DOI: 10.1016/j.ygcen.2020.113637] [Reference Citation Analysis]
51 Arige V, Terry LE, Malik S, Knebel TR, Wagner Ii LE, Yule DI. CREB regulates the expression of type 1 inositol 1,4,5-trisphosphate receptors. J Cell Sci 2021;134:jcs258875. [PMID: 34533188 DOI: 10.1242/jcs.258875] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Radzik T, Boczek T, Ferenc B, Studzian M, Pulaski L, Zylinska L. Calcium Dyshomeostasis Alters CCL5 Signaling in Differentiated PC12 Cells. Biomed Res Int 2019;2019:9616248. [PMID: 31032369 DOI: 10.1155/2019/9616248] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
53 Terry LE, Alzayady KJ, Wahl AM, Malik S, Yule DI. Disease-associated mutations in inositol 1,4,5-trisphosphate receptor subunits impair channel function. J Biol Chem 2020;295:18160-78. [PMID: 33093175 DOI: 10.1074/jbc.RA120.015683] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
54 Filadi R, Leal NS, Schreiner B, Rossi A, Dentoni G, Pinho CM, Wiehager B, Cieri D, Calì T, Pizzo P, Ankarcrona M. TOM70 Sustains Cell Bioenergetics by Promoting IP3R3-Mediated ER to Mitochondria Ca2+ Transfer. Curr Biol 2018;28:369-382.e6. [PMID: 29395920 DOI: 10.1016/j.cub.2017.12.047] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 14.0] [Reference Citation Analysis]
55 Montes de Oca Balderas P, Montes de Oca Balderas H. Synaptic neuron-astrocyte communication is supported by an order of magnitude analysis of inositol tris-phosphate diffusion at the nanoscale in a model of peri-synaptic astrocyte projection. BMC Biophys 2018;11:3. [PMID: 29456837 DOI: 10.1186/s13628-018-0043-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
56 Young MP, Schug ZT, Booth DM, Yule DI, Mikoshiba K, Hajnόczky G, Joseph SK. Metabolic adaptation to the chronic loss of Ca2+ signaling induced by KO of IP3 receptors or the mitochondrial Ca2+ uniporter. J Biol Chem 2021;298:101436. [PMID: 34801549 DOI: 10.1016/j.jbc.2021.101436] [Reference Citation Analysis]
57 Rossi AM, Taylor CW. IP3 receptors – lessons from analyses ex cellula. Journal of Cell Science 2019;132:jcs222463. [DOI: 10.1242/jcs.222463] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
58 Fan G, Baker MR, Wang Z, Seryshev AB, Ludtke SJ, Baker ML, Serysheva II. Cryo-EM reveals ligand induced allostery underlying InsP3R channel gating. Cell Res 2018;28:1158-70. [PMID: 30470765 DOI: 10.1038/s41422-018-0108-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
59 Lee YJ, Shin KJ, Jang HJ, Noh DY, Ryu SH, Suh PG. Phospholipase Signaling in Breast Cancer. Adv Exp Med Biol 2021;1187:23-52. [PMID: 33983572 DOI: 10.1007/978-981-32-9620-6_2] [Reference Citation Analysis]
60 Dohle W, Su X, Mills SJ, Rossi AM, Taylor CW, Potter BVL. A synthetic cyclitol-nucleoside conjugate polyphosphate is a highly potent second messenger mimic. Chem Sci 2019;10:5382-90. [PMID: 31171961 DOI: 10.1039/C9SC00445A] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
61 Atakpa P, Thillaiappan NB, Mataragka S, Prole DL, Taylor CW. IP3 Receptors Preferentially Associate with ER-Lysosome Contact Sites and Selectively Deliver Ca2+ to Lysosomes. Cell Rep 2018;25:3180-3193.e7. [PMID: 30540949 DOI: 10.1016/j.celrep.2018.11.064] [Cited by in Crossref: 70] [Cited by in F6Publishing: 68] [Article Influence: 23.3] [Reference Citation Analysis]
62 Emrich SM, Yoast RE, Xin P, Arige V, Wagner LE, Hempel N, Gill DL, Sneyd J, Yule DI, Trebak M. Omnitemporal choreographies of all five STIM/Orai and IP3Rs underlie the complexity of mammalian Ca2+ signaling. Cell Rep 2021;34:108760. [PMID: 33657364 DOI: 10.1016/j.celrep.2021.108760] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
63 Ahumada-Castro U, Bustos G, Silva-Pavez E, Puebla-Huerta A, Lovy A, Cárdenas C. In the Right Place at the Right Time: Regulation of Cell Metabolism by IP3R-Mediated Inter-Organelle Ca2+ Fluxes. Front Cell Dev Biol 2021;9:629522. [PMID: 33738285 DOI: 10.3389/fcell.2021.629522] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Joseph SK, Booth DM, Young MP, Hajnóczky G. Redox regulation of ER and mitochondrial Ca2+ signaling in cell survival and death. Cell Calcium 2019;79:89-97. [PMID: 30889512 DOI: 10.1016/j.ceca.2019.02.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
65 Lock JT, Alzayady KJ, Yule DI, Parker I. All three IP3 receptor isoforms generate Ca2+ puffs that display similar characteristics. Sci Signal 2018;11:eaau0344. [PMID: 30563861 DOI: 10.1126/scisignal.aau0344] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
66 Prole DL, Taylor CW. Structure and Function of IP3 Receptors. Cold Spring Harb Perspect Biol 2019;11:a035063. [PMID: 30745293 DOI: 10.1101/cshperspect.a035063] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 16.3] [Reference Citation Analysis]
67 Vibhute AM, Pushpanandan P, Varghese M, Koniecnzy V, Taylor CW, Sureshan KM. Synthesis of dimeric analogs of adenophostin A that potently evoke Ca2+ release through IP3 receptors. RSC Adv 2016;6:86346-51. [PMID: 28066549 DOI: 10.1039/c6ra19413c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
68 Taylor CW, Machaca K. IP3 receptors and store-operated Ca2+ entry: a license to fill. Current Opinion in Cell Biology 2019;57:1-7. [DOI: 10.1016/j.ceb.2018.10.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
69 Zhang X, Huang R, Zhou Y, Zhou W, Zeng X. IP3R Channels in Male Reproduction. Int J Mol Sci 2020;21:E9179. [PMID: 33276427 DOI: 10.3390/ijms21239179] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
70 Rosa N, Ivanova H, Wagner LE 2nd, Kale J, La Rovere R, Welkenhuyzen K, Louros N, Karamanou S, Shabardina V, Lemmens I, Vandermarliere E, Hamada K, Ando H, Rousseau F, Schymkowitz J, Tavernier J, Mikoshiba K, Economou A, Andrews DW, Parys JB, Yule DI, Bultynck G. Bcl-xL acts as an inhibitor of IP3R channels, thereby antagonizing Ca2+-driven apoptosis. Cell Death Differ 2021. [PMID: 34750538 DOI: 10.1038/s41418-021-00894-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Dickinson GD, Ellefsen KL, Dawson SP, Pearson JE, Parker I. Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action. Sci Signal 2016;9:ra108. [PMID: 27919026 DOI: 10.1126/scisignal.aag1625] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 6.3] [Reference Citation Analysis]
72 Toprak U, Doğan C, Hegedus D. A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021;11:1031. [PMID: 34356655 DOI: 10.3390/biom11071031] [Reference Citation Analysis]
73 Stein P, Savy V, Williams AM, Williams CJ. Modulators of calcium signalling at fertilization. Open Biol 2020;10:200118. [PMID: 32673518 DOI: 10.1098/rsob.200118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
74 Wright FA, Bonzerato CG, Sliter DA, Wojcikiewicz RJH. The erlin2 T65I mutation inhibits erlin1/2 complex-mediated inositol 1,4,5-trisphosphate receptor ubiquitination and phosphatidylinositol 3-phosphate binding. J Biol Chem 2018;293:15706-14. [PMID: 30135210 DOI: 10.1074/jbc.RA118.004547] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
75 Loncke J, Vervliet T, Parys JB, Kaasik A, Bultynck G. Uniting the divergent Wolfram syndrome-linked proteins WFS1 and CISD2 as modulators of Ca2+ signaling. Sci Signal 2021;14:eabc6165. [PMID: 34582248 DOI: 10.1126/scisignal.abc6165] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
76 Bittremieux M, Gerasimenko JV, Schuermans M, Luyten T, Stapleton E, Alzayady KJ, De Smedt H, Yule DI, Mikoshiba K, Vangheluwe P, Gerasimenko OV, Parys JB, Bultynck G. DPB162-AE, an inhibitor of store-operated Ca2+ entry, can deplete the endoplasmic reticulum Ca2+ store. Cell Calcium 2017;62:60-70. [PMID: 28196740 DOI: 10.1016/j.ceca.2017.01.015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
77 Lock JT, Smith IF, Parker I. Spatial-temporal patterning of Ca2+ signals by the subcellular distribution of IP3 and IP3 receptors. Semin Cell Dev Biol 2019;94:3-10. [PMID: 30703557 DOI: 10.1016/j.semcdb.2019.01.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
78 Booth DM, Várnai P, Joseph SK, Hajnóczky G. Oxidative bursts of single mitochondria mediate retrograde signaling toward the ER. Mol Cell 2021:S1097-2765(21)00583-9. [PMID: 34352204 DOI: 10.1016/j.molcel.2021.07.014] [Reference Citation Analysis]
79 Enomoto M, Nishikawa T, Siddiqui N, Chung S, Ikura M, Stathopulos PB. From Stores to Sinks: Structural Mechanisms of Cytosolic Calcium Regulation. Adv Exp Med Biol 2017;981:215-51. [PMID: 29594864 DOI: 10.1007/978-3-319-55858-5_10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
80 Ivanova H, Vervliet T, Monaco G, Terry LE, Rosa N, Baker MR, Parys JB, Serysheva II, Yule DI, Bultynck G. Bcl-2-Protein Family as Modulators of IP3 Receptors and Other Organellar Ca2+ Channels. Cold Spring Harb Perspect Biol 2020;12:a035089. [PMID: 31501195 DOI: 10.1101/cshperspect.a035089] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
81 Parys JB, Vervliet T. New Insights in the IP3 Receptor and Its Regulation. Adv Exp Med Biol 2020;1131:243-70. [PMID: 31646513 DOI: 10.1007/978-3-030-12457-1_10] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
82 Atakpa P, van Marrewijk LM, Apta-Smith M, Chakraborty S, Taylor CW. GPN does not release lysosomal Ca2+ but evokes Ca2+ release from the ER by increasing the cytosolic pH independently of cathepsin C. J Cell Sci 2019;132:jcs223883. [PMID: 30617110 DOI: 10.1242/jcs.223883] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
83 Ye L, Zeng Q, Ling M, Ma R, Chen H, Lin F, Li Z, Pan L. Inhibition of IP3R/Ca2+ Dysregulation Protects Mice From Ventilator-Induced Lung Injury via Endoplasmic Reticulum and Mitochondrial Pathways. Front Immunol 2021;12:729094. [PMID: 34603302 DOI: 10.3389/fimmu.2021.729094] [Reference Citation Analysis]
84 Luyten T, Welkenhuyzen K, Roest G, Kania E, Wang L, Bittremieux M, Yule DI, Parys JB, Bultynck G. Resveratrol-induced autophagy is dependent on IP3Rs and on cytosolic Ca2. Biochim Biophys Acta Mol Cell Res 2017;1864:947-56. [PMID: 28254579 DOI: 10.1016/j.bbamcr.2017.02.013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]