BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: . Pharmacological activation of STING blocks SARS-CoV-2 infection. Sci Immunol 2021;6:eabi9007. [PMID: 34010142 DOI: 10.1126/sciimmunol.abi9007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhou H, Møhlenberg M, Thakor JC, Tuli HS, Wang P, Assaraf YG, Dhama K, Jiang S. Sensitivity to Vaccines, Therapeutic Antibodies, and Viral Entry Inhibitors and Advances To Counter the SARS-CoV-2 Omicron Variant. Clin Microbiol Rev. [DOI: 10.1128/cmr.00014-22] [Reference Citation Analysis]
2 Christie MJ, Irving AT, Forster SC, Marsland BJ, Hansbro PM, Hertzog PJ, Nold-Petry CA, Nold MF. Of bats and men: Immunomodulatory treatment options for COVID-19 guided by the immunopathology of SARS-CoV-2 infection. Sci Immunol 2021;6:eabd0205. [PMID: 34533977 DOI: 10.1126/sciimmunol.abd0205] [Reference Citation Analysis]
3 Yusuf AP, Zhang J, Li J, Muhammad A, Abubakar MB. Herbal medications and natural products for patients with covid-19 and diabetes mellitus: potentials and challenges. Phytomedicine Plus 2022. [DOI: 10.1016/j.phyplu.2022.100280] [Reference Citation Analysis]
4 Yanase Y, Tsuji G, Nakamura M, Shibata N, Demizu Y. Control of STING Agonistic/Antagonistic Activity Using Amine-Skeleton-Based c-di-GMP Analogues. Int J Mol Sci 2022;23:6847. [PMID: 35743289 DOI: 10.3390/ijms23126847] [Reference Citation Analysis]
5 Hulme KD, Noye EC, Short KR, Labzin LI. Dysregulated Inflammation During Obesity: Driving Disease Severity in Influenza Virus and SARS-CoV-2 Infections. Front Immunol 2021;12:770066. [PMID: 34777390 DOI: 10.3389/fimmu.2021.770066] [Reference Citation Analysis]
6 Xue A, Shang Y, Jiao P, Zhang S, Zhu C, He X, Feng G, Fan S. Increased activation of cGAS‐STING pathway enhances radiosensitivity of non‐small cell lung cancer cells. Thoracic Cancer. [DOI: 10.1111/1759-7714.14400] [Reference Citation Analysis]
7 Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol 2022;23:165-76. [PMID: 35105981 DOI: 10.1038/s41590-021-01091-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 29.0] [Reference Citation Analysis]
8 Paludan SR, Mogensen TH. Innate immunological pathways in COVID-19 pathogenesis. Sci Immunol 2022;7:eabm5505. [PMID: 34995097 DOI: 10.1126/sciimmunol.abm5505] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 17.0] [Reference Citation Analysis]
9 Li H, Zhou F, Zhang L. STING, a critical contributor to SARS-CoV-2 immunopathology. Signal Transduct Target Ther 2022;7:106. [PMID: 35354788 DOI: 10.1038/s41392-022-00967-3] [Reference Citation Analysis]
10 Madden EA, Diamond MS. Host cell-intrinsic innate immune recognition of SARS-CoV-2. Curr Opin Virol 2021;52:30-8. [PMID: 34814102 DOI: 10.1016/j.coviro.2021.11.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
11 Gao KM, Motwani M, Tedder T, Marshak-Rothstein A, Fitzgerald KA. Radioresistant cells initiate lymphocyte-dependent lung inflammation and IFNγ-dependent mortality in STING gain-of-function mice. Proc Natl Acad Sci U S A 2022;119:e2202327119. [PMID: 35696583 DOI: 10.1073/pnas.2202327119] [Reference Citation Analysis]
12 Hiroki CH, Sarden N, Hassanabad MF, Yipp BG. Innate Receptors Expression by Lung Nociceptors: Impact on COVID-19 and Aging. Front Immunol 2021;12:785355. [PMID: 34975876 DOI: 10.3389/fimmu.2021.785355] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Mao T, Israelow B, Lucas C, Vogels CBF, Gomez-Calvo ML, Fedorova O, Breban MI, Menasche BL, Dong H, Linehan M, Wilen CB, Landry ML, Grubaugh ND, Pyle AM, Iwasaki A; Yale SARS-CoV-2 Genome Surveillance Initiative. A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice. J Exp Med 2022;219:e20211818. [PMID: 34757384 DOI: 10.1084/jem.20211818] [Reference Citation Analysis]
14 . A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection. Sci Immunol 2021;6:eabi9002. [PMID: 34010139 DOI: 10.1126/sciimmunol.abi9002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
15 Guerini D. STING Agonists/Antagonists: Their Potential as Therapeutics and Future Developments. Cells 2022;11:1159. [PMID: 35406723 DOI: 10.3390/cells11071159] [Reference Citation Analysis]
16 White JM, Schiffer JT, Bender Ignacio RA, Xu S, Kainov D, Ianevski A, Aittokallio T, Frieman M, Olinger GG, Polyak SJ, Prasad VR. Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. mBio 2021;12:e03347-21. [DOI: 10.1128/mbio.03347-21] [Reference Citation Analysis]
17 Cai C, Tang YD, Xu G, Zheng C. The crosstalk between viral RNA- and DNA-sensing mechanisms. Cell Mol Life Sci 2021. [PMID: 34714359 DOI: 10.1007/s00018-021-04001-7] [Reference Citation Analysis]
18 Zhou Z, Zhang X, Lei X, Xiao X, Jiao T, Ma R, Dong X, Jiang Q, Wang W, Shi Y, Zheng T, Rao J, Xiang Z, Ren L, Deng T, Jiang Z, Dou Z, Wei W, Wang J. Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection. Signal Transduct Target Ther 2021;6:382. [PMID: 34732709 DOI: 10.1038/s41392-021-00800-3] [Reference Citation Analysis]
19 Spitalieri P, Centofanti F, Murdocca M, Scioli MG, Latini A, Di Cesare S, Citro G, Rossi A, Orlandi A, Miersch S, Sidhu SS, Pandolfi PP, Botta A, Sangiuolo F, Novelli G. Two Different Therapeutic Approaches for SARS-CoV-2 in hiPSCs-Derived Lung Organoids. Cells 2022;11:1235. [PMID: 35406799 DOI: 10.3390/cells11071235] [Reference Citation Analysis]
20 Karki R, Lee S, Mall R, Pandian N, Wang Y, Sharma BR, Malireddi RS, Yang D, Trifkovic S, Steele JA, Connelly JP, Vishwanath G, Sasikala M, Reddy DN, Vogel P, Pruett-Miller SM, Webby R, Jonsson CB, Kanneganti TD. ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci Immunol 2022;:eabo6294. [PMID: 35587515 DOI: 10.1126/sciimmunol.abo6294] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Gu R, Mao T, Lu Q, Tianjiao Su T, Wang J. Myeloid dysregulation and therapeutic intervention in COVID-19. Semin Immunol 2021;55:101524. [PMID: 34823995 DOI: 10.1016/j.smim.2021.101524] [Reference Citation Analysis]
22 McKenna E, Wubben R, Isaza-Correa JM, Melo AM, Mhaonaigh AU, Conlon N, O'Donnell JS, Ní Cheallaigh C, Hurley T, Stevenson NJ, Little MA, Molloy EJ. Neutrophils in COVID-19: Not Innocent Bystanders. Front Immunol 2022;13:864387. [PMID: 35720378 DOI: 10.3389/fimmu.2022.864387] [Reference Citation Analysis]
23 Madiraju C, Novack JP, Reed JC, Matsuzawa SI. K63 ubiquitination in immune signaling. Trends Immunol 2022:S1471-4906(21)00263-5. [PMID: 35033428 DOI: 10.1016/j.it.2021.12.005] [Reference Citation Analysis]
24 Wong LR, Perlman S. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses - are we our own worst enemy? Nat Rev Immunol 2021. [PMID: 34837062 DOI: 10.1038/s41577-021-00656-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]