BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qiao J, Li YS, Zeng R, Liu FL, Luo RH, Huang C, Wang YF, Zhang J, Quan B, Shen C, Mao X, Liu X, Sun W, Yang W, Ni X, Wang K, Xu L, Duan ZL, Zou QC, Zhang HL, Qu W, Long YH, Li MH, Yang RC, Liu X, You J, Zhou Y, Yao R, Li WP, Liu JM, Chen P, Liu Y, Lin GF, Yang X, Zou J, Li L, Hu Y, Lu GW, Li WM, Wei YQ, Zheng YT, Lei J, Yang S. SARS-CoV-2 Mpro inhibitors with antiviral activity in a transgenic mouse model. Science 2021;371:1374-8. [PMID: 33602867 DOI: 10.1126/science.abf1611] [Cited by in Crossref: 42] [Cited by in F6Publishing: 143] [Article Influence: 42.0] [Reference Citation Analysis]
Number Citing Articles
1 Elagawany M, Elmaaty AA, Mostafa A, Abo Shama NM, Santali EY, Elgendy B, Al-Karmalawy AA. Ligand-based design, synthesis, computational insights, and in vitro studies of novel N-(5-Nitrothiazol-2-yl)-carboxamido derivatives as potent inhibitors of SARS-CoV-2 main protease. J Enzyme Inhib Med Chem 2022;37:2112-32. [PMID: 35912578 DOI: 10.1080/14756366.2022.2105322] [Reference Citation Analysis]
2 Chaves OA, Lima CR, Fintelman-rodrigues N, Sacramento CQ, de Freitas CS, Vazquez L, Temerozo JR, Rocha ME, Dias SS, Carels N, Bozza PT, Castro-faria-neto HC, Souza TML. Agathisflavone, a natural biflavonoid that inhibits SARS-CoV-2 replication by targeting its proteases. International Journal of Biological Macromolecules 2022;222:1015-26. [DOI: 10.1016/j.ijbiomac.2022.09.204] [Reference Citation Analysis]
3 Cooper MS, Zhang L, Ibrahim M, Zhang K, Sun X, Röske J, Göhl M, Brönstrup M, Cowell JK, Sauerhering L, Becker S, Vangeel L, Jochmans D, Neyts J, Rox K, Marsh GP, Maple HJ, Hilgenfeld R. Diastereomeric Resolution Yields Highly Potent Inhibitor of SARS-CoV-2 Main Protease. J Med Chem 2022. [PMID: 36179320 DOI: 10.1021/acs.jmedchem.2c01131] [Reference Citation Analysis]
4 La Monica G, Bono A, Lauria A, Martorana A. Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives. J Med Chem 2022. [PMID: 36169610 DOI: 10.1021/acs.jmedchem.2c01005] [Reference Citation Analysis]
5 Awoonor-Williams E. Estimating the binding energetics of reversible covalent inhibitors of the SARS-CoV-2 main protease: an in silico study. Phys Chem Chem Phys 2022. [PMID: 36128834 DOI: 10.1039/d2cp03080b] [Reference Citation Analysis]
6 Gao S, Sylvester K, Song L, Claff T, Jing L, Woodson M, Weiße RH, Cheng Y, Schäkel L, Petry M, Gütschow M, Schiedel AC, Sträter N, Kang D, Xu S, Toth K, Tavis J, Tollefson AE, Müller CE, Liu X, Zhan P. Discovery and Crystallographic Studies of Trisubstituted Piperazine Derivatives as Non-Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity and Low Toxicity. J Med Chem . [DOI: 10.1021/acs.jmedchem.2c01146] [Reference Citation Analysis]
7 Rajan M, Prabhakaran S, Prusty JS, Chauhan N, Gupta P, Kumar A. Phytochemicals of Cocculus hirsutus deciphered SARS-CoV-2 inhibition by targeting main proteases in molecular docking, simulation, and pharmacological analyses. J Biomol Struct Dyn 2022;:1-15. [PMID: 36099182 DOI: 10.1080/07391102.2022.2121758] [Reference Citation Analysis]
8 Nepali K, Sharma R, Sharma S, Thakur A, Liou JP. Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. J Biomed Sci 2022;29:65. [PMID: 36064696 DOI: 10.1186/s12929-022-00847-6] [Reference Citation Analysis]
9 Qin G, Zhao C, Liu Y, Zhang C, Yang G, Yang J, Wang Z, Wang C, Tu C, Guo Z, Ren J, Qu X. RNA G-quadruplex formed in SARS-CoV-2 used for COVID-19 treatment in animal models. Cell Discov 2022;8:86. [PMID: 36068208 DOI: 10.1038/s41421-022-00450-x] [Reference Citation Analysis]
10 Negru PA, Miculas DC, Behl T, Bungau AF, Marin R, Bungau SG. Virtual screening of substances used in the treatment of SARS-CoV-2 infection and analysis of compounds with known action on structurally similar proteins from other viruses. Biomedicine & Pharmacotherapy 2022;153:113432. [DOI: 10.1016/j.biopha.2022.113432] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, Huang P, Ge GB. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm (2020) 2022;3:e151. [PMID: 35845352 DOI: 10.1002/mco2.151] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Halimi M, Bararpour P. Natural inhibitors of SARS-CoV-2 main protease: structure based pharmacophore modeling, molecular docking and molecular dynamic simulation studies. J Mol Model 2022;28. [DOI: 10.1007/s00894-022-05286-6] [Reference Citation Analysis]
13 Ravanfar R, Sheng Y, Shahgholi M, Lomenick B, Jones J, Chou T, Gray HB, Winkler JR. Surface cysteines could protect the SARS-CoV-2 main protease from oxidative damage. Journal of Inorganic Biochemistry 2022;234:111886. [DOI: 10.1016/j.jinorgbio.2022.111886] [Reference Citation Analysis]
14 Yorur Goreci C. Synthesis and comparative spectroscopic studies, HOMO–LUMO analysis and molecular docking studies of 3,3′-(1,4-phenylene)bis[2-(6-chloropyridin-3-yl)prop‑2-enenitrile] based on DFT. Journal of Molecular Structure 2022;1263:133149. [DOI: 10.1016/j.molstruc.2022.133149] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Boike L, Henning NJ, Nomura DK. Advances in covalent drug discovery. Nat Rev Drug Discov 2022. [PMID: 36008483 DOI: 10.1038/s41573-022-00542-z] [Reference Citation Analysis]
16 Liang X, Xiao J, Li X, Liu Y, Lu Y, Wen Y, Li Z, Che X, Ma Y, Zhang X, Zhang Y, Jian D, Wang P, Xuan C, Yu G, Li L, Zhang H. A C-terminal glutamine recognition mechanism revealed by E3 ligase TRIM7 structures. Nat Chem Biol 2022. [PMID: 35982226 DOI: 10.1038/s41589-022-01128-x] [Reference Citation Analysis]
17 Cotrim BA, Barros JC, Hutton C. Development and patent synthesis of nirmatrelvir – the main component of the first oral drug against SARS-CoV-2 Paxlovid. Aust J Chem 2022;75:487-91. [DOI: 10.1071/ch22104] [Reference Citation Analysis]
18 Afewerki S, Stocco TD, Rosa da Silva AD, Aguiar Furtado AS, Fernandes de Sousa G, Ruiz-Esparza GU, Webster TJ, Marciano FR, Strømme M, Zhang YS, Lobo AO. In vitro high-content tissue models to address precision medicine challenges. Mol Aspects Med 2022;:101108. [PMID: 35987701 DOI: 10.1016/j.mam.2022.101108] [Reference Citation Analysis]
19 Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease Mpro and Papain-like Protease PLpro of SARS-CoV-2. J Chem Inf Model 2022. [PMID: 35960688 DOI: 10.1021/acs.jcim.2c00693] [Reference Citation Analysis]
20 Yi Y, Zhang M, Xue H, Yu R, Bao YO, Kuang Y, Chai Y, Ma W, Wang J, Shi X, Li W, Hong W, Li J, Muturi E, Wei H, Wlodarz J, Roszak S, Qiao X, Yang H, Ye M. Schaftoside inhibits 3CLpro and PLpro of SARS-CoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19. Acta Pharm Sin B 2022. [PMID: 35968270 DOI: 10.1016/j.apsb.2022.07.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Dou X, Sun Q, Xu G, Liu Y, Zhang C, Wang B, Lu Y, Guo Z, Su L, Huo T, Zhao X, Wang C, Yu Z, Song S, Zhang L, Liu Z, Lai L, Jiao N. Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. European Journal of Medicinal Chemistry 2022;238:114508. [DOI: 10.1016/j.ejmech.2022.114508] [Reference Citation Analysis]
22 Oh E, Wang W, Park KH, Park C, Cho Y, Lee J, Kang E, Kang H. (+)-Usnic acid and its salts, inhibitors of SARS-CoV-2, identified by using in silico methods and in vitro assay. Sci Rep 2022;12:13118. [PMID: 35908082 DOI: 10.1038/s41598-022-17506-3] [Reference Citation Analysis]
23 Arimori T, Ikemura N, Okamoto T, Takagi J, Standley DM, Hoshino A. Engineering ACE2 decoy receptors to combat viral escapability. Trends Pharmacol Sci 2022:S0165-6147(22)00150-X. [PMID: 35902282 DOI: 10.1016/j.tips.2022.06.011] [Reference Citation Analysis]
24 Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Chem Rev 2022. [PMID: 35863749 DOI: 10.1021/acs.chemrev.1c01062] [Reference Citation Analysis]
25 Padhi AK, Tripathi T. A comprehensive protein design protocol to identify resistance mutations and signatures of adaptation in pathogens. Briefings in Functional Genomics 2022. [DOI: 10.1093/bfgp/elac020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Zhou YF, Yan BC, Yang Q, Long XY, Zhang DQ, Luo RH, Wang HY, Sun HD, Xue XS, Zheng YT, Puno PT. Harnessing Natural Products by a Pharmacophore-Oriented Semisynthesis Approach for the Discovery of Potential Anti-SARS-CoV-2 Agents. Angew Chem Int Ed Engl 2022;61:e202201684. [PMID: 35484726 DOI: 10.1002/anie.202201684] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Alugubelli YR, Geng ZZ, Yang KS, Shaabani N, Khatua K, Ma XR, Vatansever EC, Cho CC, Ma Y, Xiao J, Blankenship LR, Yu G, Sankaran B, Li P, Allen R, Ji H, Xu S, Liu WR. A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals. Eur J Med Chem 2022;240:114596. [PMID: 35839690 DOI: 10.1016/j.ejmech.2022.114596] [Reference Citation Analysis]
28 Daoui O, Elkhattabi S, Chtita S. Rational identification of small molecules derived from 9,10-dihydrophenanthrene as potential inhibitors of 3CLpro enzyme for COVID-19 therapy: a computer-aided drug design approach. Struct Chem. [DOI: 10.1007/s11224-022-02004-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Costa AS, Martins JPA, de Melo EB. SMILES-based 2D-QSAR and similarity search for identification of potential new scaffolds for development of SARS-CoV-2 MPRO inhibitors. Struct Chem. [DOI: 10.1007/s11224-022-02008-9] [Reference Citation Analysis]
30 Göhl M, Zhang L, El Kilani H, Sun X, Zhang K, Brönstrup M, Hilgenfeld R. From Repurposing to Redesign: Optimization of Boceprevir to Highly Potent Inhibitors of the SARS-CoV-2 Main Protease. Molecules 2022;27:4292. [DOI: 10.3390/molecules27134292] [Reference Citation Analysis]
31 Xu Y, Chigan J, Li J, Ding H, Sun L, Liu L, Hu Z, Yang K. Hydroxamate and thiosemicarbazone: Two highly promising scaffolds for the development of SARS-CoV-2 antivirals. Bioorganic Chemistry 2022;124:105799. [DOI: 10.1016/j.bioorg.2022.105799] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Gong S, Hu X, Chen S, Sun B, Wu JL, Li N. Dual roles of drug or its metabolite-protein conjugate: Cutting-edge strategy of drug discovery using shotgun proteomics. Med Res Rev 2022;42:1704-34. [PMID: 35638460 DOI: 10.1002/med.21889] [Reference Citation Analysis]
33 Ma Y, Yang KS, Geng ZZ, Alugubelli YR, Shaabani N, Vatansever EC, Ma XR, Cho CC, Khatua K, Xiao J, Blankenship LR, Yu G, Sankaran B, Li P, Allen R, Ji H, Xu S, Liu WR. A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals. Eur J Med Chem 2022;240:114570. [PMID: 35779291 DOI: 10.1016/j.ejmech.2022.114570] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Yang KS, Leeuwon SZ, Xu S, Liu WR. Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir. J Med Chem 2022. [PMID: 35731933 DOI: 10.1021/acs.jmedchem.2c00404] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
35 Proia E, Ragno A, Antonini L, Sabatino M, Mladenovič M, Capobianco R, Ragno R. Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal. J Comput Aided Mol Des 2022. [PMID: 35716228 DOI: 10.1007/s10822-022-00460-7] [Reference Citation Analysis]
36 Puhl AC, Gomes GF, Damasceno S, Godoy AS, Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Monakhova N, Riabova O, Lane TR, Makarov V, Veras FP, Batah SS, Fabro AT, Oliva G, Cunha FQ, Alves-Filho JC, Cunha TM, Ekins S. Pyronaridine Protects against SARS-CoV-2 Infection in Mouse. ACS Infect Dis 2022;8:1147-60. [PMID: 35609344 DOI: 10.1021/acsinfecdis.2c00091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Dampalla CS, Rathnayake AD, Galasiti Kankanamalage AC, Kim Y, Perera KD, Nguyen HN, Miller MJ, Madden TK, Picard HR, Thurman HA, Kashipathy MM, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-Guided Design of Potent Spirocyclic Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 3C-like Protease. J Med Chem 2022. [PMID: 35638577 DOI: 10.1021/acs.jmedchem.2c00224] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Branković J, Milovanović VM, Simijonović D, Novaković S, Petrović ZD, Trifunović SS, Bogdanović GA, Petrović VP. Pyrazolone-type compounds: synthesis and in silico assessment of antiviral potential against key viral proteins of SARS-CoV-2. RSC Adv 2022;12:16054-70. [PMID: 35733695 DOI: 10.1039/d2ra02542f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Malla TR, Brewitz L, Muntean DG, Aslam H, Owen CD, Salah E, Tumber A, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Schofield CJ. Penicillin Derivatives Inhibit the SARS-CoV-2 Main Protease by Reaction with Its Nucleophilic Cysteine. J Med Chem 2022. [PMID: 35549342 DOI: 10.1021/acs.jmedchem.1c02214] [Reference Citation Analysis]
40 Li H, Cheng C, Shi S, Wu Y, Gao Y, Liu Z, Liu M, Li Z, Huo L, Pan X, Liu S, Song G. Identification, optimization, and biological evaluation of 3-O-β-chacotriosyl ursolic acid derivatives as novel SARS-CoV-2 entry inhibitors by targeting the prefusion state of spike protein. Eur J Med Chem 2022;238:114426. [PMID: 35551037 DOI: 10.1016/j.ejmech.2022.114426] [Reference Citation Analysis]
41 Yu D, Li YF, Liang H, Wu JZ, Hu Y, Peng Y, Li TJ, Hou JF, Huang WJ, Guan LD, Han R, Xing YT, Zhang Y, Liu J, Feng L, Li CY, Liang XL, Ding YL, Zhou ZJ, Ji DM, Wang FF, Yu JH, Deng K, Xia DM, Dong DM, Hu HR, Liu YJ, Fu DX, He YL, Zhou DB, Yang HC, Jia R, Ke CW, Du T, Xie Y, Zhou R, Li CS, Wang ML, Yang XM. Potent Anti-SARS-CoV-2 Efficacy of COVID-19 Hyperimmune Globulin from Vaccine-Immunized Plasma. Adv Sci (Weinh) 2022;9:e2104333. [PMID: 35403837 DOI: 10.1002/advs.202104333] [Reference Citation Analysis]
42 Kneller DW, Li H, Phillips G, Weiss KL, Zhang Q, Arnould MA, Jonsson CB, Surendranathan S, Parvathareddy J, Blakeley MP, Coates L, Louis JM, Bonnesen PV, Kovalevsky A. Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Nat Commun 2022;13:2268. [PMID: 35477935 DOI: 10.1038/s41467-022-29915-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
43 Quan BX, Shuai H, Xia AJ, Hou Y, Zeng R, Liu XL, Lin GF, Qiao JX, Li WP, Wang FL, Wang K, Zhou RJ, Yuen TT, Chen MX, Yoon C, Wu M, Zhang SY, Huang C, Wang YF, Yang W, Tian C, Li WM, Wei YQ, Yuen KY, Chan JF, Lei J, Chu H, Yang S. An orally available Mpro inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron. Nat Microbiol 2022. [PMID: 35477751 DOI: 10.1038/s41564-022-01119-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
44 Yang Y, Zhou D, Zhang X, Shi Y, Han J, Zhou L, Wu L, Ma M, Li J, Peng S, Xu Z, Zhu W. D3AI-CoV: a deep learning platform for predicting drug targets and for virtual screening against COVID-19. Brief Bioinform 2022:bbac147. [PMID: 35443040 DOI: 10.1093/bib/bbac147] [Reference Citation Analysis]
45 Padhi AK, Tripathi T. High-throughput design of symmetrical dimeric SARS-CoV-2 main protease: structural and physical insights into hotspots for adaptation and therapeutics. Phys Chem Chem Phys 2022;24:9141-5. [PMID: 35411366 DOI: 10.1039/d2cp00171c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
46 Zhao Y, Zhu Y, Liu X, Jin Z, Duan Y, Zhang Q, Wu C, Feng L, Du X, Zhao J, Shao M, Zhang B, Yang X, Wu L, Ji X, Guddat LW, Yang K, Rao Z, Yang H. Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Proc Natl Acad Sci U S A 2022;119:e2117142119. [PMID: 35380892 DOI: 10.1073/pnas.2117142119] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
47 Zhou J, Saha A, Huang Z, Warshel A. Fast and Effective Prediction of the Absolute Binding Free Energies of Covalent Inhibitors of SARS-CoV-2 Main Protease and 20S Proteasome. J Am Chem Soc 2022. [PMID: 35436404 DOI: 10.1021/jacs.2c00853] [Reference Citation Analysis]
48 Agost-Beltrán L, de la Hoz-Rodríguez S, Bou-Iserte L, Rodríguez S, Fernández-de-la-Pradilla A, González FV. Advances in the Development of SARS-CoV-2 Mpro Inhibitors. Molecules 2022;27:2523. [PMID: 35458721 DOI: 10.3390/molecules27082523] [Reference Citation Analysis]
49 Chu H, Chan JF, Yuen KY. Animal models in SARS-CoV-2 research. Nat Methods 2022. [PMID: 35396468 DOI: 10.1038/s41592-022-01447-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Glaser J, Sedova A, Galanie S, Kneller DW, Davidson RB, Maradzike E, Del Galdo S, Labbé A, Hsu DJ, Agarwal R, Bykov D, Tharrington A, Parks JM, Smith DMA, Daidone I, Coates L, Kovalevsky A, Smith JC. Hit Expansion of a Noncovalent SARS-CoV-2 Main Protease Inhibitor. ACS Pharmacol Transl Sci 2022;5:255-65. [PMID: 35434531 DOI: 10.1021/acsptsci.2c00026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Kumar V, Kar S, De P, Roy K, Leszczynski J. Identification of potential antivirals against 3CLpro enzyme for the treatment of SARS-CoV-2: A multi-step virtual screening study. SAR QSAR Environ Res 2022;:1-30. [PMID: 35380087 DOI: 10.1080/1062936X.2022.2055140] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Vázquez-mendoza LH, Mendoza-figueroa HL, García-vázquez JB, Correa-basurto J, García-machorro J. In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. IJMS 2022;23:3987. [DOI: 10.3390/ijms23073987] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Lee J, Koepke L, Kirchhoff F, Sparrer KMJ. Interferon antagonists encoded by SARS-CoV-2 at a glance. Med Microbiol Immunol. [DOI: 10.1007/s00430-022-00734-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
54 Ma C, Tan H, Choza J, Wang Y, Wang J. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays. Acta Pharm Sin B 2022;12:1636-51. [PMID: 34745850 DOI: 10.1016/j.apsb.2021.10.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
55 Xiang R, Yu Z, Wang Y, Wang L, Huo S, Li Y, Liang R, Hao Q, Ying T, Gao Y, Yu F, Jiang S. Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharm Sin B 2022;12:1591-623. [PMID: 34249607 DOI: 10.1016/j.apsb.2021.06.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
56 Unoh Y, Uehara S, Nakahara K, Nobori H, Yamatsu Y, Yamamoto S, Maruyama Y, Taoda Y, Kasamatsu K, Suto T, Kouki K, Nakahashi A, Kawashima S, Sanaki T, Toba S, Uemura K, Mizutare T, Ando S, Sasaki M, Orba Y, Sawa H, Sato A, Sato T, Kato T, Tachibana Y. Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. J Med Chem 2022. [PMID: 35352927 DOI: 10.1021/acs.jmedchem.2c00117] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 35.0] [Reference Citation Analysis]
57 Kung YA, Lee KM, Chiang HJ, Huang SY, Wu CJ, Shih SR. Molecular Virology of SARS-CoV-2 and Related Coronaviruses. Microbiol Mol Biol Rev 2022;:e0002621. [PMID: 35343760 DOI: 10.1128/mmbr.00026-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Liang XX, Zhang XJ, Zhao YX, Feng J, Zeng JC, Shi QQ, Kaunda JS, Li XL, Wang WG, Xiao WL. Aspulvins A-H, Aspulvinone Analogues with SARS-CoV-2 Mpro Inhibitory and Anti-inflammatory Activities from an Endophytic Cladosporium sp. J Nat Prod 2022. [PMID: 35293744 DOI: 10.1021/acs.jnatprod.1c01003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
59 Xu T, Xu M, Zhu W, Chen CZ, Zhang Q, Zheng W, Huang R. Efficient Identification of Anti-SARS-CoV-2 Compounds Using Chemical Structure- and Biological Activity-Based Modeling. J Med Chem 2022. [PMID: 35275639 DOI: 10.1021/acs.jmedchem.1c01372] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Yamane D, Onitsuka S, Re S, Isogai H, Hamada R, Hiramoto T, Kawanishi E, Mizuguchi K, Shindo N, Ojida A. Selective covalent targeting of SARS-CoV-2 main protease by enantiopure chlorofluoroacetamide. Chem Sci 2022;13:3027-34. [PMID: 35432850 DOI: 10.1039/d1sc06596c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
61 He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology 2022;20:101. [PMID: 35241085 DOI: 10.1186/s12951-022-01307-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Cao W, Cho CD, Geng ZZ, Shaabani N, Ma XR, Vatansever EC, Alugubelli YR, Ma Y, Chaki SP, Ellenburg WH, Yang KS, Qiao Y, Allen R, Neuman BW, Ji H, Xu S, Liu WR. Evaluation of SARS-CoV-2 Main Protease Inhibitors Using a Novel Cell-Based Assay. ACS Cent Sci 2022;8:192-204. [PMID: 35229034 DOI: 10.1021/acscentsci.1c00910] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
63 Wang Y, Xu B, Ma S, Wang H, Shang L, Zhu C, Ye S. Discovery of SARS-CoV-2 3CLPro Peptidomimetic Inhibitors through the Catalytic Dyad Histidine-Specific Protein-Ligand Interactions. Int J Mol Sci 2022;23:2392. [PMID: 35216507 DOI: 10.3390/ijms23042392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Rossetti GG, Ossorio MA, Rempel S, Kratzel A, Dionellis VS, Barriot S, Tropia L, Gorgulla C, Arthanari H, Thiel V, Mohr P, Gamboni R, Halazonetis TD. Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Sci Rep 2022;12:2505. [PMID: 35169179 DOI: 10.1038/s41598-022-06306-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
65 Howell R, Clarke MA, Reuschl A, Chen T, Abbott-imboden S, Singer M, Lowe DM, Bennett CL, Chain B, Jolly C, Fisher J. Executable network of SARS-CoV-2-host interaction predicts drug combination treatments. npj Digit Med 2022;5. [DOI: 10.1038/s41746-022-00561-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Ju C, Liang J, Zhang M, Zhao J, Li L, Chen S, Zhao J, Gao X. The mouse resource at National Resource Center for Mutant Mice. Mamm Genome 2022. [PMID: 35138443 DOI: 10.1007/s00335-021-09940-x] [Reference Citation Analysis]
67 Gao S, Huang T, Song L, Xu S, Cheng Y, Cherukupalli S, Kang D, Zhao T, Sun L, Zhang J, Zhan P, Liu X. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharm Sin B 2022;12:581-99. [PMID: 34485029 DOI: 10.1016/j.apsb.2021.08.027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
68 Ma C, Wang J. Validation and Invalidation of SARS-CoV-2 Papain-like Protease Inhibitors. ACS Pharmacol Transl Sci . [DOI: 10.1021/acsptsci.1c00240] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
69 Cui Q, Garcia G Jr, Zhang M, Wang C, Li H, Zhou T, Sun G, Arumugaswami V, Shi Y. Compound screen identifies the small molecule Q34 as an inhibitor of SARS-CoV-2 infection. iScience 2022;25:103684. [PMID: 34977495 DOI: 10.1016/j.isci.2021.103684] [Reference Citation Analysis]
70 Liu Y, Gan J, Wang R, Yang X, Xiao Z, Cao Y. DrugDevCovid19: An Atlas of Anti-COVID-19 Compounds Derived by Computer-Aided Drug Design. Molecules 2022;27:683. [PMID: 35163948 DOI: 10.3390/molecules27030683] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Fadilah NQ, Jittmittraphap A, Leaungwutiwong P, Pripdeevech P, Dhanushka D, Mahidol C, Ruchirawat S, Kittakoop P. Virucidal Activity of Essential Oils From Citrus x aurantium L. Against Influenza A Virus H 1 N 1:Limonene as a Potential Household Disinfectant Against Virus. Natural Product Communications 2022;17:1934578X2110727. [DOI: 10.1177/1934578x211072713] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Liang S, Liu X, Zhang S, Li M, Zhang Q, Chen J. Binding mechanism of inhibitors to SARS-CoV-2 main protease deciphered by multiple replica molecular dynamics simulations. Phys Chem Chem Phys 2022;24:1743-59. [PMID: 34985081 DOI: 10.1039/d1cp04361g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
73 Sureram S, Arduino I, Ueoka R, Rittà M, Francese R, Srivibool R, Darshana D, Piel J, Ruchirawat S, Muratori L, Lembo D, Kittakoop P, Donalisio M. The Peptide A-3302-B Isolated from a Marine Bacterium Micromonospora sp. Inhibits HSV-2 Infection by Preventing the Viral Egress from Host Cells. Int J Mol Sci 2022;23:947. [PMID: 35055133 DOI: 10.3390/ijms23020947] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
74 Zhang JW, Xiong Y, Wang F, Zhang FM, Yang X, Lin GQ, Tian P, Ge G, Gao D. Discovery of 9,10-dihydrophenanthrene derivatives as SARS-CoV-2 3CLpro inhibitors for treating COVID-19. Eur J Med Chem 2022;228:114030. [PMID: 34883292 DOI: 10.1016/j.ejmech.2021.114030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
75 Shcherbakov D, Baev D, Kalinin M, Dalinger A, Chirkova V, Belenkaya S, Khvostov A, Krut'ko D, Medved'ko A, Volosnikova E, Sharlaeva E, Shanshin D, Tolstikova T, Yarovaya O, Maksyutov R, Salakhutdinov N, Vatsadze S. Design and Evaluation of Bispidine-Based SARS-CoV-2 Main Protease Inhibitors. ACS Med Chem Lett 2022;13:140-7. [PMID: 35043075 DOI: 10.1021/acsmedchemlett.1c00299] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
76 Narayanan A, Toner SA, Jose J. Structure-based inhibitor design and repurposing clinical drugs to target SARS-CoV-2 proteases. Biochem Soc Trans 2022:BST20211180. [PMID: 35015073 DOI: 10.1042/BST20211180] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
77 Wang YT, Long XY, Ding X, Fan SR, Cai JY, Yang BJ, Zhang XF, Luo RH, Yang L, Ruan T, Ren J, Jing CX, Zheng YT, Hao XJ, Chen DZ. Novel nucleocapsid protein-targeting phenanthridine inhibitors of SARS-CoV-2. Eur J Med Chem 2022;227:113966. [PMID: 34749200 DOI: 10.1016/j.ejmech.2021.113966] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
78 Xiong M, Nie T, Shao Q, Li M, Su H, Xu Y. In silico screening-based discovery of novel covalent inhibitors of the SARS-CoV-2 3CL protease. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114130] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
79 Müller S, Ackloo S, Al Chawaf A, Al-lazikani B, Antolin A, Baell JB, Beck H, Beedie S, Betz UAK, Bezerra GA, Brennan PE, Brown D, Brown PJ, Bullock AN, Carter AJ, Chaikuad A, Chaineau M, Ciulli A, Collins I, Dreher J, Drewry D, Edfeldt K, Edwards AM, Egner U, Frye SV, Fuchs SM, Hall MD, Hartung IV, Hillisch A, Hitchcock SH, Homan E, Kannan N, Kiefer JR, Knapp S, Kostic M, Kubicek S, Leach AR, Lindemann S, Marsden BD, Matsui H, Meier JL, Merk D, Michel M, Morgan MR, Mueller-fahrnow A, Owen DR, Perry BG, Rosenberg SH, Saikatendu KS, Schapira M, Scholten C, Sharma S, Simeonov A, Sundström M, Superti-furga G, Todd MH, Tredup C, Vedadi M, von Delft F, Willson TM, Winter GE, Workman P, Arrowsmith CH. Target 2035 – update on the quest for a probe for every protein. RSC Med Chem 2022;13:13-21. [DOI: 10.1039/d1md00228g] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
80 Chen J, Zhang Y, Zeng D, Zhang B, Ye X, Zeng Z, Zhang XK, Wang Z, Zhou H. Merbromin is a mixed-type inhibitor of 3-chyomotrypsin like protease of SARS-CoV-2. Biochem Biophys Res Commun 2021;591:118-23. [PMID: 35007835 DOI: 10.1016/j.bbrc.2021.12.108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
81 Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Pujadas G, Garcia-Vallvé S. A Review of the Current Landscape of SARS-CoV-2 Main Protease Inhibitors: Have We Hit the Bullseye Yet? Int J Mol Sci 2021;23:259. [PMID: 35008685 DOI: 10.3390/ijms23010259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
82 Zakharova MY, Kuznetsova AA, Uvarova VI, Fomina AD, Kozlovskaya LI, Kaliberda EN, Kurbatskaia IN, Smirnov IV, Bulygin AA, Knorre VD, Fedorova OS, Varnek A, Osolodkin DI, Ishmukhametov AA, Egorov AM, Gabibov AG, Kuznetsov NA. Pre-Steady-State Kinetics of the SARS-CoV-2 Main Protease as a Powerful Tool for Antiviral Drug Discovery. Front Pharmacol 2021;12:773198. [PMID: 34938188 DOI: 10.3389/fphar.2021.773198] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
83 Dampalla CS, Rathnayake AD, Perera KD, Jesri AM, Nguyen HN, Miller MJ, Thurman HA, Zheng J, Kashipathy MM, Battaile KP, Lovell S, Perlman S, Kim Y, Groutas WC, Chang KO. Structure-Guided Design of Potent Inhibitors of SARS-CoV-2 3CL Protease: Structural, Biochemical, and Cell-Based Studies. J Med Chem 2021;64:17846-65. [PMID: 34865476 DOI: 10.1021/acs.jmedchem.1c01037] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
84 Wang Z, Yang L. In the age of Omicron variant: Paxlovid raises new hopes of COVID-19 recovery. J Med Virol 2021. [PMID: 34936106 DOI: 10.1002/jmv.27540] [Cited by in F6Publishing: 18] [Reference Citation Analysis]
85 Ma C, Xia Z, Sacco MD, Hu Y, Townsend JA, Meng X, Choza J, Tan H, Jang J, Gongora MV, Zhang X, Zhang F, Xiang Y, Marty MT, Chen Y, Wang J. Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity. J Am Chem Soc 2021;143:20697-709. [PMID: 34860011 DOI: 10.1021/jacs.1c08060] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
86 Gao K, Wang R, Chen J, Tepe JJ, Huang F, Wei GW. Perspectives on SARS-CoV-2 Main Protease Inhibitors. J Med Chem 2021;64:16922-55. [PMID: 34798775 DOI: 10.1021/acs.jmedchem.1c00409] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
87 Yan G, Li D, Lin Y, Fu Z, Qi H, Liu X, Zhang J, Si S, Chen Y. Development of a simple and miniaturized sandwich-like fluorescence polarization assay for rapid screening of SARS-CoV-2 main protease inhibitors. Cell Biosci 2021;11:199. [PMID: 34865653 DOI: 10.1186/s13578-021-00720-3] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
88 Ramos-Guzmán CA, Ruiz-Pernía JJ, Tuñón I. Inhibition Mechanism of SARS-CoV-2 Main Protease with Ketone-Based Inhibitors Unveiled by Multiscale Simulations: Insights for Improved Designs*. Angew Chem Int Ed Engl 2021;60:25933-41. [PMID: 34581471 DOI: 10.1002/anie.202110027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
89 Kocabaş F, Uslu M. The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins. Turk J Biol 2021;45:469-83. [PMID: 34803448 DOI: 10.3906/biy-2106-42] [Reference Citation Analysis]
90 Cantrelle FX, Boll E, Brier L, Moschidi D, Belouzard S, Landry V, Leroux F, Dewitte F, Landrieu I, Dubuisson J, Deprez B, Charton J, Hanoulle X. NMR Spectroscopy of the Main Protease of SARS-CoV-2 and Fragment-Based Screening Identify Three Protein Hotspots and an Antiviral Fragment. Angew Chem Int Ed Engl 2021;60:25428-35. [PMID: 34570415 DOI: 10.1002/anie.202109965] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
91 Ojha D, Woods TA, Peterson KE. Drug-Screening Strategies for Inhibition of Virus-Induced Neuronal Cell Death. Viruses 2021;13:2317. [PMID: 34835123 DOI: 10.3390/v13112317] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
92 Ouyang Y, Xu XH, Qing FL. Electrochemical Trifluoromethoxylation of (Hetero)aromatics with a Trifluoromethyl Source and Oxygen. Angew Chem Int Ed Engl 2021. [PMID: 34755434 DOI: 10.1002/anie.202114048] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
93 Lin Y, Zang R, Ma Y, Wang Z, Li L, Ding S, Zhang R, Wei Z, Yang J, Wang X. Xanthohumol Is a Potent Pan-Inhibitor of Coronaviruses Targeting Main Protease. Int J Mol Sci 2021;22:12134. [PMID: 34830015 DOI: 10.3390/ijms222212134] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
94 Da Costa CBP, Cruz ACM, Penha JCQ, Castro HC, Da Cunha LER, Ratcliffe NA, Cisne R, Martins FJ. Using in vivo animal models for studying SARS-CoV-2. Expert Opin Drug Discov 2021;:1-17. [PMID: 34727803 DOI: 10.1080/17460441.2022.1995352] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
95 Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin RD, Carlo A, Coffman KJ, Dantonio A, Di L, Eng H, Ferre R, Gajiwala KS, Gibson SA, Greasley SE, Hurst BL, Kadar EP, Kalgutkar AS, Lee JC, Lee J, Liu W, Mason SW, Noell S, Novak JJ, Obach RS, Ogilvie K, Patel NC, Pettersson M, Rai DK, Reese MR, Sammons MF, Sathish JG, Singh RSP, Steppan CM, Stewart AE, Tuttle JB, Updyke L, Verhoest PR, Wei L, Yang Q, Zhu Y. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021;:eabl4784. [PMID: 34726479 DOI: 10.1126/science.abl4784] [Cited by in Crossref: 1] [Cited by in F6Publishing: 237] [Article Influence: 1.0] [Reference Citation Analysis]
96 Yi Y, Li J, Lai X, Zhang M, Kuang Y, Bao Y, Yu R, Hong W, Muturi E, Xue H, Wei H, Li T, Zhuang H, Qiao X, Xiang K, Yang H, Ye M. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. Journal of Advanced Research 2021. [DOI: 10.1016/j.jare.2021.11.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
97 Li Y, Pei J, Lai L. Structure-based de novo drug design using 3D deep generative models. Chem Sci 2021;12:13664-75. [PMID: 34760151 DOI: 10.1039/d1sc04444c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
98 Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Ojeda-Montes MJ, Gimeno A, Cereto-Massagué A, Garcia-Vallvé S, Pujadas G. Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition. Med Res Rev 2021. [PMID: 34697818 DOI: 10.1002/med.21862] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
99 Bai B, Arutyunova E, Khan MB, Lu J, Joyce MA, Saffran HA, Shields JA, Kandadai AS, Belovodskiy A, Hena M, Vuong W, Lamer T, Young HS, Vederas JC, Tyrrell DL, Lemieux MJ, Nieman JA. Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors. RSC Med Chem 2021;12:1722-30. [PMID: 34778773 DOI: 10.1039/d1md00247c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
100 Li H, Xu F, Liu C, Cai A, Dain JA, Li D, Seeram NP, Cho BP, Ma H. Inhibitory Effects and Surface Plasmon Resonance-Based Binding Affinities of Dietary Hydrolyzable Tannins and Their Gut Microbial Metabolites on SARS-CoV-2 Main Protease. J Agric Food Chem 2021;69:12197-208. [PMID: 34586788 DOI: 10.1021/acs.jafc.1c03521] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
101 Ullrich S, Sasi VM, Mahawaththa MC, Ekanayake KB, Morewood R, George J, Shuttleworth L, Zhang X, Whitefield C, Otting G, Jackson C, Nitsche C. Challenges of short substrate analogues as SARS-CoV-2 main protease inhibitors. Bioorg Med Chem Lett 2021;50:128333. [PMID: 34418570 DOI: 10.1016/j.bmcl.2021.128333] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
102 Ghosh AK, Raghavaiah J, Shahabi D, Yadav M, Anson BJ, Lendy EK, Hattori SI, Higashi-Kuwata N, Mitsuya H, Mesecar AD. Indole Chloropyridinyl Ester-Derived SARS-CoV-2 3CLpro Inhibitors: Enzyme Inhibition, Antiviral Efficacy, Structure-Activity Relationship, and X-ray Structural Studies. J Med Chem 2021;64:14702-14. [PMID: 34528437 DOI: 10.1021/acs.jmedchem.1c01214] [Cited by in Crossref: 1] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
103 Panagiotopoulos AA, Karakasiliotis I, Kotzampasi DM, Dimitriou M, Sourvinos G, Kampa M, Pirintsos S, Castanas E, Daskalakis V. Natural Polyphenols Inhibit the Dimerization of the SARS-CoV-2 Main Protease: The Case of Fortunellin and Its Structural Analogs. Molecules 2021;26:6068. [PMID: 34641612 DOI: 10.3390/molecules26196068] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
104 Huang C, Ha H, Tsai S, Lu C, Lee C, Tsai Y, Tsai F, Chiu Y, Wang G, Hsu C, Yang J. In Silico Target Analysis of Treatment for COVID-19 Using Huang-Lian-Shang-Qing-Wan, a Traditional Chinese Medicine Formula. Natural Product Communications 2021;16:1934578X2110308. [DOI: 10.1177/1934578x211030818] [Reference Citation Analysis]
105 Shindo N, Ojida A. Recent progress in covalent warheads for in vivo targeting of endogenous proteins. Bioorg Med Chem 2021;47:116386. [PMID: 34509863 DOI: 10.1016/j.bmc.2021.116386] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
106 Gao H, Zhang Y, Jiang H, Hu X, Zhang Y, Zhou X, Zhong F, Lin C, Li J, Luo J, Zhang J. Crystal structures of human coronavirus NL63 main protease at different pH values. Acta Crystallogr F Struct Biol Commun 2021;77:348-55. [PMID: 34605439 DOI: 10.1107/S2053230X21009523] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
107 Chu J, Xing C, Du Y, Duan T, Liu S, Zhang P, Cheng C, Henley J, Liu X, Qian C, Yin B, Wang HY, Wang RF. Pharmacological inhibition of fatty acid synthesis blocks SARS-CoV-2 replication. Nat Metab 2021;3:1466-75. [PMID: 34580494 DOI: 10.1038/s42255-021-00479-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
108 Wu Y, Pegan SD, Crich D, Desrochers E, Starling EB, Hansen MC, Booth C, Nicole Mullininx L, Lou L, Chang KY, Xie ZR. Polyphenols as alternative treatments of COVID-19. Comput Struct Biotechnol J 2021;19:5371-80. [PMID: 34567475 DOI: 10.1016/j.csbj.2021.09.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
109 Bonatto V, Shamim A, Rocho FDR, Leitão A, Luque FJ, Lameira J, Montanari CA. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations. J Chem Inf Model 2021;61:4733-44. [PMID: 34460252 DOI: 10.1021/acs.jcim.1c00515] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
110 Al-Wahaibi LH, Mostafa A, Mostafa YA, Abou-Ghadir OF, Abdelazeem AH, Gouda AM, Kutkat O, Abo Shama NM, Shehata M, Gomaa HAM, Abdelrahman MH, Mohamed FAM, Gu X, Ali MA, Trembleau L, Youssif BGM. Discovery of novel oxazole-based macrocycles as anti-coronaviral agents targeting SARS-CoV-2 main protease. Bioorg Chem 2021;116:105363. [PMID: 34555629 DOI: 10.1016/j.bioorg.2021.105363] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
111 Zhang W, Zhang Y, Min Z, Mo J, Ju Z, Guan W, Zeng B, Liu Y, Chen J, Zhang Q, Li H, Zeng C, Wei Y, Chan GC. COVID19db: a comprehensive database platform to discover potential drugs and targets of COVID-19 at whole transcriptomic scale. Nucleic Acids Res 2021:gkab850. [PMID: 34554255 DOI: 10.1093/nar/gkab850] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
112 Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol 2021;19:685-700. [PMID: 34535791 DOI: 10.1038/s41579-021-00630-8] [Cited by in F6Publishing: 42] [Reference Citation Analysis]
113 Ihssen J, Faccio G, Yao C, Sirec T, Spitz U. Fluorogenic in vitro activity assay for the main protease Mpro from SARS-CoV-2 and its adaptation to the identification of inhibitors. STAR Protoc 2021;2:100793. [PMID: 34423318 DOI: 10.1016/j.xpro.2021.100793] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
114 Ramos-Guzmán CA, Ruiz-Pernía JJ, Tuñón I. Computational simulations on the binding and reactivity of a nitrile inhibitor of the SARS-CoV-2 main protease. Chem Commun (Camb) 2021;57:9096-9. [PMID: 34498651 DOI: 10.1039/d1cc03953a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
115 Chamakuri S, Lu S, Ucisik MN, Bohren KM, Chen YC, Du HC, Faver JC, Jimmidi R, Li F, Li JY, Nyshadham P, Palmer SS, Pollet J, Qin X, Ronca SE, Sankaran B, Sharma KL, Tan Z, Versteeg L, Yu Z, Matzuk MM, Palzkill T, Young DW. DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 Mpro inhibitors. Proc Natl Acad Sci U S A 2021;118:e2111172118. [PMID: 34426525 DOI: 10.1073/pnas.2111172118] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
116 Chin HJ, Dobbie MS, Gao X, Hennessy JE, Nam KH, Seong JK, Shiroishi T, Takeo T, Yoshiki A, Zao J, Wang CL. Asian Mouse Mutagenesis Resource Association (AMMRA): mouse genetics and laboratory animal resources in the Asia Pacific. Mamm Genome 2021. [PMID: 34482437 DOI: 10.1007/s00335-021-09912-1] [Reference Citation Analysis]
117 Zheng L, Chen Y, Bao J, He L, Dong S, Qi Y, Zhang JZH. Discovery of novel inhibitors of SARS-CoV-2 main protease. J Biomol Struct Dyn 2021;:1-9. [PMID: 34472424 DOI: 10.1080/07391102.2021.1972041] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
118 Luo D, Tong JB, Zhang X, Xiao XC, Bian S. Computational strategies towards developing novel SARS-CoV-2 Mpro inhibitors against COVID-19. J Mol Struct 2021;:131378. [PMID: 34483363 DOI: 10.1016/j.molstruc.2021.131378] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
119 Wang Z, Yang L, Zhao XE. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Comput Struct Biotechnol J 2021;19:4684-701. [PMID: 34426762 DOI: 10.1016/j.csbj.2021.08.029] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
120 Manandhar A, Srinivasulu V, Hamad M, Tarazi H, Omar H, Colussi DJ, Gordon J, Childers W, Klein ML, Al-Tel TH, Abou-Gharbia M, Elokely KM. Discovery of Novel Small-Molecule Inhibitors of SARS-CoV-2 Main Protease as Potential Leads for COVID-19 Treatment. J Chem Inf Model 2021. [PMID: 34403259 DOI: 10.1021/acs.jcim.1c00684] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
121 Xia Z, Sacco M, Hu Y, Ma C, Meng X, Zhang F, Szeto T, Xiang Y, Chen Y, Wang J. Rational Design of Hybrid SARS-CoV-2 Main Protease Inhibitors Guided by the Superimposed Cocrystal Structures with the Peptidomimetic Inhibitors GC-376, Telaprevir, and Boceprevir. ACS Pharmacol Transl Sci 2021;4:1408-21. [PMID: 34414360 DOI: 10.1021/acsptsci.1c00099] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
122 de Souza AS, de Souza RF, Guzzo CR. Quantitative structure-activity relationships, molecular docking and molecular dynamics simulations reveal drug repurposing candidates as potent SARS-CoV-2 main protease inhibitors. J Biomol Struct Dyn 2021;:1-18. [PMID: 34370631 DOI: 10.1080/07391102.2021.1958700] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
123 Han SH, Goins CM, Arya T, Shin WJ, Maw J, Hooper A, Sonawane DP, Porter MR, Bannister BE, Crouch RD, Lindsey AA, Lakatos G, Martinez SR, Alvarado J, Akers WS, Wang NS, Jung JU, Macdonald JD, Stauffer SR. Structure-Based Optimization of ML300-Derived, Noncovalent Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus 3CL Protease (SARS-CoV-2 3CLpro). J Med Chem 2021. [PMID: 34347470 DOI: 10.1021/acs.jmedchem.1c00598] [Cited by in F6Publishing: 22] [Reference Citation Analysis]
124 Tao K, Tzou PL, Nouhin J, Bonilla H, Jagannathan P, Shafer RW. SARS-CoV-2 Antiviral Therapy. Clin Microbiol Rev 2021;:e0010921. [PMID: 34319150 DOI: 10.1128/CMR.00109-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
125 Ma C, Sacco MD, Xia Z, Lambrinidis G, Townsend JA, Hu Y, Meng X, Szeto T, Ba M, Zhang X, Gongora M, Zhang F, Marty MT, Xiang Y, Kolocouris A, Chen Y, Wang J. Discovery of SARS-CoV-2 Papain-like Protease Inhibitors through a Combination of High-Throughput Screening and a FlipGFP-Based Reporter Assay. ACS Cent Sci 2021;7:1245-60. [PMID: 34341772 DOI: 10.1021/acscentsci.1c00519] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 35.0] [Reference Citation Analysis]
126 Li X, Zhang L, Chen S, Ouyang H, Ren L. Possible Targets of Pan-Coronavirus Antiviral Strategies for Emerging or Re-Emerging Coronaviruses. Microorganisms 2021;9:1479. [PMID: 34361915 DOI: 10.3390/microorganisms9071479] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
127 Bai B, Belovodskiy A, Hena M, Kandadai AS, Joyce MA, Saffran HA, Shields JA, Khan MB, Arutyunova E, Lu J, Bajwa SK, Hockman D, Fischer C, Lamer T, Vuong W, van Belkum MJ, Gu Z, Lin F, Du Y, Xu J, Rahim M, Young HS, Vederas JC, Tyrrell DL, Lemieux MJ, Nieman JA. Peptidomimetic α-Acyloxymethylketone Warheads with Six-Membered Lactam P1 Glutamine Mimic: SARS-CoV-2 3CL Protease Inhibition, Coronavirus Antiviral Activity, and in Vitro Biological Stability. J Med Chem 2021. [PMID: 34242027 DOI: 10.1021/acs.jmedchem.1c00616] [Cited by in Crossref: 1] [Cited by in F6Publishing: 19] [Article Influence: 1.0] [Reference Citation Analysis]
128 Ma XR, Alugubelli YR, Ma Y, Vatansever EC, Scott DA, Qiao Y, Yu G, Xu S, Liu WR. MPI8 is Potent against SARS-CoV-2 by Inhibiting Dually and Selectively the SARS-CoV-2 Main Protease and the Host Cathepsin L*. ChemMedChem 2021. [PMID: 34242492 DOI: 10.1002/cmdc.202100456] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
129 Dampalla CS, Zheng J, Perera KD, Wong LR, Meyerholz DK, Nguyen HN, Kashipathy MM, Battaile KP, Lovell S, Kim Y, Perlman S, Groutas WC, Chang KO. Postinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2021;118:e2101555118. [PMID: 34210738 DOI: 10.1073/pnas.2101555118] [Cited by in F6Publishing: 20] [Reference Citation Analysis]
130 Dampalla CS, Kim Y, Bickmeier N, Rathnayake AD, Nguyen HN, Zheng J, Kashipathy MM, Baird MA, Battaile KP, Lovell S, Perlman S, Chang KO, Groutas WC. Structure-Guided Design of Conformationally Constrained Cyclohexane Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 3CL Protease. J Med Chem 2021;64:10047-58. [PMID: 34213885 DOI: 10.1021/acs.jmedchem.1c00319] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
131 Atkins JF, O'Connor KM, Bhatt PR, Loughran G. From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion. Viruses 2021;13:1251. [PMID: 34199077 DOI: 10.3390/v13071251] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
132 Goyzueta-Mamani LD, Barazorda-Ccahuana HL, Mena-Ulecia K, Chávez-Fumagalli MA. Antiviral Activity of Metabolites from Peruvian Plants against SARS-CoV-2: An In Silico Approach. Molecules 2021;26:3882. [PMID: 34202092 DOI: 10.3390/molecules26133882] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
133 Kino T, Burd I, Segars JH. Dexamethasone for Severe COVID-19: How Does It Work at Cellular and Molecular Levels? Int J Mol Sci 2021;22:6764. [PMID: 34201797 DOI: 10.3390/ijms22136764] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
134 Deshmukh MG, Ippolito JA, Zhang CH, Stone EA, Reilly RA, Miller SJ, Jorgensen WL, Anderson KS. Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Structure 2021;29:823-833.e5. [PMID: 34161756 DOI: 10.1016/j.str.2021.06.002] [Cited by in F6Publishing: 18] [Reference Citation Analysis]
135 Yang L, Wang Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021;9:689. [PMID: 34207313 DOI: 10.3390/biomedicines9060689] [Cited by in F6Publishing: 14] [Reference Citation Analysis]
136 Su H, Yao S, Zhao W, Zhang Y, Liu J, Shao Q, Wang Q, Li M, Xie H, Shang W, Ke C, Feng L, Jiang X, Shen J, Xiao G, Jiang H, Zhang L, Ye Y, Xu Y. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nat Commun 2021;12:3623. [PMID: 34131140 DOI: 10.1038/s41467-021-23751-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
137 Wang Z, Zhao Y, Wang Q, Xing Y, Feng L, Kong J, Peng C, Zhang L, Yang H, Lu M. Identification of proteasome and caspase inhibitors targeting SARS-CoV-2 Mpro. Signal Transduct Target Ther 2021;6:214. [PMID: 34075025 DOI: 10.1038/s41392-021-00639-8] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
138 Vuong W, Fischer C, Khan MB, van Belkum MJ, Lamer T, Willoughby KD, Lu J, Arutyunova E, Joyce MA, Saffran HA, Shields JA, Young HS, Nieman JA, Tyrrell DL, Lemieux MJ, Vederas JC. Improved SARS-CoV-2 Mpro inhibitors based on feline antiviral drug GC376: Structural enhancements, increased solubility, and micellar studies. Eur J Med Chem 2021;222:113584. [PMID: 34118724 DOI: 10.1016/j.ejmech.2021.113584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
139 Zev S, Raz K, Schwartz R, Tarabeh R, Gupta PK, Major DT. Benchmarking the Ability of Common Docking Programs to Correctly Reproduce and Score Binding Modes in SARS-CoV-2 Protease Mpro. J Chem Inf Model 2021;61:2957-66. [PMID: 34047191 DOI: 10.1021/acs.jcim.1c00263] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
140 Zhu W, Shyr Z, Lo DC, Zheng W. Viral Proteases as Targets for Coronavirus Disease 2019 Drug Development. J Pharmacol Exp Ther 2021;378:166-72. [PMID: 33972366 DOI: 10.1124/jpet.121.000688] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
141 Vandyck K, Deval J. Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Curr Opin Virol 2021;49:36-40. [PMID: 34029993 DOI: 10.1016/j.coviro.2021.04.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 46] [Article Influence: 3.0] [Reference Citation Analysis]
142 Kitamura N, Sacco MD, Ma C, Hu Y, Townsend JA, Meng X, Zhang F, Zhang X, Ba M, Szeto T, Kukuljac A, Marty MT, Schultz D, Cherry S, Xiang Y, Chen Y, Wang J. Expedited Approach toward the Rational Design of Noncovalent SARS-CoV-2 Main Protease Inhibitors. J Med Chem 2021. [PMID: 33891389 DOI: 10.1021/acs.jmedchem.1c00509] [Cited by in Crossref: 7] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
143 Du R, Cooper L, Chen Z, Lee H, Rong L, Cui Q. Discovery of chebulagic acid and punicalagin as novel allosteric inhibitors of SARS-CoV-2 3CLpro. Antiviral Res 2021;190:105075. [PMID: 33872675 DOI: 10.1016/j.antiviral.2021.105075] [Cited by in Crossref: 2] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
144 Yang H, Yang J. A review of the latest research on Mpro targeting SARS-COV inhibitors. RSC Med Chem 2021;12:1026-36. [PMID: 34355175 DOI: 10.1039/d1md00066g] [Cited by in F6Publishing: 15] [Reference Citation Analysis]
145 Günther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Doyle JJ, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, Betzel C, Meents A. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science 2021;372:642-6. [PMID: 33811162 DOI: 10.1126/science.abf7945] [Cited by in Crossref: 24] [Cited by in F6Publishing: 85] [Article Influence: 24.0] [Reference Citation Analysis]
146 Li L, Huang S. Newly synthesized Mpro inhibitors as potential oral anti-SARS-CoV-2 agents. Signal Transduct Target Ther 2021;6:138. [PMID: 33790219 DOI: 10.1038/s41392-021-00560-0] [Reference Citation Analysis]
147 Xia Z, Sacco MD, Ma C, Townsend JA, Kitamura N, Hu Y, Ba M, Szeto T, Zhang X, Meng X, Zhang F, Xiang Y, Marty MT, Chen Y, Wang J. Discovery of SARS-CoV-2 papain-like protease inhibitors through a combination of high-throughput screening and FlipGFP-based reporter assay. bioRxiv 2021:2021. [PMID: 33758866 DOI: 10.1101/2021.03.15.435551] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]