BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ, van Donselaar E, Riesebosch S, Kuijpers HJH, Schipper D, van de Wetering WJ, de Graaf M, Koopmans M, Cuppen E, Peters PJ, Haagmans BL, Clevers H. SARS-CoV-2 productively infects human gut enterocytes. Science 2020;369:50-4. [PMID: 32358202 DOI: 10.1126/science.abc1669] [Cited by in Crossref: 993] [Cited by in F6Publishing: 1073] [Article Influence: 331.0] [Reference Citation Analysis]
Number Citing Articles
1 Afewerki S, Stocco TD, Rosa da Silva AD, Aguiar Furtado AS, Fernandes de Sousa G, Ruiz-Esparza GU, Webster TJ, Marciano FR, Strømme M, Zhang YS, Lobo AO. In vitro high-content tissue models to address precision medicine challenges. Mol Aspects Med 2022;91:101108. [PMID: 35987701 DOI: 10.1016/j.mam.2022.101108] [Reference Citation Analysis]
2 Hwang KS, Seo EU, Choi N, Kim J, Kim HN. 3D engineered tissue models for studying human-specific infectious viral diseases. Bioactive Materials 2023;21:576-594. [DOI: 10.1016/j.bioactmat.2022.09.010] [Reference Citation Analysis]
3 Pourbagher-Shahri AM, Mohammadi G, Ghazavi H, Forouzanfar F. Susceptibility of domestic and companion animals to SARS-CoV-2: a comprehensive review. Trop Anim Health Prod 2023;55:60. [PMID: 36725815 DOI: 10.1007/s11250-023-03470-1] [Reference Citation Analysis]
4 Cancino-bernardi J, Comparetti EJ, Ferreira NN, Miranda RR, Tuesta MM, Sampaio I, Inácio da Costa P, Zucolotto V. A SARS-CoV-2 impedimetric biosensor based on the immobilization of ACE-2 receptor-containing entire cell membranes as the biorecognition element. Talanta 2023;253:124008. [DOI: 10.1016/j.talanta.2022.124008] [Reference Citation Analysis]
5 Valyaeva AA, Zharikova AA, Sheval EV. SARS-CoV-2 cellular tropism and direct multiorgan failure in COVID-19 patients: Bioinformatic predictions, experimental observations, and open questions. Cell Biol Int 2023;47:308-26. [PMID: 36229927 DOI: 10.1002/cbin.11928] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Poonam Sen, Harpreet Kaur. In silico transcriptional analysis of asymptomatic and severe COVID-19 patients reveals the susceptibility of severe patients to other comorbidities and non-viral pathological conditions. Human Gene 2023;35. [ DOI: 10.1016/j.humgen.2022.201135] [Reference Citation Analysis]
7 Donadoni M, Kaminski R, Liao S, Al Janabi S, Margolskee RF, Ozdener MH, Sariyer IK. Coronavirus infection in chemosensory cells. J Neurovirol 2023;:1-10. [PMID: 36719595 DOI: 10.1007/s13365-023-01117-3] [Reference Citation Analysis]
8 Lane S, Hilliam Y, Bomberger JM. Microbial and Immune Regulation of the Gut-Lung Axis during Viral-Bacterial Coinfection. J Bacteriol 2023;205:e0029522. [PMID: 36409130 DOI: 10.1128/jb.00295-22] [Reference Citation Analysis]
9 Elsebai MF, Habib EE. Blood pH and COVID-19. Arch Pharm (Weinheim) 2023;:e2200558. [PMID: 36690587 DOI: 10.1002/ardp.202200558] [Reference Citation Analysis]
10 Kusakabe M, Taguchi A, Tanikawa M, Hoshi D, Tsuchimochi S, Qian X, Toyohara Y, Kawata A, Wagatsuma R, Yamaguchi K, Yamamoto Y, Ikemura M, Sone K, Mori-Uchino M, Matsunaga H, Tsuruga T, Nagamatsu T, Kukimoto I, Wada-Hiraike O, Kawazu M, Ushiku T, Takeyama H, Oda K, Kawana K, Hippo Y, Osuga Y. Application of organoid culture from HPV18-positive small cell carcinoma of the uterine cervix for precision medicine. Cancer Med 2023. [PMID: 36691316 DOI: 10.1002/cam4.5588] [Reference Citation Analysis]
11 Arai Y, Yamanaka I, Okamoto T, Isobe A, Nakai N, Kamimura N, Suzuki T, Daidoji T, Ono T, Nakaya T, Matsumoto K, Okuzaki D, Watanabe Y. Stimulation of interferon-β responses by aberrant SARS-CoV-2 small viral RNAs acting as retinoic acid-inducible gene-I agonists. iScience 2023;26:105742. [PMID: 36507221 DOI: 10.1016/j.isci.2022.105742] [Reference Citation Analysis]
12 Balasubramaniam A, Tedbury PR, Mwangi SM, Liu Y, Li G, Merlin D, Gracz AD, He P, Sarafianos SG, Srinivasan S. SARS-CoV-2 Induces Epithelial-Enteric Neuronal Crosstalk Stimulating VIP Release. Biomolecules 2023;13:207. [DOI: 10.3390/biom13020207] [Reference Citation Analysis]
13 Geurts MH, Clevers H. CRISPR engineering in organoids for gene repair and disease modelling. Nat Rev Bioeng 2023;1:32-45. [DOI: 10.1038/s44222-022-00013-5] [Reference Citation Analysis]
14 Smirnova OA, Ivanova ON, Fedyakina IT, Yusubalieva GM, Baklaushev VP, Yanvarev DV, Kechko OI, Mitkevich VA, Vorobiev PO, Fedorov VS, Bartosch B, Valuev-elliston VT, Lipatova AL, Ivanov AV. SARS-CoV-2 Establishes a Productive Infection in Hepatoma and Glioblastoma Multiforme Cell Lines. Cancers 2023;15:632. [DOI: 10.3390/cancers15030632] [Reference Citation Analysis]
15 Norris EG, Pan XS, Hocking DC. Receptor-binding domain of SARS-CoV-2 is a functional αv-integrin agonist. J Biol Chem 2023;:102922. [PMID: 36669646 DOI: 10.1016/j.jbc.2023.102922] [Reference Citation Analysis]
16 Islam MS, Wang Z, Abdel-mohsen M, Chen X, Montaner LJ. Tissue injury and leukocyte changes in post-acute sequelae of SARS-CoV-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long COVID. Journal of Leukocyte Biology 2023. [DOI: 10.1093/jleuko/qiac001] [Reference Citation Analysis]
17 Wu L, Ai Y, Xie R, Xiong J, Wang Y, Liang Q. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. Lab Chip 2023. [PMID: 36644984 DOI: 10.1039/d2lc00804a] [Reference Citation Analysis]
18 Al-Rawi TSS, Al-Ani RM. Liver dysfunction-related COVID-19: A narrative review. World J Meta-Anal 2023; 11(1): 5-17 [DOI: 10.13105/wjma.v11.i1.5] [Reference Citation Analysis]
19 García-Silva I, Govea-Alonso DO, Rosales-Mendoza S. Current status of mucosal vaccines against SARS-CoV2: a hope for protective immunity. Expert Opin Biol Ther 2023;:1-16. [PMID: 36594264 DOI: 10.1080/14712598.2022.2156284] [Reference Citation Analysis]
20 Wang YZ, Zhou JG, Lu YM, Hu H, Xiao FF, Ge T, Wang X, Zheng L, Yu LH, Le J, Yu H, Yu GJ, Xia Q, Zhang T, Zhou WH. Altered gut microbiota composition in children and their caregivers infected with the SARS-CoV-2 Omicron variant. World J Pediatr 2023;:1-11. [PMID: 36627507 DOI: 10.1007/s12519-022-00659-6] [Reference Citation Analysis]
21 Khreefa Z, Barbier MT, Koksal AR, Love G, Del Valle L. Pathogenesis and Mechanisms of SARS-CoV-2 Infection in the Intestine, Liver, and Pancreas. Cells 2023;12. [PMID: 36672197 DOI: 10.3390/cells12020262] [Reference Citation Analysis]
22 Vasichkina E, Alekseeva D, Kudryavtsev I, Glushkova A, Starshinova AY, Malkova A, Kudlay D, Starshinova A. COVID-19 Heart Lesions in Children: Clinical, Diagnostic and Immunological Changes. Int J Mol Sci 2023;24. [PMID: 36674665 DOI: 10.3390/ijms24021147] [Reference Citation Analysis]
23 Parthasarathy H, Tandel D, Siddiqui AH, Harshan KH. Metformin suppresses SARS-CoV-2 in cell culture. Virus Res 2022;323:199010. [PMID: 36417940 DOI: 10.1016/j.virusres.2022.199010] [Reference Citation Analysis]
24 Gebert JT, Scribano F, Engevik KA, Perry JL, Hyser JM. Gastrointestinal organoids in the study of viral infections. Am J Physiol Gastrointest Liver Physiol 2023;324:G51-9. [PMID: 36414538 DOI: 10.1152/ajpgi.00152.2022] [Reference Citation Analysis]
25 Geetha D, Sathiya T, Azath H, Ramkumar M, Babu TRG. Hybrid data mining based breast prediction of COVID-19. AIP Conference Proceedings 2023. [DOI: 10.1063/5.0110241] [Reference Citation Analysis]
26 Dallner M, Nasheri N. Foodborne Viral Pathogen Big Data: Genomic Analysis. Food Microbiology and Food Safety 2023. [DOI: 10.1007/978-3-031-07179-9_3] [Reference Citation Analysis]
27 Kingsbury JM, Lake R. COVID-19 and Food Safety. Reference Module in Food Science 2023. [DOI: 10.1016/b978-0-12-822521-9.00024-1] [Reference Citation Analysis]
28 Lau HC, Yu J. Gut Microbiota in Coronavirus Disease 2019. Microbiome in Gastrointestinal Cancer 2023. [DOI: 10.1007/978-981-19-4492-5_18] [Reference Citation Analysis]
29 Zhou Y, Liu Y, Gupta S, Paramo MI, Hou Y, Mao C, Luo Y, Judd J, Wierbowski S, Bertolotti M, Nerkar M, Jehi L, Drayman N, Nicolaescu V, Gula H, Tay S, Randall G, Wang P, Lis JT, Feschotte C, Erzurum SC, Cheng F, Yu H. A comprehensive SARS-CoV-2-human protein-protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nat Biotechnol 2023;41:128-39. [PMID: 36217030 DOI: 10.1038/s41587-022-01474-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Tews HC, Kandulski A, Schmid S, Schlosser S, Schirner S, Putz FJ, Cosma L, Gülow K, Müller M, Jung EM. Multimodal ultrasound imaging with conventional B-mode, elastography, and parametric analysis of contrast-enhanced ultrasound (CEUS): A novel approach to assess small bowel manifestation in severe COVID-19 disease. Clin Hemorheol Microcirc 2022;82:341-60. [PMID: 35871323 DOI: 10.3233/CH-221540] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Mochochoko BM, Pohl CH, O'Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E(2) connection and host immune responses. iScience 2023;26:105870. [PMID: 36647379 DOI: 10.1016/j.isci.2022.105870] [Reference Citation Analysis]
32 Liu X, Li C, Wan Z, Chiu MC, Huang J, Yu Y, Zhu L, Cai JP, Rong L, Song YQ, Chu H, Cai Z, Jiang S, Yuen KY, Zhou J. Analogous comparison unravels heightened antiviral defense and boosted viral infection upon immunosuppression in bat organoids. Signal Transduct Target Ther 2022;7:392. [PMID: 36529763 DOI: 10.1038/s41392-022-01247-w] [Reference Citation Analysis]
33 Tsai CS, Lee SS, Chen WC, Tseng CH, Lee NY, Chen PL, Li MC, Syue LS, Lo CL, Ko WC, Hung YP. COVID-19-associated candidiasis and the emerging concern of Candida auris infections. J Microbiol Immunol Infect 2022:S1684-1182(22)00283-3. [PMID: 36543722 DOI: 10.1016/j.jmii.2022.12.002] [Reference Citation Analysis]
34 Golikov MV, Bartosch B, Smirnova OA, Ivanova ON, Ivanov AV. Plasma-Like Culture Medium for the Study of Viruses. mBio 2022. [DOI: 10.1128/mbio.02035-22] [Reference Citation Analysis]
35 Tyszko M, Lipińska-Gediga M, Lemańska-Perek A, Kobylińska K, Gozdzik W, Adamik B. Intestinal Fatty Acid Binding Protein (I-FABP) as a Prognostic Marker in Critically Ill COVID-19 Patients. Pathogens 2022;11. [PMID: 36558860 DOI: 10.3390/pathogens11121526] [Reference Citation Analysis]
36 Hashimi M, Sebrell T, Hedges J, Snyder D, Lyon K, Byrum S, Mackintosh SG, Cherne M, Skwarchuk D, Crowley D, Robison A, Sidar B, Kunze A, Loveday E, Taylor M, Chang C, Wilking J, Walk S, Schountz T, Jutila M, Bimczok D. Antiviral response mechanisms in a Jamaican Fruit Bat intestinal organoid model of SARS-CoV-2 infection. Res Sq 2022:rs. [PMID: 36561186 DOI: 10.21203/rs.3.rs-2340919/v1] [Reference Citation Analysis]
37 Robertson J, Nellgård B, Hultén LM, Nilsson S, Dalla K, Börjesson M, Zetterberg H, Svanvik J, Gisslén M. Sex difference in circulating soluble form of ACE2 protein in moderate and severe COVID-19 and healthy controls. Front Med (Lausanne) 2022;9:1058120. [PMID: 36569121 DOI: 10.3389/fmed.2022.1058120] [Reference Citation Analysis]
38 Upadhyay V, Suryawanshi R, Tasoff P, Mccavitt-malvido M, Kumar GR, Murray VW, Noecker C, Bisanz JE, Hswen Y, Ha C, Sreekumar B, Chen IP, Lynch SV, Ott M, Lee S, Turnbaugh PJ. Mild SARS-CoV-2 infection results in long-lasting microbiota instability.. [DOI: 10.1101/2022.12.07.519508] [Reference Citation Analysis]
39 Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G, Wang L, Griffiths C, Brown ML, Scott WE 3rd, Pereyra-Gerber P, Gelson WTH, Brown S, Dillon S, Muraro D, Sharp J, Neary M, Box H, Tatham L, Stewart J, Curley P, Pertinez H, Forrest S, Mlcochova P, Varankar SS, Darvish-Damavandi M, Mulcahy VL, Kuc RE, Williams TL, Heslop JA, Rossetti D, Tysoe OC, Galanakis V, Vila-Gonzalez M, Crozier TWM, Bargehr J, Sinha S, Upponi SS, Fear C, Swift L, Saeb-Parsy K, Davies SE, Wester A, Hagström H, Melum E, Clements D, Humphreys P, Herriott J, Kijak E, Cox H, Bramwell C, Valentijn A, Illingworth CJR, Dahman B, Bastaich DR, Ferreira RD, Marjot T, Barnes E, Moon AM, Barritt AS 4th, Gupta RK, Baker S, Davenport AP, Corbett G, Gorgoulis VG, Buczacki SJA, Lee JH, Matheson NJ, Trauner M, Fisher AJ, Gibbs P, Butler AJ, Watson CJE, Mells GF, Dougan G, Owen A, Lohse AW, Vallier L, Sampaziotis F; UK-PBC Consortium. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2022. [PMID: 36470304 DOI: 10.1038/s41586-022-05594-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
40 Zhao Z, Chen X, Dowbaj AM, Sljukic A, Bratlie K, Lin L, Fong ELS, Balachander GM, Chen Z, Soragni A, Huch M, Zeng YA, Wang Q, Yu H. Organoids. Nat Rev Methods Primers 2022;2:94. [DOI: 10.1038/s43586-022-00174-y] [Reference Citation Analysis]
41 Liu R, Paz M, Siraj L, Boyd T, Salamone S, Lite TV, Leung KM, Chirinos JD, Shang HH, Townsend MJ, Rho J, Ni P, Ranganath K, Violante AD, Zhao Z, Silvernale C, Ahmad I, Krasnow NA, Barnett ES, Harisinghani M, Kuo B, Black KE, Staller K. Feeding intolerance in critically ill patients with COVID-19. Clin Nutr 2022;41:3069-76. [PMID: 33934924 DOI: 10.1016/j.clnu.2021.03.033] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
42 Jin R, Niu C, Wu F, Zhou S, Han T, Zhang Z, Li E, Zhang X, Xu S, Wang J, Tian S, Chen W, Ye Q, Cao C, Cheng L. DNA damage contributes to age-associated differences in SARS-CoV-2 infection. Aging Cell 2022;21:e13729. [PMID: 36254583 DOI: 10.1111/acel.13729] [Reference Citation Analysis]
43 Gao CC, Li M, Deng W, Ma CH, Chen YS, Sun YQ, Du T, Liu QL, Li WJ, Zhang B, Sun L, Liu SM, Li F, Qi F, Qu Y, Ge X, Liu J, Wang P, Niu Y, Liang Z, Zhao YL, Huang B, Peng XZ, Yang Y, Qin C, Tong WM, Yang YG. Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques. Protein Cell 2022;13:920-39. [PMID: 35377064 DOI: 10.1007/s13238-022-00915-5] [Reference Citation Analysis]
44 Lee EJ, Han S, Hyun SW, Song GB, Ha SD. Survival of human coronavirus 229E at different temperatures on various food-contact surfaces and food and under simulated digestive conditions. Food Res Int 2022;162:112014. [PMID: 36461303 DOI: 10.1016/j.foodres.2022.112014] [Reference Citation Analysis]
45 Aknouch I, Sridhar A, Freeze E, Giugliano FP, van Keulen BJ, Romijn M, Calitz C, García-Rodríguez I, Mulder L, Wildenberg ME, Muncan V, van Gils MJ, van Goudoever JB, Stittelaar KJ, Wolthers KC, Pajkrt D. Human milk inhibits some enveloped virus infections, including SARS-CoV-2, in an intestinal model. Life Sci Alliance 2022;5:e202201432. [PMID: 35926873 DOI: 10.26508/lsa.202201432] [Reference Citation Analysis]
46 Cuicchi D, Gabrielli L, Tardio ML, Rossini G, D’Errico A, Viale P, Lazzarotto T, Poggioli G. Virological and histological evaluation of intestinal samples in COVID-19 patients. World J Gastroenterol 2022; 28(44): 6282-6293 [DOI: 10.3748/wjg.v28.i44.6282] [Reference Citation Analysis]
47 Devaux CA, Camoin-jau L. An update on angiotensin-converting enzyme 2 structure/functions, polymorphism, and duplicitous nature in the pathophysiology of coronavirus disease 2019: Implications for vascular and coagulation disease associated with severe acute respiratory syndrome coronavirus infection. Front Microbiol 2022;13. [DOI: 10.3389/fmicb.2022.1042200] [Reference Citation Analysis]
48 Silva CS, Tryndyak VP, Camacho L, Orloff MS, Porter A, Garner K, Mullis L, Azevedo M. Temporal dynamics of SARS-CoV-2 genome and detection of variants of concern in wastewater influent from two metropolitan areas in Arkansas. Sci Total Environ 2022;849:157546. [PMID: 35914602 DOI: 10.1016/j.scitotenv.2022.157546] [Reference Citation Analysis]
49 Bao L, Cui X, Bai R, Chen C. Advancing intestinal organoid technology to decipher nano-intestine interactions and treat intestinal disease. Nano Res 2022. [DOI: 10.1007/s12274-022-5150-4] [Reference Citation Analysis]
50 Pechkurov DV, Romanova AA, Tyazheva AA, Poreckova GY. COVID in children and the digestive system: clinical and pathogenetic correlation. jour 2022. [DOI: 10.31146/1682-8658-ecg-202-6-41-49] [Reference Citation Analysis]
51 Fabi M, Vasuri F, Guida F, Rocca A, Lima M, D’errico A, Lanari M. Case report: Histological findings of peri-appendicitis in three children with SARS-CoV-2 – related multisystem inflammatory syndrome: A mark for systemic inflammation? Front Pediatr 2022;10. [DOI: 10.3389/fped.2022.975940] [Reference Citation Analysis]
52 Rossini V, Tolosa-enguis V, Frances-cuesta C, Sanz Y. Gut microbiome and anti-viral immunity in COVID-19. Critical Reviews in Food Science and Nutrition 2022. [DOI: 10.1080/10408398.2022.2143476] [Reference Citation Analysis]
53 Kim S, Kim J, Jang JY, Noh H, Park J, Jeong H, Jeon D, Uhm C, Oh H, Cho K, Jeon Y, On D, Yoon S, Lim S, Kim SP, Lee YW, Jang HJ, Park IH, Oh J, Seo JS, Kim JJ, Seok S, Lee YJ, Hong S, An S, Kim SY, Kim YB, Hwang J, Lee H, Kim HB, Choi K, Park JW, Seo J, Yun J, Shin J, Lee H, Kim K, Lee D, Lee H, Nam KT, Seong JK. Mouse models of lung-specific SARS-CoV-2 infection with moderate pathological traits. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1055811] [Reference Citation Analysis]
54 Liu Q, Su Q, Zhang F, Tun HM, Mak JWY, Lui GC, Ng SSS, Ching JYL, Li A, Lu W, Liu C, Cheung CP, Hui DSC, Chan PKS, Chan FKL, Ng SC. Multi-kingdom gut microbiota analyses define COVID-19 severity and post-acute COVID-19 syndrome. Nat Commun 2022;13:6806. [PMID: 36357381 DOI: 10.1038/s41467-022-34535-8] [Reference Citation Analysis]
55 Saini P, Adeniji OS, Abdel-Mohsen M. Inhibitory Siglec-sialic acid interactions in balancing immunological activation and tolerance during viral infections. EBioMedicine 2022;86:104354. [PMID: 36371982 DOI: 10.1016/j.ebiom.2022.104354] [Reference Citation Analysis]
56 Rainey AL, Loeb JC, Robinson SE, Davis P, Liang S, Lednicky JA, Coker ES, Sabo-Attwood T, Bisesi JH Jr, Maurelli AT. Assessment of a mass balance equation for estimating community-level prevalence of COVID-19 using wastewater-based epidemiology in a mid-sized city. Sci Rep 2022;12:19085. [PMID: 36352013 DOI: 10.1038/s41598-022-21354-6] [Reference Citation Analysis]
57 Sfera A, Osorio C, Hazan S, Kozlakidis Z, Maldonado JC, Zapata-martín del Campo CM, Anton JJ, Rahman L, Andronescu CV, Nicolson GL. Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies. Endocrines 2022;3:703-725. [DOI: 10.3390/endocrines3040058] [Reference Citation Analysis]
58 Nazerian Y, Ghasemi M, Yassaghi Y, Nazerian A, Mahmoud Hashemi S. Role of SARS-CoV-2-induced Cytokine Storm in Multi-Organ Failure: Molecular Pathways and Potential Therapeutic Options. International Immunopharmacology 2022. [DOI: 10.1016/j.intimp.2022.109428] [Reference Citation Analysis]
59 Péricat D, Leon-icaza SA, Sanchez Rico M, Mühle C, Zoicas I, Schumacher F, Planès R, Mazars R, Gros G, Carpinteiro A, Becker KA, Izopet J, Strub-wourgaft N, Sjö P, Neyrolles O, Kleuser B, Limosin F, Gulbins E, Kornhuber J, Meunier E, Hoertel N, Cougoule C. Antiviral and Anti-Inflammatory Activities of Fluoxetine in a SARS-CoV-2 Infection Mouse Model. IJMS 2022;23:13623. [DOI: 10.3390/ijms232113623] [Reference Citation Analysis]
60 Assante G, Tourna A, Carpani R, Ferrari F, Prati D, Peyvandi F, Blasi F, Bandera A, Le Guennec A, Chokshi S, Patel VC, Cox IJ, Valenti L, Youngson NA. Reduced circulating FABP2 in patients with moderate to severe COVID-19 may indicate enterocyte functional change rather than cell death. Sci Rep 2022;12:18792. [PMID: 36335131 DOI: 10.1038/s41598-022-23282-x] [Reference Citation Analysis]
61 Almeida A, Baixauli J, A Cienfuegos J, Valentí V, Rotellar F. Concomitant aortic, inferior mesenteric artery thrombosis and sigmoid colon perforation in severe COVID-19 disease. Cir Esp (Engl Ed) 2022;100:736-8. [PMID: 36270704 DOI: 10.1016/j.cireng.2022.08.025] [Reference Citation Analysis]
62 Hagen SJ. Gastroduodenal injury and repair: novel targets for therapeutic intervention. Curr Opin Gastroenterol 2022;38:607-12. [PMID: 36219128 DOI: 10.1097/MOG.0000000000000883] [Reference Citation Analysis]
63 Forsyth CB, Voigt RM, Swanson GR, Bishehsari F, Shaikh M, Zhang L, Engen P, Keshavarzian A. Alcohol use disorder as a potential risk factor for COVID-19 severity: A narrative review. Alcohol Clin Exp Res 2022;46:1930-43. [PMID: 36394508 DOI: 10.1111/acer.14936] [Reference Citation Analysis]
64 Bernard-Raichon L, Venzon M, Klein J, Axelrad JE, Zhang C, Sullivan AP, Hussey GA, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, Putzel G, Pironti A, Wilder E, Thorpe LE, Littman DR, Dittmann M, Stapleford KA, Shopsin B, Torres VJ, Ko AI, Iwasaki A, Cadwell K, Schluter J; Yale IMPACT Research Team. Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nat Commun 2022;13:5926. [PMID: 36319618 DOI: 10.1038/s41467-022-33395-6] [Reference Citation Analysis]
65 Nalwa A, Vishwajeet V, Kumar D, Purohit A, Garg M, Kanchan DT, Dutt N, Kothari N, Bhaskar S, Elhence P, Bhatia P, Nag VL, Garg MK, Misra S, Pandey A, Dhawan A. Ultrastructural Changes in Autopsy Tissues of COVID-19 Patients. Cureus 2022;14:e31932. [PMID: 36582579 DOI: 10.7759/cureus.31932] [Reference Citation Analysis]
66 Yaugel-Novoa M, Bourlet T, Paul S. Role of the humoral immune response during COVID-19: guilty or not guilty? Mucosal Immunol 2022;15:1170-80. [PMID: 36195658 DOI: 10.1038/s41385-022-00569-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Borczuk AC, Yantiss RK. The pathogenesis of coronavirus-19 disease. J Biomed Sci 2022;29:87. [PMID: 36289507 DOI: 10.1186/s12929-022-00872-5] [Reference Citation Analysis]
68 Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol 2022;:1-15. [PMID: 36271144 DOI: 10.1038/s41575-022-00698-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Sokouti B. A systems biology approach for investigating significantly expressed genes among COVID-19, hepatocellular carcinoma, and chronic hepatitis B. Egypt J Med Hum Genet 2022;23. [DOI: 10.1186/s43042-022-00360-3] [Reference Citation Analysis]
70 Shen S, Gong M, Wang G, Dua K, Xu J, Xu X, Liu G. COVID-19 and Gut Injury. Nutrients 2022;14:4409. [DOI: 10.3390/nu14204409] [Reference Citation Analysis]
71 Zhang L, Yu W, Zhao Y, Chen X, Wang P, Fan X, Xu Z. Albumin Infusion May Improve the Prognosis of Critical COVID-19 Patients with Hypoalbuminemia in the Intensive Care Unit: A Retrospective Cohort Study. Infect Drug Resist 2022;15:6039-50. [PMID: 36277241 DOI: 10.2147/IDR.S383818] [Reference Citation Analysis]
72 Li X, Chen F, Cheng J, Li Y, Wang J, Wang J, Liu C. The correlation between COVID-19 segmentation volume based on artificial intelligence technology and gastric wall edema: a multi-center study in Wuhan. Chin J Acad Radiol 2022. [DOI: 10.1007/s42058-022-00104-7] [Reference Citation Analysis]
73 Zhang F, Wang Z, Vijver MG, Peijnenburg WJGM. Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure. Sci Total Environ 2022;842:156812. [PMID: 35738381 DOI: 10.1016/j.scitotenv.2022.156812] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
74 Aguilar C, Pauzuolis M, Pompaiah M, Vafadarnejad E, Arampatzi P, Fischer M, Narres D, Neyazi M, Kayisoglu Ö, Sell T, Blüthgen N, Morkel M, Wiegering A, Germer CT, Kircher S, Rosenwald A, Saliba AE, Bartfeld S. Helicobacter pylori shows tropism to gastric differentiated pit cells dependent on urea chemotaxis. Nat Commun 2022;13:5878. [PMID: 36198679 DOI: 10.1038/s41467-022-33165-4] [Reference Citation Analysis]
75 Ozden A, Doneray H, Hafize Erdeniz EH, Altinkaynak K, Igan H. Clinical and Laboratory Findings by Serum Vitamin D Levels in Children with COVID-19. Eurasian J Med 2022;54:285-91. [PMID: 36301009 DOI: 10.5152/eurasianjmed.2022.22213] [Reference Citation Analysis]
76 Díaz LA, García-salum T, Fuentes-lópez E, Reyes D, Ortiz J, Chahuan J, Levican J, Almonacid LI, Valenzuela GH, Serrano E, Budnik S, Gandara V, Gallardo A, Seydewitz MF, Ferrés M, Cofré C, Álvarez M, Pavez C, Candia R, Monrroy H, Espino A, Rada G, Ortiz L, Valderrama S, Salinas E, Toro A, Ortega M, Pizarro M, Medina RA, Riquelme A. High prevalence of SARS-CoV-2 detection and prolonged viral shedding in stools: A systematic review and cohort study. Gastroenterología y Hepatología (English Edition) 2022;45:593-604. [DOI: 10.1016/j.gastre.2021.12.006] [Reference Citation Analysis]
77 Dönmez Türkmen A, Ünlü G, Musayeva G, Akkuş E, Özen AG, Önal P, Kuşkucu M, Midilli K, Kılınç AA, Çokuğraş H, Çokuğraş FÇ, Beşer ÖF. Can the Prognosis of COVID-19 Disease Be Determined by Fecal Markers and Cytokines? J Interferon Cytokine Res 2022. [PMID: 36179036 DOI: 10.1089/jir.2022.0098] [Reference Citation Analysis]
78 Clerbaux L, Mayasich SA, Muñoz A, Soares H, Petrillo M, Albertini MC, Lanthier N, Grenga L, Amorim M. Gut as an Alternative Entry Route for SARS-CoV-2: Current Evidence and Uncertainties of Productive Enteric Infection in COVID-19. JCM 2022;11:5691. [DOI: 10.3390/jcm11195691] [Reference Citation Analysis]
79 Rafieepoor M, Mohebbi SR, Hosseini SM, Tanhaei M, Saeedi Niasar M, Kazemian S, Asadzadeh Aghdaei H, Moore MD, Zali MR. Detection of SARS-CoV-2 RNA in selected agricultural and food retail environments in Tehran, Iran. Front Public Health 2022;10:823061. [PMID: 36211691 DOI: 10.3389/fpubh.2022.823061] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Alzahrani OR, Hawsawi YM, Alanazi AD, Alatwi HE, Rather IA. In Vitro Evaluation of Leuconostoc mesenteroides Cell-Free-Supernatant GBUT-21 against SARS-CoV-2. Vaccines 2022;10:1581. [DOI: 10.3390/vaccines10101581] [Reference Citation Analysis]
81 Kotani N, Nakano T, Kuwahara R. Host cell membrane proteins located near SARS-CoV-2 spike protein attachment sites are identified using proximity labeling and proteomic analysis. J Biol Chem 2022;:102500. [PMID: 36152751 DOI: 10.1016/j.jbc.2022.102500] [Reference Citation Analysis]
82 Szabó L, Seubert AC, Kretzschmar K. Modelling adult stem cells and their niche in health and disease with epithelial organoids. Semin Cell Dev Biol 2022:S1084-9521(22)00268-3. [PMID: 36127261 DOI: 10.1016/j.semcdb.2022.09.006] [Reference Citation Analysis]
83 Mozaffari SA, Salehi A, Mousavi E, Zaman BA, Nassaj AE, Ebrahimzadeh F, Nasiri H, Valedkarimi Z, Adili A, Asemani G, Akbari M. SARS-CoV-2-associated gut microbiome alteration; A new contributor to colorectal cancer pathogenesis. Pathol Res Pract 2022;239:154131. [PMID: 36191449 DOI: 10.1016/j.prp.2022.154131] [Reference Citation Analysis]
84 Patten JJ, Keiser PT, Morselli-Gysi D, Menichetti G, Mori H, Donahue CJ, Gan X, Valle ID, Geoghegan-Barek K, Anantpadma M, Boytz R, Berrigan JL, Stubbs SH, Ayazika T, O'Leary C, Jalloh S, Wagner F, Ayehunie S, Elledge SJ, Anderson D, Loscalzo J, Zitnik M, Gummuluru S, Namchuk MN, Barabási AL, Davey RA. Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization. iScience 2022;25:104925. [PMID: 35992305 DOI: 10.1016/j.isci.2022.104925] [Reference Citation Analysis]
85 Wei X, Rong N, Liu J. Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Front Immunol 2022;13:993754. [DOI: 10.3389/fimmu.2022.993754] [Reference Citation Analysis]
86 Clerbaux L, Fillipovska J, Muñoz A, Petrillo M, Coecke S, Amorim M, Grenga L. Mechanisms Leading to Gut Dysbiosis in COVID-19: Current Evidence and Uncertainties Based on Adverse Outcome Pathways. JCM 2022;11:5400. [DOI: 10.3390/jcm11185400] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
87 Venkatakrishnan AJ, Anand P, Lenehan PJ, Suratekar R, Raghunathan B, Niesen MJM, Soundararajan V. On the Origins of Omicron's Unique Spike Gene Insertion. Vaccines (Basel) 2022;10. [PMID: 36146586 DOI: 10.3390/vaccines10091509] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022;8:1758-814. [PMID: 35940589 DOI: 10.1021/acsinfecdis.2c00204] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
89 Palomino-Kobayashi LA, Ymaña B, Ruiz J, Mayanga-Herrera A, Ugarte-Gil MF, Pons MJ. Zonulin, a marker of gut permeability, is associated with mortality in a cohort of hospitalised peruvian COVID-19 patients. Front Cell Infect Microbiol 2022;12:1000291. [PMID: 36147602 DOI: 10.3389/fcimb.2022.1000291] [Reference Citation Analysis]
90 Goh D, Lim JCT, Fernaíndez SB, Joseph CR, Edwards SG, Neo ZW, Lee JN, Caballero SG, Lau MC, Yeong JPS. Case report: Persistence of residual antigen and RNA of the SARS-CoV-2 virus in tissues of two patients with long COVID. Front Immunol 2022;13:939989. [DOI: 10.3389/fimmu.2022.939989] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Bors LA, Orsolits B, Ahmed NM, Cho H, Merkely B, Földes G. SARS-CoV-2 infection in cardiovascular disease: Unmet need of stem cell models. PhysInt 2022. [DOI: 10.1556/2060.2022.00010] [Reference Citation Analysis]
92 Peng L, Gao L, Wu X, Fan Y, Liu M, Chen J, Song J, Kong J, Dong Y, Li B, Liu A, Bao F. Lung Organoids as Model to Study SARS-CoV-2 Infection. Cells 2022;11:2758. [PMID: 36078166 DOI: 10.3390/cells11172758] [Reference Citation Analysis]
93 Natesan Pushparaj P, Damiati LA, Denetiu I, Bakhashab S, Asif M, Hussain A, Ahmed S, Hamdard MH, Rasool M. Deciphering SARS CoV-2-associated pathways from RNA sequencing data of COVID-19-infected A549 cells and potential therapeutics using in silico methods. Medicine 2022;101:e29554. [DOI: 10.1097/md.0000000000029554] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
94 Günther C, Winner B, Neurath MF, Stappenbeck TS. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut 2022;71:1892-908. [PMID: 35636923 DOI: 10.1136/gutjnl-2021-326560] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
95 Stringer AM. Effects of coronavirus disease 19 on the gastrointestinal tract and the potential impact on gastrointestinal toxicities during cancer treatment. Current Opinion in Supportive & Palliative Care 2022;16:168-173. [DOI: 10.1097/spc.0000000000000604] [Reference Citation Analysis]
96 Abou-seri HM, Abdalgaber M, Zahran F. Investigating the Potential Effects of COVID-19 Pandemic on Intestinal Coccidian Infections. J Pure Appl Microbiol 2022;16:1447-1464. [DOI: 10.22207/jpam.16.3.51] [Reference Citation Analysis]
97 Wang T, Cao Y, Zhang H, Wang Z, Man CH, Yang Y, Chen L, Xu S, Yan X, Zheng Q, Wang YP. COVID-19 metabolism: Mechanisms and therapeutic targets. MedComm (2020) 2022;3:e157. [PMID: 35958432 DOI: 10.1002/mco2.157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Coşkun AG, Temelli S, Eyigör A. Clues for zoonotic potential and transmission of Sars-CoV-2 via food and water. J Ist Vet Sci 2022;6:52-64. [DOI: 10.30704/http-www-jivs-net.1072726] [Reference Citation Analysis]
99 Liu A, Gao W, Zhu Y, Hou X, Chu H. Gut Non-Bacterial Microbiota: Emerging Link to Irritable Bowel Syndrome. Toxins 2022;14:596. [DOI: 10.3390/toxins14090596] [Reference Citation Analysis]
100 Balaphas A, Gkoufa K, Colucci N, Perdikis KC, Gaudet-Blavignac C, Pataky Z, Carballo S, Ris F, Stirnemann J, Lovis C, Goossens N, Toso C. Abdominal pain patterns during COVID-19: an observational study. Sci Rep 2022;12:14677. [PMID: 36038578 DOI: 10.1038/s41598-022-18753-0] [Reference Citation Analysis]
101 Norouzi Masir M, Shirvaliloo M. Symptomatology and microbiology of the gastrointestinal tract in post‐COVID conditions. JGH Open 2022. [DOI: 10.1002/jgh3.12811] [Reference Citation Analysis]
102 Fernández-plata R, Higuera-iglesias A, Torres-espíndola LM, Aquino-gálvez A, Velázquez Cruz R, Camarena Á, Chávez Alderete J, Romo García J, Alvarado-vásquez N, Martínez Briseño D, Castillejos-lópez M, Group RW. Risk of Pulmonary Fibrosis and Persistent Symptoms Post-COVID-19 in a Cohort of Outpatient Health Workers. Viruses 2022;14:1843. [DOI: 10.3390/v14091843] [Reference Citation Analysis]
103 Zeng R, Ma Y, Zhang L, Luo D, Jiang R, Wu H, Zhuo Z, Yang Q, Li J, Leung FW, Chen Q, Sha W, Chen H. Associations of proton pump inhibitors with susceptibility to pneumonia, influenza, and COVID-19: evidence from a large population based cohort study.. [DOI: 10.1101/2022.08.21.22279047] [Reference Citation Analysis]
104 Okuyucu M, Yalcin Kehribar D, Çapraz M, Çapraz A, Arslan M, Çelik ZB, Usta B, Birinci A, Ozgen M. The Relationship Between COVID-19 Disease Severity and Zonulin Levels. Cureus 2022. [DOI: 10.7759/cureus.28255] [Reference Citation Analysis]
105 Bauer L, Rijsbergen LC, Leijten L, Benavides FFW, Noack D, Lamers MM, Haagmans BL, de Vries RD, de Swart RL, van Riel D. The pro-inflammatory response to influenza A virus infection is fueled by endothelial cells.. [DOI: 10.1101/2022.08.19.504520] [Reference Citation Analysis]
106 Zhu L, Fan Y, Huang X, Chen T, Xu X, Xu F, Gong Y, Chen P. Patent bibliometric analysis for global trend of organoid technologies in the past decade. iScience 2022;25:104728. [PMID: 35880045 DOI: 10.1016/j.isci.2022.104728] [Reference Citation Analysis]
107 Rodrigues PB, Gomes GF, Angelim MKSC, Souza GF, Muraro SP, Toledo-teixeira DA, Rattis BAC, Passos AS, Pral LP, de Rezende Rodovalho V, dos Santos P. Gomes AB, Matheus VA, Antunes ASLM, Crunfli F, Antunes KH, de Souza APD, Consonni SR, Leiria LO, Alves-filho JC, Cunha TM, Moraes-vieira PMM, Proença-módena JL, R. Vinolo MA. Impact of Microbiota Depletion by Antibiotics on SARS-CoV-2 Infection of K18-hACE2 Mice. Cells 2022;11:2572. [DOI: 10.3390/cells11162572] [Reference Citation Analysis]
108 Valentino MS, Esposito C, Colosimo S, Caprio AM, Puzone S, Guarino S, Marzuillo P, Miraglia del Giudice E, Di Sessa A. Gut microbiota and COVID-19: An intriguing pediatric perspective. World J Clin Cases 2022; 10(23): 8076-8087 [DOI: 10.12998/wjcc.v10.i23.8076] [Reference Citation Analysis]
109 Aktaş E, Özdemir Özgentürk N. Revealing In Silico that Bacteria's Outer Membrane Proteins may Help our Bodies Replicate and Carry Severe Acute Respiratory Syndrome Coronavirus 2. Bioinform Biol Insights 2022;16:11779322221116320. [PMID: 35966808 DOI: 10.1177/11779322221116320] [Reference Citation Analysis]
110 Temena MA, Acar A. Increased TRIM31 gene expression is positively correlated with SARS-CoV-2 associated genes TMPRSS2 and TMPRSS4 in gastrointestinal cancers. Sci Rep 2022;12:11763. [PMID: 35970857 DOI: 10.1038/s41598-022-15911-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
111 Li S, Zhou Y, Yan D, Wan Y. An Update on the Mutual Impact between SARS-CoV-2 Infection and Gut Microbiota. Viruses 2022;14:1774. [DOI: 10.3390/v14081774] [Reference Citation Analysis]
112 Wurtzer S, Lacote S, Murri S, Marianneau P, Monchatre-leroy E, Boni M, Ferraris O, Maday Y, Kébé O, Dia N, Peyrefitte C, Sokol H, Moulin L, Maréchal V; OBEPINE Consortium. Reduction in SARS-CoV-2 Virus Infectivity in Human and Hamster Feces. Viruses 2022;14:1777. [DOI: 10.3390/v14081777] [Reference Citation Analysis]
113 Zhang CY, Liu S, Yang M. Crosstalk between gut microbiota and COVID-19 impacts pancreatic cancer progression. World J Gastrointest Oncol 2022; 14(8): 1456-1468 [DOI: 10.4251/wjgo.v14.i8.1456] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
114 Pandrea I, Brooks K, Desai RP, Tare M, Brenchley JM, Apetrei C. I’ve looked at gut from both sides now: Gastrointestinal tract involvement in the pathogenesis of SARS-CoV-2 and HIV/SIV infections. Front Immunol 2022;13:899559. [DOI: 10.3389/fimmu.2022.899559] [Reference Citation Analysis]
115 Belabbes FZ, Maizi M, Belghyti N, Hmamouchi I, Khalis M, El Aidaoui K, Kantri A, El Kettani C, Naitlhou A, Rouibaa F. Prevalence and Severity of Gastrointestinal Symptoms in COVID-19 Patients in Casablanca: A Retrospective Cohort Study. Cureus 2022. [DOI: 10.7759/cureus.27815] [Reference Citation Analysis]
116 Chiu MC, Li C, Liu X, Song W, Wan Z, Yu Y, Huang J, Xiao D, Chu H, Cai JP, To KK, Yuen KY, Zhou J. Human Nasal Organoids Model SARS-CoV-2 Upper Respiratory Infection and Recapitulate the Differential Infectivity of Emerging Variants. mBio 2022;:e0194422. [PMID: 35938726 DOI: 10.1128/mbio.01944-22] [Reference Citation Analysis]
117 Iijima H, Kubota M, Ogimi C. Clinical Characteristics of Pediatric Patients With COVID-19 between Omicron era vs. Pre-Omicron era. J Infect Chemother 2022:S1341-321X(22)00213-6. [PMID: 35933077 DOI: 10.1016/j.jiac.2022.07.016] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
118 de Beer M, Daviran D, Roverts R, Rutten L, Macías Sánchez E, Metz JR, Sommerdijk N, Akiva A. Precise targeting for 3D cryo-correlative light and electron microscopy volume imaging of tissues using a FinderTOP.. [DOI: 10.1101/2022.07.31.502212] [Reference Citation Analysis]
119 Simoneau CR, Chen P, Xing GK, Khalid MM, Meyers NL, Hayashi JM, Taha TY, Leon KE, Ashuach T, Fontaine KA, Rodriguez L, Joehnk B, Walcott K, Vasudevan S, Fang X, Maishan M, Schultz S, Roose J, Matthay MA, Sil A, Arjomandi M, Yosef N, Ott M. NF-κB inhibitor alpha has a cross-variant role during SARS-CoV-2 infection in ACE2-overexpressing human airway organoids.. [DOI: 10.1101/2022.08.02.502100] [Reference Citation Analysis]
120 Leppkes M, Neurath MF. Rear Window-What Can the Gut Tell Us About Long-COVID? Gastroenterology 2022;163:376-8. [PMID: 35660031 DOI: 10.1053/j.gastro.2022.05.044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Miyakawa K, Machida M, Kawasaki T, Nishi M, Akutsu H, Ryo A. Reduced Replication Efficacy of Severe Acute Respiratory Syndrome Coronavirus 2 Omicron Variant in "Mini-gut" Organoids. Gastroenterology 2022;163:514-6. [PMID: 35500619 DOI: 10.1053/j.gastro.2022.04.043] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
122 Jayavel S, Parit R, Boopalakrishnan G, Rexliene MJ, Praveen R, Viswananathan B. Importance of wastewater-based epidemiology for detecting and monitoring SARS-CoV-2. Case Studies in Chemical and Environmental Engineering 2022. [DOI: 10.1016/j.cscee.2022.100241] [Reference Citation Analysis]
123 Zollner A, Koch R, Jukic A, Pfister A, Meyer M, Rössler A, Kimpel J, Adolph TE, Tilg H. Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in Inflammatory Bowel Diseases. Gastroenterology 2022;163:495-506.e8. [PMID: 35508284 DOI: 10.1053/j.gastro.2022.04.037] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 32.0] [Reference Citation Analysis]
124 Lam SM, Huang X, Shui G. Neurological aspects of SARS-CoV-2 infection: lipoproteins and exosomes as Trojan horses. Trends Endocrinol Metab 2022;33:554-68. [PMID: 35613979 DOI: 10.1016/j.tem.2022.04.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
125 Kugler TE, Malovichko IS, Gnilitskaya VB, Khristulenko AL, Yarovaya NF. Proton Pump Inhibitors in the COVID-19 Pandemic. Arhivʺ vnutrennej mediciny 2022;12:245-253. [DOI: 10.20514/2226-6704-2022-12-4-245-253] [Reference Citation Analysis]
126 Koc HC, Xiao J, Liu W, Li Y, Chen G. Long COVID and its Management. Int J Biol Sci 2022;18:4768-80. [PMID: 35874958 DOI: 10.7150/ijbs.75056] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
127 Kelesidis T, Mantzoros CS. Cross-talk between SARS-CoV-2 infection and the insulin/IGF signaling pathway: Implications for metabolic diseases in COVID-19 and for post-acute sequelae of SARS-CoV-2 infection. Metabolism 2022;134:155267. [PMID: 35901934 DOI: 10.1016/j.metabol.2022.155267] [Reference Citation Analysis]
128 Nolan LS, Baldridge MT. Advances in understanding interferon-mediated immune responses to enteric viruses in intestinal organoids. Front Immunol 2022;13:943334. [DOI: 10.3389/fimmu.2022.943334] [Reference Citation Analysis]
129 Corsini NS, Knoblich JA. Human organoids: New strategies and methods for analyzing human development and disease. Cell 2022;185:2756-69. [PMID: 35868278 DOI: 10.1016/j.cell.2022.06.051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
130 Thiele I, Fleming RMT. Whole-body metabolic modelling predicts isoleucine dependency of SARS-CoV-2 replication. Comput Struct Biotechnol J 2022. [PMID: 35874091 DOI: 10.1016/j.csbj.2022.07.019] [Reference Citation Analysis]
131 Arnaboldi S, Mangeri L, Galuppini E, Righi F, Tilola M, Scarazzato A, Bertasi B, Finazzi G, Varisco G, Filipello V, Losio M. Is SARS-CoV-2 a Concern for Food Safety? A Very Low Prevalence from a Food Survey during the COVID-19 Pandemic in Northern Italy. Foods 2022;11:2096. [DOI: 10.3390/foods11142096] [Reference Citation Analysis]
132 Shih AR, Misdraji J. COVID-19: Gastrointestinal and Hepatobiliary Manifestations. Hum Pathol 2022:S0046-8177(22)00179-4. [PMID: 35843340 DOI: 10.1016/j.humpath.2022.07.006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
133 Osan J, Talukdar SN, Feldmann F, Demontigny BA, Jerome K, Bailey KL, Feldmann H, Mehedi M, I. Parra G. Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease. Microbiol Spectr. [DOI: 10.1128/spectrum.00459-22] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
134 Bestion E, Halfon P, Mezouar S, Mège JL. Cell and Animal Models for SARS-CoV-2 Research. Viruses 2022;14:1507. [PMID: 35891487 DOI: 10.3390/v14071507] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
135 Li P, Wang Y, Lamers MM, Lavrijsen M, Iriondo C, de Vries AC, Rottier RJ, Peppelenbosch MP, Haagmans BL, Pan Q. Recapitulating infection, thermal sensitivity and antiviral treatment of seasonal coronaviruses in human airway organoids. eBioMedicine 2022;81:104132. [DOI: 10.1016/j.ebiom.2022.104132] [Reference Citation Analysis]
136 Hu X, Niu Y, Luo P, Xiao F, Yuan F, Yin H, Chen S, Guo F. Amino acid sensor GCN2 promotes SARS-CoV-2 receptor ACE2 expression in response to amino acid deprivation. Commun Biol 2022;5:651. [PMID: 35778545 DOI: 10.1038/s42003-022-03609-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
137 Zhang J, Liu X, Lin J, Bao X, Peng J, Gong Z, Luan X, Chen Y. Biomimetic engineered nanocarriers inspired by viruses for oral-drug delivery. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121979] [Reference Citation Analysis]
138 Rovito R, Augello M, Ben-Haim A, Bono V, d'Arminio Monforte A, Marchetti G. Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Front Immunol 2022;13:912336. [PMID: 35757770 DOI: 10.3389/fimmu.2022.912336] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
139 Makhmalbaf M, Hosseini SM, Aghdaei HA, Niasar MS, Shoraka S, Yadegar A, Baradaran Ghavami S, Shahrokh S, Moshari M, Malekpour H, Zali MR, Mohebbi SR. Detection of SARS-CoV-2 Genome in Stool and Plasma Samples of Laboratory Confirmed Iranian COVID-19 Patients. Front Mol Biosci 2022;9:865129. [DOI: 10.3389/fmolb.2022.865129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Chia SPS, Kong SLY, Pang JKS, Soh B. 3D Human Organoids: The Next “Viral” Model for the Molecular Basis of Infectious Diseases. Biomedicines 2022;10:1541. [DOI: 10.3390/biomedicines10071541] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
141 Che YH, Kim YJ. Understanding the cellular pathogenesis of COVID-19 symptoms using organoid technology. Organoid 2022;2:e16. [DOI: 10.51335/organoid.2022.2.e16] [Reference Citation Analysis]
142 Wang G, Pan L, Zhao J, Tang J, Fang Y, Sun H, Seesaha PK, Chen W, Chen X. Case fatality rate of the adult in-patients with COVID-19 and digestive system tumors: A systematic review and meta-analysis. Medicine (Baltimore) 2022;101:e29364. [PMID: 35758367 DOI: 10.1097/MD.0000000000029364] [Reference Citation Analysis]
143 Mykytyn AZ, Rissmann M, Kok A, Rosu ME, Schipper D, Breugem TI, van den Doel PB, Chandler F, Bestebroer T, de Wit M, van Royen ME, Molenkamp R, Oude Munnink BB, de Vries RD, GeurtsvanKessel C, Smith DJ, Koopmans MPG, Rockx B, Lamers MM, Fouchier R, Haagmans BL. Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct. Sci Immunol 2022;:eabq4450. [PMID: 35737747 DOI: 10.1126/sciimmunol.abq4450] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
144 Rabaan AA, Bakhrebah MA, Mutair AA, Alhumaid S, Al-jishi JM, Alsihati J, Albayat H, Alsheheri A, Aljeldah M, Garout M, Alfouzan WA, Alhashem YN, Albahrani S, Alshamrani SA, Alotaibi S, Alramadhan AA, Albasha HN, Hajissa K, Temsah M. Systematic Review on Pathophysiological Complications in Severe COVID-19 among the Non-Vaccinated and Vaccinated Population. Vaccines 2022;10:985. [DOI: 10.3390/vaccines10070985] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
145 Chiu MC, Li C, Liu X, Yu Y, Huang J, Wan Z, Xiao D, Chu H, Cai JP, Zhou B, Sit KY, Au WK, Wong KK, Li G, Chan JF, To KK, Chen Z, Jiang S, Clevers H, Yuen KY, Zhou J. A bipotential organoid model of respiratory epithelium recapitulates high infectivity of SARS-CoV-2 Omicron variant. Cell Discov 2022;8:57. [PMID: 35710786 DOI: 10.1038/s41421-022-00422-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
146 Li Q, Zhang T, Wang Y, Yang S, Luo J, Fang F, Liao J, Wen W, Cui H, Shang H. Qing-Wen-Jie-Re Mixture Ameliorates Poly (I:C)-Induced Viral Pneumonia Through Regulating the Inflammatory Response and Serum Metabolism. Front Pharmacol 2022;13:891851. [DOI: 10.3389/fphar.2022.891851] [Reference Citation Analysis]
147 Jedrzejak AP, Urbaniak EK, Wasko JA, Ziojla N, Borowiak M. Diabetes and SARS-CoV-2–Is There a Mutual Connection? Front Cell Dev Biol 2022;10:913305. [DOI: 10.3389/fcell.2022.913305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
148 Hirano J, Murakami K, Hayashi T. CRISPR-Cas9-Based Technology for Studying Enteric Virus Infection. Front Genome Ed 2022;4:888878. [DOI: 10.3389/fgeed.2022.888878] [Reference Citation Analysis]
149 Zhou Y, Liu Y, Gupta S, Paramo MI, Hou Y, Mao C, Luo Y, Judd J, Wierbowski S, Bertolotti M, Nerkar M, Jehi L, Drayman N, Nicolaescu V, Gula H, Tay S, Randall G, Lis JT, Feschotte C, Erzurum SC, Cheng F, Yu H. A comprehensive SARS-CoV-2-human protein-protein interactome network identifies pathobiology and host-targeting therapies for COVID-19. Res Sq 2022:rs. [PMID: 35677070 DOI: 10.21203/rs.3.rs-1354127/v2] [Reference Citation Analysis]
150 Frere JJ, Serafini RA, Pryce KD, Zazhytska M, Oishi K, Golynker I, Panis M, Zimering J, Horiuchi S, Hoagland DA, Møller R, Ruiz A, Kodra A, Overdevest JB, Canoll PD, Borczuk AC, Chandar V, Bram Y, Schwartz R, Lomvardas S, Zachariou V, tenOever BR. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations post recovery. Sci Transl Med . [DOI: 10.1126/scitranslmed.abq3059] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 15.0] [Reference Citation Analysis]
151 Săbiescu DM, Kamal AM, Kamal CK, Alexandru DO, Mitruț P. Liver damage in the context of SARS-CoV-2. Covid-19 treatment and its effects on the liver. J Med Life 2022;15:727-34. [PMID: 35928369 DOI: 10.25122/jml-2022-0177] [Reference Citation Analysis]
152 Chen T, Hsu M, Lee M, Chou C. Gastrointestinal Involvement in SARS-CoV-2 Infection. Viruses 2022;14:1188. [DOI: 10.3390/v14061188] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
153 Thirumdas R. Inactivation of viruses related to foodborne infections using cold plasma technology. Journal of Food Safety. [DOI: 10.1111/jfs.12988] [Reference Citation Analysis]
154 Zyoud SH, Al-Jabi SW, Shahwan MJ, Jairoun AA. Global research production pertaining to gastrointestinal involvement in COVID-19: A bibliometric and visualised study. World J Gastrointest Surg 2022; 14(5): 494-505 [DOI: 10.4240/wjgs.v14.i5.494] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
155 Zankharia U, Yadav A, Yi Y, Hahn BH, Collman RG. Highly restricted SARS-CoV-2 receptor expression and resistance to infection by primary human monocytes and monocyte-derived macrophages. J Leukoc Biol 2022. [PMID: 35621385 DOI: 10.1002/JLB.4COVA1121-579RR] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
156 Dmytrenko O, Lavine KJ. Cardiovascular Tropism and Sequelae of SARS-CoV-2 Infection. Viruses 2022;14:1137. [PMID: 35746609 DOI: 10.3390/v14061137] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
157 Tang XY, Wu S, Wang D, Chu C, Hong Y, Tao M, Hu H, Xu M, Guo X, Liu Y. Human organoids in basic research and clinical applications. Signal Transduct Target Ther 2022;7:168. [PMID: 35610212 DOI: 10.1038/s41392-022-01024-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
158 Zhang E, Fang M, Jones C, Minze LJ, Xing J, Zhang Z. Mechanisms involved in controlling RNA virus-induced intestinal inflammation. Cell Mol Life Sci 2022;79:313. [PMID: 35604464 DOI: 10.1007/s00018-022-04332-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Ning T, Liu S, Xu J, Yang Y, Zhang N, Xie S, Min L, Zhang S, Zhu S, Wang Y. Potential intestinal infection and faecal-oral transmission of human coronaviruses. Rev Med Virol 2022;:e2363. [PMID: 35584273 DOI: 10.1002/rmv.2363] [Reference Citation Analysis]
160 Wang S, Gao H, Wang X, Ma X, Zhang L, Xing Y, Jia Y, Wang Y. Network Pharmacology and Bioinformatics Analyses Identify Intersection Genes of Vitamin D3 and COVID-19 as Potential Therapeutic Targets. Front Pharmacol 2022;13:874637. [PMID: 35571107 DOI: 10.3389/fphar.2022.874637] [Reference Citation Analysis]
161 Lockhart A, Mucida D, Parsa R. Immunity to enteric viruses. Immunity 2022;55:800-18. [PMID: 35545029 DOI: 10.1016/j.immuni.2022.04.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
162 Kianpour M, Akbarian M, Uversky VN. Nanoparticles for Coronavirus Control. Nanomaterials (Basel) 2022;12:1602. [PMID: 35564311 DOI: 10.3390/nano12091602] [Reference Citation Analysis]
163 Elnaggar M, Abomhya A, Elkhattib I, Dawoud N, Doshi R. COVID-19 and liver diseases, what we know so far. World J Clin Cases 2022; 10(13): 3969-3980 [DOI: 10.12998/wjcc.v10.i13.3969] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
164 Karvas RM, Khan SA, Verma S, Yin Y, Kulkarni D, Dong C, Park KM, Chew B, Sane E, Fischer LA, Kumar D, Ma L, Boon ACM, Dietmann S, Mysorekar IU, Theunissen TW. Stem-cell-derived trophoblast organoids model human placental development and susceptibility to emerging pathogens. Cell Stem Cell 2022;29:810-825.e8. [PMID: 35523141 DOI: 10.1016/j.stem.2022.04.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
165 Osman IO, Garrec C, de Souza GAP, Zarubica A, Belhaouari DB, Baudoin J, Lepidi H, Mege J, Malissen B, Scola BL, Devaux CA. Control of CDH1/E-Cadherin Gene Expression and Release of a Soluble Form of E-Cadherin in SARS-CoV-2 Infected Caco-2 Intestinal Cells: Physiopathological Consequences for the Intestinal Forms of COVID-19. Front Cell Infect Microbiol 2022;12:798767. [DOI: 10.3389/fcimb.2022.798767] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
166 Hu S, Buser E, Arredondo J, Relyea D, Santos Rocha C, Dandekar S. Altered Expression of ACE2 and Co-receptors of SARS-CoV-2 in the Gut Mucosa of the SIV Model of HIV/AIDS. Front Microbiol 2022;13:879152. [PMID: 35495669 DOI: 10.3389/fmicb.2022.879152] [Reference Citation Analysis]
167 Poletti M, Treveil A, Csabai L, Gul L, Modos D, Madgwick M, Olbei M, Bohar B, Valdeolivas A, Turei D, Verstockt B, Triana S, Alexandrov T, Saez-rodriguez J, Stanifer ML, Boulant S, Korcsmaros T. Mapping the epithelial–immune cell interactome upon infection in the gut and the upper airways. npj Syst Biol Appl 2022;8. [DOI: 10.1038/s41540-022-00224-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
168 Sansotta N, Norsa L, D'Antiga L. Gastrointestinal coronavirus disease 2019 manifestations in childhood. Curr Opin Clin Nutr Metab Care 2022;25:195-202. [PMID: 35199658 DOI: 10.1097/MCO.0000000000000825] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
169 Fiorito S, Soligo M, Gao Y, Ogulur I, Akdis CA, Bonini S. Is the epithelial barrier hypothesis the key to understanding the higher incidence and excess mortality during COVID-19 pandemic? The case of Northern Italy. Allergy 2022;77:1408-17. [PMID: 35102595 DOI: 10.1111/all.15239] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
170 Mo S, Guan R, Zhang L, Cai S, Peng J, Hua G. The application and research advances of organoids in clinical medicine. Sci Sin -Vitae 2022. [DOI: 10.1360/ssv-2021-0315] [Reference Citation Analysis]
171 Lalioti V, González-Sanz S, Lois-Bermejo I, González-Jiménez P, Viedma-Poyatos Á, Merino A, Pajares MA, Pérez-Sala D. Cell surface detection of vimentin, ACE2 and SARS-CoV-2 Spike proteins reveals selective colocalization at primary cilia. Sci Rep 2022;12:7063. [PMID: 35487944 DOI: 10.1038/s41598-022-11248-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
172 Singh S, Samanta J, Suri V, Bhalla A, Puri GD, Sehgal R, Kochhar R. Presence of diarrhea associated with better outcomes in patients with COVID-19 - A prospective evaluation. Indian J Med Microbiol 2022:S0255-0857(22)00059-7. [PMID: 35483999 DOI: 10.1016/j.ijmmb.2022.04.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
173 Levy G, Guglielmelli P, Langmuir P, Constantinescu S. JAK inhibitors and COVID-19. J Immunother Cancer 2022;10:e002838. [PMID: 35459733 DOI: 10.1136/jitc-2021-002838] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
174 Sen P, Kaur H. In Silico transcriptional analysis of asymptomatic and severe COVID-19 patients reveals the susceptibility of severe patients to other comorbidities and non-viral pathological conditions.. [DOI: 10.1101/2022.04.16.488556] [Reference Citation Analysis]
175 Thiele I, Fleming RM. Whole-body metabolic modelling predicts isoleucine dependency of SARS-CoV-2 replication.. [DOI: 10.1101/2022.04.13.488249] [Reference Citation Analysis]
176 Wu W, Shi D, Zhu X, Xie J, Xu X, Chen Y, Wu J, Li L. Characteristics of COVID-19 Patients With SARS-CoV-2 Positivity in Feces. Front Cell Infect Microbiol 2022;12:853212. [DOI: 10.3389/fcimb.2022.853212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
177 Norris EG, Pan XS, Hocking DC. Receptor binding domain of SARS-CoV-2 is a functional αv-integrin agonist.. [DOI: 10.1101/2022.04.11.487882] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
178 Cortes GM, Marcialis MA, Bardanzellu F, Corrias A, Fanos V, Mussap M. Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Front Microbiol 2022;13:856165. [PMID: 35391730 DOI: 10.3389/fmicb.2022.856165] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
179 Pathak E, Atri N, Mishra R. Single-Cell Transcriptome Analysis Reveals the Role of Pancreatic Secretome in COVID-19 Associated Multi-organ Dysfunctions. Interdiscip Sci Comput Life Sci 2022. [DOI: 10.1007/s12539-022-00513-3] [Reference Citation Analysis]
180 Bauer MS, Gruber S, Hausch A, Gomes PSFC, Milles LF, Nicolaus T, Schendel LC, Navajas PL, Procko E, Lietha D, Melo MCR, Bernardi RC, Gaub HE, Lipfert J. A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions. Proc Natl Acad Sci U S A 2022;119:e2114397119. [PMID: 35312342 DOI: 10.1073/pnas.2114397119] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
181 Nebreda-Mayoral T, Miguel-Gómez MA, March-Rosselló GA, Puente-Fuertes L, Cantón-Benito E, Martínez-García AM, Muñoz-Martín AB, Orduña-Domingo A. Bacterial/fungal infection in hospitalized patients with COVID-19 in a tertiary hospital in the Community of Castilla y León, Spain. Enferm Infecc Microbiol Clin (Engl Ed) 2022;40:158-65. [PMID: 35216948 DOI: 10.1016/j.eimce.2022.02.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
182 Kim HK, Kim H, Lee MK, Choi WH, Jang Y, Shin JS, Park J, Bae DH, Hyun S, Kim KH, Han HW, Lim B, Choi G, Kim M, Chang Lim Y, Yoo J. Generation of human tonsil epithelial organoids as an ex vivo model for SARS-CoV-2 infection. Biomaterials 2022;283:121460. [DOI: 10.1016/j.biomaterials.2022.121460] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
183 Mindt BC, Digiandomenico A. Microbiome Modulation as a Novel Strategy to Treat and Prevent Respiratory Infections. Antibiotics 2022;11:474. [DOI: 10.3390/antibiotics11040474] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
184 Zhang Y, Yan R, Zhou Q. ACE2, B0AT1, and SARS-CoV-2 Spike protein: structural and functional implications. Current Opinion in Structural Biology 2022. [DOI: 10.1016/j.sbi.2022.102388] [Reference Citation Analysis]
185 Guimarães Sousa S, Kleiton de Sousa A, Maria Carvalho Pereira C, Sofia Miranda Loiola Araújo A, de Aguiar Magalhães D, Vieira de Brito T, Barbosa ALDR. SARS-CoV-2 infection causes intestinal cell damage: Role of interferon’s imbalance. Cytokine 2022;152:155826. [DOI: 10.1016/j.cyto.2022.155826] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
186 Wang Y, Wang P, Qin J. Human Organoids and Organs-on-Chips for Addressing COVID-19 Challenges. Adv Sci (Weinh) 2022;9:e2105187. [PMID: 35107217 DOI: 10.1002/advs.202105187] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
187 Ma L, Zhao X, Liu T, Wang Y, Wang J, Kong L, Zhao Q, Chen Y, Chen L, Zhang H. Xuanfei Baidu decoction attenuates intestinal disorders by modulating NF-κB pathway, regulating T cell immunity and improving intestinal flora. Phytomedicine 2022. [DOI: 10.1016/j.phymed.2022.154100] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
188 Jonigk D, Werlein C, Acker T, Aepfelbacher M, Amann KU, Baretton G, Barth P, Bohle RM, Büttner A, Büttner R, Dettmeyer R, Eichhorn P, Elezkurtaj S, Esposito I, Evert K, Evert M, Fend F, Gaßler N, Gattenlöhner S, Glatzel M, Göbel H, Gradhand E, Hansen T, Hartmann A, Heinemann A, Heppner FL, Hilsenbeck J, Horst D, Kamp JC, Mall G, Märkl B, Ondruschka B, Pablik J, Pfefferle S, Quaas A, Radbruch H, Röcken C, Rosenwald A, Roth W, Rudelius M, Schirmacher P, Slotta-Huspenina J, Smith K, Sommer L, Stock K, Ströbel P, Strobl S, Titze U, Weirich G, Weis J, Werner M, Wickenhauser C, Wiech T, Wild P, Welte T, von Stillfried S, Boor P. Organ manifestations of COVID-19: what have we learned so far (not only) from autopsies? Virchows Arch 2022. [PMID: 35364700 DOI: 10.1007/s00428-022-03319-2] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
189 Jang KK, Kaczmarek ME, Dallari S, Chen Y, Tada T, Axelrad J, Landau NR, Stapleford KA, Cadwell K. Variable susceptibility of intestinal organoid–derived monolayers to SARS-CoV-2 infection. PLoS Biol 2022;20:e3001592. [DOI: 10.1371/journal.pbio.3001592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
190 Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. Nat Rev Microbiol 2022. [PMID: 35354968 DOI: 10.1038/s41579-022-00713-0] [Cited by in Crossref: 33] [Cited by in F6Publishing: 42] [Article Influence: 33.0] [Reference Citation Analysis]
191 Türkmen Sariyildiz G, Çiçek C, Arslan Aİ, Demir ME. COVID-19 and COVID-19 vaccines-related subacute thyroiditis: analysis of a case series. Anatolian Current Medical Journal 2022;4:138-145. [DOI: 10.38053/acmj.1061185] [Reference Citation Analysis]
192 Krebs CE, Lam A, Mccarthy J, Constantino H, Sullivan K. Animal-reliance bias in publishing is a potential barrier to scientific progress.. [DOI: 10.1101/2022.03.24.485684] [Reference Citation Analysis]
193 Ambrose PA, Goodman WA. Impact of COVID-19 on Patients with Inflammatory Bowel Disease. J Explor Res Pharmacol 2022;7:37-44. [DOI: 10.14218/jerp.2021.00014] [Reference Citation Analysis]
194 Galán M, Vigón L, Fuertes D, Murciano-antón MA, Casado-fernández G, Domínguez-mateos S, Mateos E, Ramos-martín F, Planelles V, Torres M, Rodríguez-mora S, López-huertas MR, Coiras M. Persistent Overactive Cytotoxic Immune Response in a Spanish Cohort of Individuals With Long-COVID: Identification of Diagnostic Biomarkers. Front Immunol 2022;13:848886. [DOI: 10.3389/fimmu.2022.848886] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
195 Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen Atlas From Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. Front Immunol 2022;13:831849. [DOI: 10.3389/fimmu.2022.831849] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
196 Harlow J, Dallner M, Nasheri N. Protective Effect of Food Against Inactivation of Human Coronavirus OC43 by Gastrointestinal Fluids. Food Environ Virol 2022. [PMID: 35320506 DOI: 10.1007/s12560-022-09520-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
197 Buil JB, Schouten JA, Wauters J, van de Hoeven H, Verweij PE; CAC-SDD study group. Absence of candidemia in critically ill patients with COVID-19 receiving selective digestive decontamination. Intensive Care Med 2022. [PMID: 35316350 DOI: 10.1007/s00134-022-06651-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
198 Li M, Gong J, Gao L, Zou T, Kang J, Xu H. Advanced human developmental toxicity and teratogenicity assessment using human organoid models. Ecotoxicol Environ Saf 2022;235:113429. [PMID: 35325609 DOI: 10.1016/j.ecoenv.2022.113429] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
199 Theurey P, Thiam K, Chérifi Y, Fraichard A, Rezza A. Genome Editing in Cellular Disease Models. Genome Editing in Drug Discovery 2022. [DOI: 10.1002/9781119671404.ch6] [Reference Citation Analysis]
200 Ding Z, Zhang C, Zhang B, Li Q. Unraveling the Proteomic Landscape of Intestinal Epithelial Cell-Derived Exosomes in Mice. Front Physiol 2022;13:773671. [PMID: 35283765 DOI: 10.3389/fphys.2022.773671] [Reference Citation Analysis]
201 Zhang M, Lv L, Cai H, Li Y, Gao F, Yu L, Jiang Y, Tong W, Li L, Li G, Tong G, Liu C. Long-Term Expansion of Porcine Intestinal Organoids Serves as an in vitro Model for Swine Enteric Coronavirus Infection. Front Microbiol 2022;13:865336. [DOI: 10.3389/fmicb.2022.865336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
202 Ekanger CT, Zhou F, Bohan D, Lotsberg ML, Ramnefjell M, Hoareau L, Røsland GV, Lu N, Aanerud M, Gärtner F, Salminen PR, Bentsen M, Halvorsen T, Ræder H, Akslen LA, Langeland N, Cox R, Maury W, Stuhr LEB, Lorens JB, Engelsen AST. Human Organotypic Airway and Lung Organoid Cells of Bronchiolar and Alveolar Differentiation Are Permissive to Infection by Influenza and SARS-CoV-2 Respiratory Virus. Front Cell Infect Microbiol 2022;12:841447. [DOI: 10.3389/fcimb.2022.841447] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
203 Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022;10:815067. [PMID: 35273961 DOI: 10.3389/fcell.2022.815067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
204 Metz-Zumaran C, Kee C, Doldan P, Guo C, Stanifer ML, Boulant S. Increased Sensitivity of SARS-CoV-2 to Type III Interferon in Human Intestinal Epithelial Cells. J Virol 2022;:e0170521. [PMID: 35262371 DOI: 10.1128/jvi.01705-21] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
205 Menuchin-Lasowski Y, Schreiber A, Lecanda A, Mecate-Zambrano A, Brunotte L, Psathaki OE, Ludwig S, Rauen T, Schöler HR. SARS-CoV-2 infects and replicates in photoreceptor and retinal ganglion cells of human retinal organoids. Stem Cell Reports 2022:S2213-6711(22)00104-7. [PMID: 35334213 DOI: 10.1016/j.stemcr.2022.02.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
206 Wang M, Hu J, Huang B, Yang Q, Liu S, Li Z, Yang L, Xi Q, Zhu L, Jin L. Investigating the impact of SARS-CoV-2 infection on basic semen parameters and in vitro fertilization/intracytoplasmic sperm injection outcomes: a retrospective cohort study. Reprod Biol Endocrinol 2022;20. [DOI: 10.1186/s12958-022-00918-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
207 Mizutani T, Ishizaka A, Koga M, Ikeuchi K, Saito M, Adachi E, Yamayoshi S, Iwatsuki-horimoto K, Yasuhara A, Kiyono H, Matano T, Suzuki Y, Tsutsumi T, Kawaoka Y, Yotsuyanagi H, Perez DR. Correlation Analysis between Gut Microbiota Alterations and the Cytokine Response in Patients with Coronavirus Disease during Hospitalization. Microbiol Spectr. [DOI: 10.1128/spectrum.01689-21] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
208 Farsi Y, Tahvildari A, Arbabi M, Vazife F, Sechi LA, Shahidi Bonjar AH, Jamshidi P, Nasiri MJ, Mirsaeidi M. Diagnostic, Prognostic, and Therapeutic Roles of Gut Microbiota in COVID-19: A Comprehensive Systematic Review. Front Cell Infect Microbiol 2022;12:804644. [DOI: 10.3389/fcimb.2022.804644] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
209 Sharma M, Vanam HP, Panda NK, Patro SK, Arora R, Bhadada SK, Rudramurthy SM, Singh MP, Koppula PR. Deciphering the Neurosensory Olfactory Pathway and Associated Neo-Immunometabolic Vulnerabilities Implicated in COVID-Associated Mucormycosis (CAM) and COVID-19 in a Diabetes Backdrop—A Novel Perspective. Diabetology 2022;3:193-235. [DOI: 10.3390/diabetology3010013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
210 Kim H, Kim H, Nguyen LT, Ha T, Lim S, Kim K, Kim SH, Han K, Hyeon SJ, Ryu H, Park YS, Kim SH, Kim I, Hong G, Lee SE, Choi Y, Cohen LB, Oh U. Amplification of Olfactory Signals by Anoctamin 9 is Essential for Mammalian Olfaction: a Risk Factor for the Covid-19-associated Anosmia.. [DOI: 10.1101/2022.03.02.482745] [Reference Citation Analysis]
211 Venzon M, Bernard-Raichon L, Klein J, Axelrad JE, Zhang C, Hussey GA, Sullivan AP, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, Putzel G, Pironti A, Wilder E, Thorpe LE, Littman DR, Dittmann M, Stapleford KA, Shopsin B, Torres VJ, Ko AI, Iwasaki A, Cadwell K, Schluter J; Yale IMPACT Research Team. Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation. bioRxiv 2022:2021. [PMID: 35262080 DOI: 10.1101/2021.07.15.452246] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
212 Tran BM, Deliyannis G, Hachani A, Earnest L, Torresi J, Vincan E. Organoid Models of SARS-CoV-2 Infection: What Have We Learned about COVID-19? Organoids 2022;1:2-27. [DOI: 10.3390/organoids1010002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
213 Hammel JH, Zatorski JM, Cook SR, Pompano RR, Munson JM. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Adv Drug Deliv Rev 2022;182:114111. [PMID: 35031388 DOI: 10.1016/j.addr.2022.114111] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
214 Tews H, Kandulski A, Schmid S, Peschel G, Gülow K, Schlosser S, Schirner S, Stroszczynski C, Müller M, Jung E. Contrast enhanced ultrasonography (CEUS) a novel tool to detect intestinal epithelial barrier dysfunction in severe COVID-19 disease. CH 2022. [DOI: 10.3233/ch-221407] [Reference Citation Analysis]
215 Boby N, Cao X, Williams K, Gadila SKG, Shroyer MN, Didier PJ, Srivastav SK, Das A, Baker K, Sha Q, Pahar B. Simian Immunodeficiency Virus Infection Mediated Changes in Jejunum and Peripheral SARS-CoV-2 Receptor ACE2 and Associated Proteins or Genes in Rhesus Macaques. Front Immunol 2022;13:835686. [DOI: 10.3389/fimmu.2022.835686] [Reference Citation Analysis]
216 Mykytyn AZ, Rissmann M, Kok A, Rosu ME, Schipper D, Breugem TI, van den Doel PB, Chandler F, Bestebroer T, de Wit M, van Royen ME, Molenkamp R, Oude Munnink BB, de Vries RD, Geurtsvankessel C, Smith DJ, Koopmans MPG, Rockx B, Lamers MM, Fouchier R, Haagmans BL. Omicron BA.1 and BA.2 are antigenically distinct SARS-CoV-2 variants.. [DOI: 10.1101/2022.02.23.481644] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 28.0] [Reference Citation Analysis]
217 Koyuncu Irmak D, Karaoz E. Cellular Therapy as Promising Choice of Treatment for COVID-19. Biotechnology to Combat COVID-19 2022. [DOI: 10.5772/intechopen.96900] [Reference Citation Analysis]
218 Gómez-Carballa A, Rivero-Calle I, Pardo-Seco J, Gómez-Rial J, Rivero-Velasco C, Rodríguez-Núñez N, Barbeito-Castiñeiras G, Pérez-Freixo H, Cebey-López M, Barral-Arca R, Rodriguez-Tenreiro C, Dacosta-Urbieta A, Bello X, Pischedda S, Currás-Tuala MJ, Viz-Lasheras S, Martinón-Torres F, Salas A; GEN-COVID study group. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. Environ Res 2022;210:112890. [PMID: 35202626 DOI: 10.1016/j.envres.2022.112890] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
219 Neuberger M, Jungbluth A, Irlbeck M, Streitparth F, Burian M, Kirchner T, Werner J, Rudelius M, Knösel T. Duodenal tropism of SARS-CoV-2 and clinical findings in critically ill COVID-19 patients. Infection 2022. [PMID: 35182354 DOI: 10.1007/s15010-022-01769-z] [Reference Citation Analysis]
220 Schult D, Reitmeier S, Koyumdzhieva P, Lahmer T, Middelhof M, Erber J, Schneider J, Kager J, Frolova M, Horstmann J, Fricke L, Steiger K, Jesinghaus M, Janssen KP, Protzer U, Neuhaus K, Schmid RM, Haller D, Quante M. Gut bacterial dysbiosis and instability is associated with the onset of complications and mortality in COVID-19. Gut Microbes 2022;14:2031840. [PMID: 35174781 DOI: 10.1080/19490976.2022.2031840] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
221 El-Sayed EM, Ibrahim KS. Ameliorating effects of probiotics on alterations in iron homeostasis and inflammation in COVID-19. Mol Biol Rep 2022. [PMID: 35169998 DOI: 10.1007/s11033-022-07226-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
222 Rajan A, Weaver AM, Aloisio GM, Jelinski J, Johnson HL, Venable SF, McBride T, Aideyan L, Piedra FA, Ye X, Melicoff-Portillo E, Yerramilli MRK, Zeng XL, Mancini MA, Stossi F, Maresso AW, Kotkar SA, Estes MK, Blutt S, Avadhanula V, Piedra PA. The Human Nose Organoid Respiratory Virus Model: an Ex Vivo Human Challenge Model To Study Respiratory Syncytial Virus (RSV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Pathogenesis and Evaluate Therapeutics. mBio 2022;:e0351121. [PMID: 35164569 DOI: 10.1128/mbio.03511-21] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
223 Rijsbergen LC, Schmitz KS, Begeman L, Drew-Bear J, Gommers L, Lamers MM, Greninger AL, Haagmans BL, Porotto M, de Swart RL, Moscona A, de Vries RD. Modeling Infection and Tropism of Human Parainfluenza Virus Type 3 in Ferrets. mBio 2022;:e0383121. [PMID: 35164568 DOI: 10.1128/mbio.03831-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
224 Hung Y, Lee J, Chiu C, Lee C, Tsai P, Hsu I, Ko W. Oral Nirmatrelvir/Ritonavir Therapy for COVID-19: The Dawn in the Dark? Antibiotics 2022;11:220. [DOI: 10.3390/antibiotics11020220] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 33.0] [Reference Citation Analysis]
225 Odun-ayo F, Reddy L. Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The Implication of Probiotics. Gastroenterology Insights 2022;13:35-59. [DOI: 10.3390/gastroent13010006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
226 Chou J, Thomas PG, Randolph AG. Immunology of SARS-CoV-2 infection in children. Nat Immunol 2022;23:177-85. [PMID: 35105983 DOI: 10.1038/s41590-021-01123-9] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 26.0] [Reference Citation Analysis]
227 GeurtsvanKessel CH, Geers D, Schmitz KS, Mykytyn AZ, Lamers MM, Bogers S, Scherbeijn S, Gommers L, Sablerolles RSG, Nieuwkoop NN, Rijsbergen LC, van Dijk LLA, de Wilde J, Alblas K, Breugem TI, Rijnders BJA, de Jager H, Weiskopf D, van der Kuy PHM, Sette A, Koopmans MPG, Grifoni A, Haagmans BL, de Vries RD. Divergent SARS CoV-2 Omicron-reactive T- and B cell responses in COVID-19 vaccine recipients. Sci Immunol 2022;:eabo2202. [PMID: 35113647 DOI: 10.1126/sciimmunol.abo2202] [Cited by in Crossref: 150] [Cited by in F6Publishing: 139] [Article Influence: 150.0] [Reference Citation Analysis]
228 Kapczynski DR, Sweeney R, Spackman E, Pantin-jackwood M, Suarez DL. Development of an in vitro model for animal species susceptibility to SARS-CoV-2 replication based on expression of ACE2 and TMPRSS2 in avian cells. Virology 2022. [DOI: 10.1016/j.virol.2022.01.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
229 Bishehsari F, Adnan D, Deshmukh A, Khan SR, Rempert T, Dhana K, Mahdavinia M. Gastrointestinal Symptoms Predict the Outcomes From COVID-19 Infection. J Clin Gastroenterol 2022;56:e145-8. [PMID: 33780223 DOI: 10.1097/MCG.0000000000001513] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
230 Amraei R, Xia C, Olejnik J, White MR, Napoleon MA, Lotfollahzadeh S, Hauser BM, Schmidt AG, Chitalia V, Mühlberger E, Costello CE, Rahimi N. Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proc Natl Acad Sci USA 2022;119:e2113874119. [DOI: 10.1073/pnas.2113874119] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
231 Singh AK, Kasarpalkar N, Bhowmick S, Paradkar G, Talreja M, Shah K, Tiwari A, Palav H, Kaginkar S, Kulkarni R, Patil A, Kalsurkar V, Agrawal S, Shastri J, Dere R, Bharmal R, Mahale SD, Bhor VM, Patel V. Opposing roles for sMAdCAM and IL‐15 in COVID‐19 associated cellular immune pathology. J Leukocyte Bio. [DOI: 10.1002/jlb.3covbcr0621-300r] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
232 Geerling E, Pinski AN, Stone TE, DiPaolo RJ, Zulu MZ, Maroney KJ, Brien JD, Messaoudi I, Pinto AK. Roles of antiviral sensing and type I interferon signaling in the restriction of SARS-CoV-2 replication. iScience 2022;25:103553. [PMID: 34877479 DOI: 10.1016/j.isci.2021.103553] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
233 Jia M, Taylor TM, Senger SM, Ovissipour R, Bertke AS. SARS-CoV-2 Remains Infectious on Refrigerated Deli Food, Meats, and Fresh Produce for up to 21 Days. Foods 2022;11:286. [DOI: 10.3390/foods11030286] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
234 Heneghan CJ, Spencer EA, Brassey J, Plüddemann A, Onakpoya IJ, Evans DH, Conly JM, Jefferson T. SARS-CoV-2 and the role of orofecal transmission: a systematic review. F1000Res 2021;10:231. [PMID: 35035883 DOI: 10.12688/f1000research.51592.2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
235 Frere JJ, Serafini RA, Pryce KD, Zazhytska M, Oishi K, Golynker I, Panis M, Zimering J, Horiuchi S, Hoagland DA, Møller R, Ruiz A, Overdevest JB, Kodra A, Canoll PD, Goldman JE, Borczuk AC, Chandar V, Bram Y, Schwartz R, Lomvardas S, Zachariou V, tenOever BR. SARS-CoV-2 infection results in lasting and systemic perturbations post recovery.. [DOI: 10.1101/2022.01.18.476786] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
236 Lamers MM, Mykytyn AZ, Breugem TI, Groen N, Knoops K, Schipper D, van Acker R, van den Doel PB, Bestebroer T, Koopman CD, Reusken C, Muraro MJ, Geurtsvankessel CH, van Royen ME, Peters PJ, Zhang J, Haagmans BL. SARS-CoV-2 Omicron efficiently infects human airway, but not alveolar epithelium.. [DOI: 10.1101/2022.01.19.476898] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
237 Lee SR, Roh JY, Ryu J, Shin H, Hong E. Activation of TCA cycle restrains virus-metabolic hijacking and viral replication in mouse hepatitis virus-infected cells. Cell Biosci 2022;12. [DOI: 10.1186/s13578-021-00740-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
238 Yang X, Zhu Y, Zhao X, Liu J, Xun J, Yuan S, Chen J, Pan H, Yang J, Wang J, Liang Z, Shen X, Liang Y, Lin Q, Liang H, Li M, Lu H, Zhu H. ASGR1 is a candidate receptor for SARS-CoV-2 that promotes infection of liver cells.. [DOI: 10.1101/2022.01.15.476426] [Reference Citation Analysis]
239 Zhou T, Wu J, Zeng Y, Li J, Yan J, Meng W, Han H, Feng F, He J, Zhao S, Zhou P, Wu Y, Yang Y, Han R, Jin W, Li X, Yang Y, Li X. SARS‐CoV‐2 triggered oxidative stress and abnormal energy metabolism in gut microbiota. MedComm 2022;3:41-56. [DOI: 10.1002/mco2.112] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
240 Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022;74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
241 Tran BM, Grimley SL, McAuley JL, Hachani A, Earnest L, Wong SL, Caly L, Druce J, Purcell DFJ, Jackson DC, Catton M, Nowell CJ, Leonie L, Deliyannis G, Waters SA, Torresi J, Vincan E. Air-Liquid-Interface Differentiated Human Nose Epithelium: A Robust Primary Tissue Culture Model of SARS-CoV-2 Infection. Int J Mol Sci 2022;23:835. [PMID: 35055020 DOI: 10.3390/ijms23020835] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
242 Xu Q, Zhang L, Chen L, Zhao X, Wang X, Hu M, Le Y, Xue F, Li X, Zheng J. SARS-CoV-2 might transmit through the skin while the skin barrier function could be the mediator. Med Hypotheses 2022;159:110752. [PMID: 35002019 DOI: 10.1016/j.mehy.2021.110752] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
243 Li S, Zhu H, Zhao M, Liu W, Wang L, Zhu B, Xie W, Zhao C, Zhou Y, Ren C, Liu H, Jiang X. When stem cells meet COVID-19: recent advances, challenges and future perspectives. Stem Cell Res Ther 2022;13:9. [PMID: 35012650 DOI: 10.1186/s13287-021-02683-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
244 Faried A, Hermanto Y, Amalia PR, Bolly HMB. The Organoids: Derivations and Applications. Organoid Technology for Disease Modelling and Personalized Treatment 2022. [DOI: 10.1007/978-3-030-93056-1_1] [Reference Citation Analysis]
245 Aan FJ, Glibetic N, Montoya-uribe V, Matter ML. COVID-19 and the Microbiome: The Gut-Lung Connection. Comprehensive Gut Microbiota 2022. [DOI: 10.1016/b978-0-12-819265-8.00048-6] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
246 Russo E, Curini L, Fabbrizzi A, Amedei A. SARS-CoV-2 and Microbiota. Microbiome in Inflammatory Lung Diseases 2022. [DOI: 10.1007/978-981-16-8957-4_14] [Reference Citation Analysis]
247 E. S. Lapteva, A. L. Ariev, G. T. Arieva, M. R. Tsutsunawa, D. C. Diachkova-Gerceva. On the Role of Geriatric Services in the Diagnosis and Monitoring of Outcomes of Post-Covid Syndrome (Review). Adv Gerontol 2022;12. [ DOI: 10.1134/S2079057022040105] [Reference Citation Analysis]
248 Locas A, Brassard J, Rose-Martel M, Lambert D, Green A, Deckert A, Illing M. Comprehensive Risk Pathway of the Qualitative Likelihood of Human Exposure to Severe Acute Respiratory Syndrome Coronavirus 2 from the Food Chain. J Food Prot 2022;85:85-97. [PMID: 34499732 DOI: 10.4315/JFP-21-218] [Reference Citation Analysis]
249 Dhar D, Dey T, Samim MM, Padmanabha H, Chatterjee A, Naznin P, Chandra SR, Mallesh K, Shah R, Siddiqui S, Pratik K, Ameya P, Abhishek G. Systemic inflammatory syndrome in COVID-19-SISCoV study: systematic review and meta-analysis. Pediatr Res 2022;91:1334-49. [PMID: 34006982 DOI: 10.1038/s41390-021-01545-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
250 Lim HYG, Kostic L, Barker N. Organoid systems for recapitulating the intestinal stem cell niche and modeling disease in vitro. Recapitulating the Stem Cell Niche Ex Vivo 2022. [DOI: 10.1016/bs.asn.2021.10.001] [Reference Citation Analysis]
251 Calvert BA, Lorenzana Z, Senger CN, Hsu C, Busch SN, Koc-gunel S, Quiroz EJ, Ryan AL. Induced pluripotent stem cells. Novel Concepts in iPSC Disease Modeling 2022. [DOI: 10.1016/b978-0-12-823882-0.00003-5] [Reference Citation Analysis]
252 Sadretdinova L, Gantseva K, Vishnyakov D, Golubyatnikov V, Kalimullina D, Pavlov V, Tyurin A. Gastrointestinal injury in COVID-19. Profil med 2022;25:106. [DOI: 10.17116/profmed202225071106] [Reference Citation Analysis]
253 Li S, Zhou W, Li D, Pan T, Guo J, Zou H, Tian Z, Li K, Xu J, Li X, Li Y. Comprehensive characterization of human–virus protein-protein interactions reveals disease comorbidities and potential antiviral drugs. Computational and Structural Biotechnology Journal 2022;20:1244-53. [DOI: 10.1016/j.csbj.2022.03.002] [Reference Citation Analysis]
254 Spigaglia P. Clostridioides difficile infection (CDI) during the COVID-19 pandemic. Anaerobe 2022. [DOI: 10.1016/j.anaerobe.2022.102518] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
255 Lau HC, Ng SC, Yu J. Targeting the Gut Microbiota in Coronavirus Disease 2019: Hype or Hope? Gastroenterology 2022;162:9-16. [PMID: 34508775 DOI: 10.1053/j.gastro.2021.09.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
256 Parthasarathy U, Martinelli R, Vollmann EH, Best K, Therien AG. The impact of DAMP-mediated inflammation in severe COVID-19 and related disorders. Biochem Pharmacol 2022;195:114847. [PMID: 34801526 DOI: 10.1016/j.bcp.2021.114847] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
257 Włodarczyk J, Czerwiński B, Fichna J. Short-chain fatty acids-microbiota crosstalk in the coronavirus disease (COVID-19). Pharmacol Rep 2022;74:1198-207. [PMID: 36166147 DOI: 10.1007/s43440-022-00415-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
258 Thomas S. Status of COVID-19 Pandemic Before the Administration of Vaccine. Vaccine Design 2022. [DOI: 10.1007/978-1-0716-1884-4_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
259 Li Y, Li JZ. SARS-CoV-2 Virology. Infectious Disease Clinics of North America 2022. [DOI: 10.1016/j.idc.2022.01.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
260 . Généraliser la détection du SARS-CoV-2 dans les eaux usées : une mesure urgente en période de reflux épidémique. Bull Acad Natl Med 2022;206:1-2. [PMID: 34803170 DOI: 10.1016/j.banm.2021.11.006] [Reference Citation Analysis]
261 Cherne MD, Gentry AB, Nemudraia A, Nemudryi A, Hedges JF, Walk H, Blackwell K, Snyder DT, Jerome M, Madden W, Hashimi M, Sebrell TA, King DB, Plowright RK, Jutila MA, Wiedenheft B, Bimczok D. Severe Acute Respiratory Syndrome Coronavirus 2 Is Detected in the Gastrointestinal Tract of Asymptomatic Endoscopy Patients but Is Unlikely to Pose a Significant Risk to Healthcare Personnel. Gastro Hep Advances 2022;1:844-852. [DOI: 10.1016/j.gastha.2022.06.002] [Reference Citation Analysis]
262 Larionova R, Byvaltsev K, Kravtsova О, Takha E, Petrov S, Kazarian G, Valeeva A, Shuralev E, Mukminov M, Renaudineau Y, Arleevskaya M. SARS-Cov2 acute and post-active infection in the context of autoimmune and chronic inflammatory diseases. Journal of Translational Autoimmunity 2022;5:100154. [DOI: 10.1016/j.jtauto.2022.100154] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
263 Coles MJ, Masood M, Crowley MM, Hudgi A, Okereke C, Klein J. It Ain't Over 'Til It's Over: SARS CoV-2 and Post-infectious Gastrointestinal Dysmotility. Dig Dis Sci 2022;67:5407-15. [PMID: 35357608 DOI: 10.1007/s10620-022-07480-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
264 Glibetic N, Aan FJ, Montoya-uribe V, Matter ML. The Role of Microbiota in Gut Inflammation and Sepsis. Comprehensive Gut Microbiota 2022. [DOI: 10.1016/b978-0-12-819265-8.00023-1] [Reference Citation Analysis]
265 Geurtsvankessel CH, Geers D, Schmitz KS, Mykytyn AZ, Lamers MM, Bogers S, Gommers L, Sablerolles RS, Nieuwkoop NN, Rijsbergen LC, van Dijk LL, de Wilde J, Alblas K, Breugem TI, Rijnders BJ, de Jager H, Weiskopf D, van der Kuy PHM, Sette A, Koopmans MP, Grifoni A, Haagmans BL, de Vries RD. Divergent SARS CoV-2 Omicron-specific T- and B-cell responses in COVID-19 vaccine recipients.. [DOI: 10.1101/2021.12.27.21268416] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
266 Siwczak F, Loffet E, Kaminska M, Koceva H, Mahe MM, Mosig AS. Intestinal Stem Cell-on-Chip to Study Human Host-Microbiota Interaction. Front Immunol 2021;12:798552. [PMID: 34938299 DOI: 10.3389/fimmu.2021.798552] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
267 Donaldson DS, Shih BB, Mabbott NA. Aging-Related Impairments to M Cells in Peyer's Patches Coincide With Disturbances to Paneth Cells. Front Immunol 2021;12:761949. [PMID: 34938288 DOI: 10.3389/fimmu.2021.761949] [Reference Citation Analysis]
268 Jackson RM, Hatton CF, Spegarova JS, Georgiou M, Collin J, Stephenson E, Verdon B, Haq IJ, Hussain R, Coxhead JM, Mudhar H, Wagner B, Hasoon M, Davey T, Rooney P, Anjam Khan C, Ward C, Brodlie M, Haniffa M, Hambleton S, Armstrong L, Figueiredo F, Queen R, Duncan CJA, Lako M. Conjunctival epithelial cells resist productive SARS-CoV-2 infection.. [DOI: 10.1101/2021.12.20.473523] [Reference Citation Analysis]
269 Griffiths WJ, Wang Y. Cholesterol metabolism: from lipidomics to immunology. J Lipid Res 2021;:100165. [PMID: 34953867 DOI: 10.1016/j.jlr.2021.100165] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
270 Liu Y, Zhang H, Tang X, Jiang X, Yan X, Liu X, Gong J, Mew K, Sun H, Chen X, Zou Z, Chen C, Qiu J. Distinct Metagenomic Signatures in the SARS-CoV-2 Infection. Front Cell Infect Microbiol 2021;11:706970. [PMID: 34926314 DOI: 10.3389/fcimb.2021.706970] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
271 Hu S, McCartney MM, Arredondo J, Sankaran-Walters S, Borras E, Harper RW, Schivo M, Davis CE, Kenyon NJ, Dandekar S. Inactivation of SARS-CoV-2 in clinical exhaled breath condensate samples for metabolomic analysis. J Breath Res 2021;16. [PMID: 34852327 DOI: 10.1088/1752-7163/ac3f24] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
272 Engelis A, Smane L, Pavare J, Zviedre A, Zurmutai T, Berezovska MM, Bormotovs J, Kakar M, Saxena AK, Petersons A. Case Series of Variable Acute Appendicitis in Children with SARS-CoV-2 Infection. Children 2021;8:1207. [DOI: 10.3390/children8121207] [Reference Citation Analysis]
273 Griffin BD, Warner BM, Chan M, Valcourt E, Tailor N, Banadyga L, Leung A, He S, Boese AS, Audet J, Cao W, Moffat E, Garnett L, Tierney K, Tran KN, Albietz A, Manguiat K, Soule G, Bello A, Vendramelli R, Lin J, Deschambault Y, Zhu W, Wood H, Mubareka S, Safronetz D, Strong JE, Embury-Hyatt C, Kobasa D. Host parameters and mode of infection influence outcome in SARS-CoV-2-infected hamsters. iScience 2021;24:103530. [PMID: 34870132 DOI: 10.1016/j.isci.2021.103530] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
274 Rahman S, Ghiboub M, Donkers JM, van de Steeg E, van Tol EAF, Hakvoort TBM, de Jonge WJ. The Progress of Intestinal Epithelial Models from Cell Lines to Gut-On-Chip. Int J Mol Sci 2021;22:13472. [PMID: 34948271 DOI: 10.3390/ijms222413472] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
275 Chen J, Fan J, Chen Z, Zhang M, Peng H, Liu J, Ding L, Liu M, Zhao C, Zhao P, Zhang S, Zhang X, Xu J. Nonmuscle myosin heavy chain IIA facilitates SARS-CoV-2 infection in human pulmonary cells. Proc Natl Acad Sci U S A 2021;118:e2111011118. [PMID: 34873039 DOI: 10.1073/pnas.2111011118] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
276 Bhurwal A, Minacapelli CD, Orosz E, Gupta K, Tait C, Dalal I, Zhang C, Zhao E, Rustgi VK. COVID-19 status quo: Emphasis on gastrointestinal and liver manifestations . World J Gastroenterol 2021; 27(46): 7969-7981 [DOI: 10.3748/wjg.v27.i46.7969] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
277 Hirano T, Nakase H. The Multifaceted Effects of Gut Microbiota on the Immune System of the Intestinal Mucosa. Immuno 2021;1:583-94. [DOI: 10.3390/immuno1040041] [Reference Citation Analysis]
278 Guo J, Sheng K, Wu S, Chen H, Xu W. An Update on the Relationship of SARS-CoV-2 and Male Reproduction. Front Endocrinol (Lausanne) 2021;12:788321. [PMID: 34887838 DOI: 10.3389/fendo.2021.788321] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
279 Tavakol DN, Fleischer S, Falcucci T, Graney PL, Halligan SP, Kaplan DL, Vunjak-Novakovic G. Emerging Trajectories for Next Generation Tissue Engineers. ACS Biomater Sci Eng 2021. [PMID: 34878769 DOI: 10.1021/acsbiomaterials.1c01428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
280 Huang Y, Huang Z, Tang Z, Chen Y, Huang M, Liu H, Huang W, Ye Q, Jia B. Research Progress, Challenges, and Breakthroughs of Organoids as Disease Models. Front Cell Dev Biol 2021;9:740574. [PMID: 34869324 DOI: 10.3389/fcell.2021.740574] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
281 Erdem Ö, Eş I, Saylan Y, Inci F. Unifying the Efforts of Medicine, Chemistry, and Engineering in Biosensing Technologies to Tackle the Challenges of the COVID-19 Pandemic. Anal Chem 2021. [PMID: 34874149 DOI: 10.1021/acs.analchem.1c04454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
282 Rodriguez-Rodriguez BA, Noval MG, Kaczmarek ME, Jang KK, Thannickal SA, Cifuentes Kottkamp A, Brown RS, Kielian M, Cadwell K, Stapleford KA. Atovaquone and Berberine Chloride Reduce SARS-CoV-2 Replication In Vitro. Viruses 2021;13. [PMID: 34960706 DOI: 10.3390/v13122437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
283 Zhang H, Shao B, Dang Q, Chen Z, Zhou Q, Luo H, Yuan W, Sun Z. Pathogenesis and Mechanism of Gastrointestinal Infection With COVID-19. Front Immunol 2021;12:674074. [PMID: 34858386 DOI: 10.3389/fimmu.2021.674074] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
284 Bass A, Liu Y, Dakshanamurthy S. Single-Cell and Bulk RNASeq Profiling of COVID-19 Patients Reveal Immune and Inflammatory Mechanisms of Infection-Induced Organ Damage. Viruses 2021;13:2418. [PMID: 34960687 DOI: 10.3390/v13122418] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
285 Sharkey ME, Kumar N, Mantero AMA, Babler KM, Boone MM, Cardentey Y, Cortizas EM, Grills GS, Herrin J, Kemper JM, Kenney R, Kobetz E, Laine J, Lamar WE, Mader CC, Mason CE, Quintero AZ, Reding BD, Roca MA, Ryon K, Solle NS, Schürer SC, Shukla B, Stevenson M, Stone T, Tallon JJ Jr, Venkatapuram SS, Vidovic D, Williams SL, Young B, Solo-Gabriele HM. Lessons learned from SARS-CoV-2 measurements in wastewater. Sci Total Environ 2021;798:149177. [PMID: 34375259 DOI: 10.1016/j.scitotenv.2021.149177] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
286 Sanyal R, K. Paul M. Organoid Technology and the COVID Pandemic. SARS-CoV-2 Origin and COVID-19 Pandemic Across the Globe 2021. [DOI: 10.5772/intechopen.98542] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
287 Moore J, Allan C, Besson S, Burel JM, Diel E, Gault D, Kozlowski K, Lindner D, Linkert M, Manz T, Moore W, Pape C, Tischer C, Swedlow JR. OME-NGFF: a next-generation file format for expanding bioimaging data-access strategies. Nat Methods 2021;18:1496-8. [PMID: 34845388 DOI: 10.1038/s41592-021-01326-w] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
288 Van Goethem C, Op de Beeck D, Ilyas A, Thijs M, Koeckelberghs G, Aerts PE, Vankelecom IF. Ultra-thin and highly porous PVDF-filters prepared via phase inversion for potential medical (COVID-19) and industrial use. Journal of Membrane Science 2021;639:119710. [DOI: 10.1016/j.memsci.2021.119710] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
289 Jansen J, Reimer KC, Nagai JS, Varghese FS, Overheul GJ, de Beer M, Roverts R, Daviran D, Fermin LA, Willemsen B, Beukenboom M, Djudjaj S, von Stillfried S, van Eijk LE, Mastik M, Bulthuis M, Dunnen WD, van Goor H, Hillebrands J, Triana SH, Alexandrov T, Timm M, van den Berge BT, van den Broek M, Nlandu Q, Heijnert J, Bindels EM, Hoogenboezem RM, Mooren F, Kuppe C, Miesen P, Grünberg K, Ijzermans T, Steenbergen EJ, Czogalla J, Schreuder MF, Sommerdijk N, Akiva A, Boor P, Puelles VG, Floege J, Huber TB, van Rij RP, Costa IG, Schneider RK, Smeets B, Kramann R, Achdout H, Aimon A, Bar-david E, Barr H, Ben-shmuel A, Bennett J, Boby ML, Borden B, Bowman GR, Brun J, Bvnbs S, Calmiano M, Carbery A, Cattermole E, Chernychenko E, Choder JD, Clyde A, Coffland JE, Cohen G, Cole J, Contini A, Cox L, Cvitkovic M, Dias A, Donckers K, Dotson DL, Douangamath A, Duberstein S, Dudgeon T, Dunnett L, Eastman PK, Erez N, Eyermann CJ, Fairhead M, Fate G, Fearon D, Federov O, Ferla M, Fernandes RS, Ferrins L, Foster R, Foster H, Gabizon R, Garcia-sastre A, Gawriljuk VO, Gehrtz P, Gileadi C, Giroud C, Glass WG, Glen R, Itai glinert, Godoy AS, Gorichko M, Gorrie-stone T, Griffen EJ, Hart SH, Heer J, Henry M, Hill M, Horrell S, Hurley MF, Israely T, Jajack A, Jnoff E, Jochmans D, John T, De Jonghe S, Kantsadi AL, Kenny PW, Kiappes J, Koekemoer L, Kovar B, Krojer T, Lee AA, Lefker BA, Levy H, London N, Lukacik P, Macdonald HB, Maclean B, Malla TR, Matviiuk T, Mccorkindale W, Mcgovern BL, Melamed S, Michurin O, Mikolajek H, Milne BF, Morris A, Morris GM, Morwitzer MJ, Moustakas D, Nakamura AM, Neto JB, Neyts J, Nguyen L, Noske GD, Oleinikovas V, Oliva G, Overheul GJ, Owen D, Psenak V, Pai R, Pan J, Paran N, Perry B, Pingle M, Pinjari J, Politi B, Powell A, Puni R, Rangel VL, Reddi RN, Reid SP, Resnick E, Ripka EG, Robinson MC, Robinson RP, Rodriguez-guerra J, Rosales R, Rufa D, Schofield C, Shafeev M, Shaikh A, Shi J, Shurrush K, Sing S, Sittner A, Skyner R, Smalley A, Smilova MD, Solmesky LJ, Spencer J, Strain-damarell C, Swamy V, Tamir H, Tennant R, Thompson W, Thompson A, Thompson W, Tomasia S, Tumber A, Vakonakis I, van Rij RP, van Geel L, Varghese FS, Vaschetto M, Vitner EB, Voelz V, Volkamer A, von Delft F, von Delft A, Walsh M, Ward W, Weatherall C, Weiss S, White KM, Wild CF, Wittmann M, Wright N, Yahalom-ronen Y, Zaidmann D, Zidane H, Zitzmann N. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell 2021. [DOI: 10.1016/j.stem.2021.12.010] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 22.0] [Reference Citation Analysis]
290 Zhang Z, Cui F, Cao C, Wang Q, Zou Q. Single-cell RNA analysis reveals the potential risk of organ-specific cell types vulnerable to SARS-CoV-2 infections. Comput Biol Med 2021;140:105092. [PMID: 34864302 DOI: 10.1016/j.compbiomed.2021.105092] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 21.0] [Reference Citation Analysis]
291 Saha C, Laha S, Chatterjee R, Bhattacharyya NP. Co-Regulation of Protein Coding Genes by Transcription Factor and Long Non-Coding RNA in SARS-CoV-2 Infected Cells: An In Silico Analysis. Noncoding RNA 2021;7:74. [PMID: 34940755 DOI: 10.3390/ncrna7040074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
292 Xia H, Zhang Z, You F. Inhibiting ACSL1-Related Ferroptosis Restrains Murine Coronavirus Infection. Viruses 2021;13:2383. [PMID: 34960652 DOI: 10.3390/v13122383] [Reference Citation Analysis]
293 Wang S, Hao M, Pan Z, Lei J, Zou X. Data-driven multi-scale mathematical modeling of SARS-CoV-2 infection reveals heterogeneity among COVID-19 patients. PLoS Comput Biol 2021;17:e1009587. [PMID: 34818337 DOI: 10.1371/journal.pcbi.1009587] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
294 Ramírez-Flores CJ, Knoll LJ. Breakthroughs in microbiology made possible with organoids. PLoS Pathog 2021;17:e1010080. [PMID: 34818378 DOI: 10.1371/journal.ppat.1010080] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
295 Kageyama Y, Nishizaki Y, Aida K, Yayama K, Ebisui T, Akiyama T, Nakamura T. Lactobacillus plantarum induces innate cytokine responses that potentially provide a protective benefit against COVID-19: A single-arm, double-blind, prospective trial combined with an in vitro cytokine response assay. Exp Ther Med 2022;23:20. [PMID: 34815772 DOI: 10.3892/etm.2021.10942] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
296 Wan D, Du T, Hong W, Chen L, Que H, Lu S, Peng X. Neurological complications and infection mechanism of SARS-COV-2. Signal Transduct Target Ther 2021;6:406. [PMID: 34815399 DOI: 10.1038/s41392-021-00818-7] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 19.0] [Reference Citation Analysis]
297 Goldenberg D, McLaughlin C, Koduru SV, Ravnic DJ. Regenerative Engineering: Current Applications and Future Perspectives. Front Surg 2021;8:731031. [PMID: 34805257 DOI: 10.3389/fsurg.2021.731031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
298 Pandey M, Bhati A, Priya K, Sharma KK, Singhal B. Precision Postbiotics and Mental Health: the Management of Post-COVID-19 Complications. Probiotics Antimicrob Proteins 2021. [PMID: 34806151 DOI: 10.1007/s12602-021-09875-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
299 Settanni CR, Ianiro G, Ponziani FR, Bibbò S, Segal JP, Cammarota G, Gasbarrini A. COVID-19 as a trigger of irritable bowel syndrome: A review of potential mechanisms. World J Gastroenterol 2021; 27(43): 7433-7445 [PMID: 34887641 DOI: 10.3748/wjg.v27.i43.7433] [Cited by in CrossRef: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
300 García-Rodríguez I, van Eijk H, Koen G, Pajkrt D, Sridhar A, Wolthers KC. Parechovirus A Infection of the Intestinal Epithelium: Differences Between Genotypes A1 and A3. Front Cell Infect Microbiol 2021;11:740662. [PMID: 34790587 DOI: 10.3389/fcimb.2021.740662] [Reference Citation Analysis]
301 Parthasarathy H, Tandel D, Siddiqui AH, Harshan KH. Metformin Suppresses SARS-CoV-2 in Cell Culture.. [DOI: 10.1101/2021.11.18.469078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
302 Kumar A, Narayan RK, Prasoon P, Kumari C, Kaur G, Kumar S, Kulandhasamy M, Sesham K, Pareek V, Faiq MA, Pandey SN, Singh HN, Kant K, Shekhawat PS, Raza K, Kumar S. COVID-19 Mechanisms in the Human Body-What We Know So Far. Front Immunol 2021;12:693938. [PMID: 34790191 DOI: 10.3389/fimmu.2021.693938] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
303 Chen JC, Xie TA, Lin ZZ, Li YQ, Xie YF, Li ZW, Guo XG. Identification of Key Pathways and Genes in SARS-CoV-2 Infecting Human Intestines by Bioinformatics Analysis. Biochem Genet 2021. [PMID: 34787756 DOI: 10.1007/s10528-021-10144-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
304 Giobbe GG, Bonfante F, Jones BC, Gagliano O, Luni C, Zambaiti E, Perin S, Laterza C, Busslinger G, Stuart H, Pagliari M, Bortolami A, Mazzetto E, Manfredi A, Colantuono C, Di Filippo L, Pellegata AF, Panzarin V, Thapar N, Li VSW, Eaton S, Cacchiarelli D, Clevers H, Elvassore N, De Coppi P. SARS-CoV-2 infection and replication in human gastric organoids. Nat Commun 2021;12:6610. [PMID: 34785679 DOI: 10.1038/s41467-021-26762-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
305 Bezstarosti K, Lamers MM, Doff WAS, Wever PC, Thai KTD, van Kampen JJA, Haagmans BL, Demmers JAA. Targeted proteomics as a tool to detect SARS-CoV-2 proteins in clinical specimens. PLoS One 2021;16:e0259165. [PMID: 34762662 DOI: 10.1371/journal.pone.0259165] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
306 Larijani B, Foroughi-Heravani N, Abedi M, Tayanloo-Beik A, Rezaei-Tavirani M, Adibi H, Arjmand B. Recent Advances of COVID-19 Modeling Based on Regenerative Medicine. Front Cell Dev Biol 2021;9:683619. [PMID: 34760882 DOI: 10.3389/fcell.2021.683619] [Reference Citation Analysis]
307 Bein A, Kim S, Goyal G, Cao W, Fadel C, Naziripour A, Sharma S, Swenor B, LoGrande N, Nurani A, Miao VN, Navia AW, Ziegler CGK, Montañes JO, Prabhala P, Kim MS, Prantil-Baun R, Rodas M, Jiang A, O'Sullivan L, Tillya G, Shalek AK, Ingber DE. Enteric Coronavirus Infection and Treatment Modeled With an Immunocompetent Human Intestine-On-A-Chip. Front Pharmacol 2021;12:718484. [PMID: 34759819 DOI: 10.3389/fphar.2021.718484] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
308 Pearce SC, Suntornsaratoon P, Kishida K, Al-Jawadi A, Guardia J, Nadler I, Flores J, Shiarella R, Auvinen M, Yu S, Gao N, Ferraris RP. Expression of SARS-CoV-2 entry factors, electrolyte, and mineral transporters in different mouse intestinal epithelial cell types. Physiol Rep 2021;9:e15061. [PMID: 34755492 DOI: 10.14814/phy2.15061] [Reference Citation Analysis]
309 van de Ven K, van Dijken H, Wijsman L, Gomersbach A, Schouten T, Kool J, Lenz S, Roholl P, Meijer A, van Kasteren PB, de Jonge J. Pathology and Immunity After SARS-CoV-2 Infection in Male Ferrets Is Affected by Age and Inoculation Route. Front Immunol 2021;12:750229. [PMID: 34745122 DOI: 10.3389/fimmu.2021.750229] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
310 Duan X, Tang X, Nair MS, Zhang T, Qiu Y, Zhang W, Wang P, Huang Y, Xiang J, Wang H, Schwartz RE, Ho DD, Evans T, Chen S. An airway organoid-based screen identifies a role for the HIF1α-glycolysis axis in SARS-CoV-2 infection. Cell Rep 2021;37:109920. [PMID: 34731648 DOI: 10.1016/j.celrep.2021.109920] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
311 Teich N, Ludewig C, Schmelz R, Bästlein EC, Geißler S, Nagl S, Walldorf J, Krause T, Maaser C, Mohl W, Wedemeyer HH, Bauer T, Büning C, Grunert P, Hasselblatt P, Hänschen M, Kahl M, Engelke O, Schubert S, Holler B, Streetz K, Arnim UV, Schmidt K, Stallmach A; für die German IBD Study Group., Collaborators:., Jochen Maul, Berlin., Axel Schweitzer, Münster., Wolfgang Breit, Dinkelsbühl., Jan-Hinnerk Hofer, Köln., Marc Eisold, Mössingen., Michael R. Mroß, Berlin., Stefanie Howaldt, Hamburg., Stefanie Strobl, Ingolstadt., Robert Ehehalt, Heidelberg., Klaus Schmidt, Lübeck., Carsten Triller, Heinsberg., Serhat Aymaz, Düren., Thorsten Brechmann, Bochum., Axel Dignaß, Frankfurt., Elisabeth Schnoy, Augsburg., Bernd Swarovsky, Albstadt., Dr. med. Birgit Gerhard, Berlin., Doris Zink, Nürnberg., Ulrich Finger, Berlin., Franz Josef Heil, Andernach., Gerd-Rüdiger Franke, Dinkelsbühl., Günther Böhm, Ludwigshafen., Jens Hunkemöller, Oberberg., Martin Schmidt-Lauber, Oldenburg., Mirko Vonderach, Oldenburg., Olaf Mensler, Oberberg., Rainer Kunz, Fürstenfeldbruck., Richard Kölble, Düsseldorf., Christoph Rother, Sundern., Ulf Klönne, Göttingen., Ulrich Graefe, Berlin., Wolfgang Schwarz, Hamburg., Georg Schmitz, Düren., Hans Vibrans, Chemnitz., Thomas Witthöft, Stade., Tobias Klugmann, Leipzig., Martin Reuther, Lilienthal., Frank Bülow, Kassel., Carsten Ising, Waldbröl., Christoph Balzer, Schwandorf., Julia Morgenstern, Köln., Markus Casper, Saarbrücken., Ron Winograd, Aachen., Tilman Pickartz, Greifswald., Marco Wagner, Wipperfürth., Christoph Schmidt, Bonn., Wolfgang Vogt, Esslingen., Sabine Blau, Frankfurt/Main., Rolf Seipel, Kronach., Gisela Felten, Herne., Philipp A. Reuken, Jena., Jörg Kapp, Uelzen., Maximilian Gemeinhardt, Garmisch-Partenkirchen., Jörg Christian Metzler, Schwäbisch Gmünd., Martin Hoffstadt, Iserlohn., Susanne Wüchner-Hofmann, Darmstadt. [Effects of SARS-CoV-2 Infection on Symptoms and Therapy of Inflammatory Bowel Disease]. Z Gastroenterol 2021;59:1189-96. [PMID: 34748206 DOI: 10.1055/a-1508-6734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
312 Zhou T, Zeng Y, Wu J, Li J, Yan J, Meng W, Han H, Feng F, He J, Zhao S, Zhou P, Wu Y, Yang Y, Han R, Jin W, Li X, Yang Y, Li X. SARS-CoV-2 triggered excessive inflammation and abnormal energy metabolism in gut microbiota.. [DOI: 10.1101/2021.11.08.467715] [Reference Citation Analysis]
313 Khwatenge CN, Pate M, Miller LC, Sang Y. Immunometabolic Dysregulation at the Intersection of Obesity and COVID-19. Front Immunol 2021;12:732913. [PMID: 34737743 DOI: 10.3389/fimmu.2021.732913] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
314 Poeta M, Cioffi V, Buccigrossi V, Nanayakkara M, Baggieri M, Peltrini R, Amoresano A, Magurano F, Guarino A. Diosmectite inhibits the interaction between SARS-CoV-2 and human enterocytes by trapping viral particles, thereby preventing NF-kappaB activation and CXCL10 secretion. Sci Rep 2021;11:21725. [PMID: 34741071 DOI: 10.1038/s41598-021-01217-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
315 Beesley MA, Davidson JR, Panariello F, Shibuya S, Scaglioni D, Jones BC, Maksym K, Ogunbiyi O, Sebire NJ, Cacchiarelli D, David AL, De Coppi P, Gerli M. COVID-19 and vertical transmission: assessing the expression of ACE2/TMPRSS2 in the human fetus and placenta to assess the risk of SARS-CoV-2 infection. BJOG 2021. [PMID: 34735736 DOI: 10.1111/1471-0528.16974] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
316 Zhang S, Huang W, Ren L, Ju X, Gong M, Rao J, Sun L, Li P, Ding Q, Wang J, Zhang QC. Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2. Cell Res 2021. [PMID: 34737357 DOI: 10.1038/s41422-021-00581-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
317 Hayashi T, Murakami K, Hirano J, Fujii Y, Yamaoka Y, Ohashi H, Watashi K, Estes MK, Muramatsu M. Dasabuvir Inhibits Human Norovirus Infection in Human Intestinal Enteroids. mSphere 2021;:e0062321. [PMID: 34730374 DOI: 10.1128/mSphere.00623-21] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
318 Hussain I, Cher GLY, Abid MA, Abid MB. Role of Gut Microbiome in COVID-19: An Insight Into Pathogenesis and Therapeutic Potential. Front Immunol 2021;12:765965. [PMID: 34721437 DOI: 10.3389/fimmu.2021.765965] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
319 Chen J, Neil J, Tan J, Rudraraju R, Mohenska M, Sun Y, Sun G, Zhou Y, Li Y, Drew D, Pymm P, Tham W, Rossello F, Nie G, Liu X, Subbarao K, Polo J. An iTSC-derived placental model of SARS-CoV-2 infection reveals ACE2-dependent susceptibility in syncytiotrophoblasts.. [DOI: 10.1101/2021.10.27.465224] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
320 Li S, Yang S, Zhou Y, Disoma C, Dong Z, Du A, Zhang Y, Chen Y, Huang W, Chen J, Song D, Chen Z, Liu P, Li S, Zheng R, Liu S, Razzaq A, Chen X, Tao S, Yu C, Feng T, Liao W, Peng Y, Jiang T, Huang J, Wu W, Hu L, Wang L, Li S, Xia Z. Microbiome Profiling Using Shotgun Metagenomic Sequencing Identified Unique Microorganisms in COVID-19 Patients With Altered Gut Microbiota. Front Microbiol 2021;12:712081. [PMID: 34707577 DOI: 10.3389/fmicb.2021.712081] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
321 Gómez-carballa A, Rivero-calle I, Pardo-seco J, Gómez-rial J, Rivero-velasco C, Rodríguez-núñez N, Barbeito-castiñeiras G, Pérez-freixo H, Cebey-lópez M, Barral-arca R, Rodriguez-tenreiro C, Dacosta-urbieta A, Bello X, Pischedda S, Currás-tuala MJ, Viz-lasheras S, Martinón-torres F, Salas A, GEN-COVID (www.gencovid.eu) study group. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity.. [DOI: 10.1101/2021.10.27.466206] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
322 Chamata Y, Jackson KG, Watson KA, Jauregi P. Whey-Derived Peptides at the Heart of the COVID-19 Pandemic. Int J Mol Sci 2021;22:11662. [PMID: 34769093 DOI: 10.3390/ijms222111662] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
323 Yu J, Collins ND, Mercado NB, McMahan K, Chandrashekar A, Liu J, Anioke T, Chang A, Giffin VM, Hope DL, Sellers D, Nampanya F, Gardner S, Barrett J, Wan H, Velasco J, Teow E, Cook A, Van Ry A, Pessaint L, Andersen H, Lewis MG, Hofer C, Burke DS, Barkei EK, King HAD, Subra C, Bolton D, Modjarrad K, Michael NL, Barouch DH. Protective Efficacy of Gastrointestinal SARS-CoV-2 Delivery Against Intranasal and Intratracheal SARS-CoV-2 Challenge in Rhesus Macaques. J Virol 2021;:JVI0159921. [PMID: 34705557 DOI: 10.1128/JVI.01599-21] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
324 Griffiths WJ, Wang Y. Sterols, Oxysterols, and Accessible Cholesterol: Signalling for Homeostasis, in Immunity and During Development. Front Physiol 2021;12:723224. [PMID: 34690800 DOI: 10.3389/fphys.2021.723224] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
325 White I, Tamot N, Doddareddy R, Ho J, Jiao Q, Harvilla PB, Yang TY, Geist B, Borrok MJ, Truppo MD, Ganesan R, Chowdhury P, Zwolak A. Bifunctional molecules targeting SARS-CoV-2 spike and the polymeric Ig receptor display neutralization activity and mucosal enrichment. MAbs 2021;13:1987180. [PMID: 34693867 DOI: 10.1080/19420862.2021.1987180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
326 Urano E, Okamura T, Ono C, Ueno S, Nagata S, Kamada H, Higuchi M, Furukawa M, Kamitani W, Matsuura Y, Kawaoka Y, Yasutomi Y. COVID-19 cynomolgus macaque model reflecting human COVID-19 pathological conditions. Proc Natl Acad Sci U S A 2021;118:e2104847118. [PMID: 34625475 DOI: 10.1073/pnas.2104847118] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
327 Li JQ, Zhang ZR, Zhang HQ, Zhang YN, Zeng XY, Zhang QY, Deng CL, Li XD, Zhang B, Ye HQ. Intranasal delivery of replicating mRNA encoding neutralizing antibody against SARS-CoV-2 infection in mice. Signal Transduct Target Ther 2021;6:369. [PMID: 34697295 DOI: 10.1038/s41392-021-00783-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
328 Berdowska I, Matusiewicz M. Cathepsin L, transmembrane peptidase/serine subfamily member 2/4, and other host proteases in COVID-19 pathogenesis – with impact on gastrointestinal tract. World J Gastroenterol 2021; 27(39): 6590-6600 [PMID: 34754154 DOI: 10.3748/wjg.v27.i39.6590] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
329 Co JY, Margalef-Català M, Monack DM, Amieva MR. Controlling the polarity of human gastrointestinal organoids to investigate epithelial biology and infectious diseases. Nat Protoc 2021;16:5171-92. [PMID: 34663962 DOI: 10.1038/s41596-021-00607-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
330 Batista KS, de Albuquerque JG, Vasconcelos MHA, Bezerra MLR, da Silva Barbalho MB, Pinheiro RO, Aquino JS. Probiotics and prebiotics: potential prevention and therapeutic target for nutritional management of COVID-19? Nutr Res Rev 2021;:1-18. [PMID: 34668465 DOI: 10.1017/S0954422421000317] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
331 Bermejo-Jambrina M, Eder J, Kaptein TM, van Hamme JL, Helgers LC, Vlaming KE, Brouwer PJM, van Nuenen AC, Spaargaren M, de Bree GJ, Nijmeijer BM, Kootstra NA, van Gils MJ, Sanders RW, Geijtenbeek TBH. Infection and transmission of SARS-CoV-2 depend on heparan sulfate proteoglycans. EMBO J 2021;40:e106765. [PMID: 34510494 DOI: 10.15252/embj.2020106765] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
332 Mathavarajah S, Melin A, Dellaire G. SARS-CoV-2 and wastewater: What does it mean for non-human primates? Am J Primatol 2021;:e23340. [PMID: 34662463 DOI: 10.1002/ajp.23340] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
333 Nefedova E, Koptev V, Bobikova AS, Cherepushkina V, Mironova T, Afonyushkin V, Shkil N, Donchenko N, Kozlova Y, Sigareva N, Davidova N, Bogdanchikova N, Pestryakov A, Toledano-Magaña Y. The Infectious Bronchitis Coronavirus Pneumonia Model Presenting a Novel Insight for the SARS-CoV-2 Dissemination Route. Vet Sci 2021;8:239. [PMID: 34679068 DOI: 10.3390/vetsci8100239] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
334 Bellucci G, Rinaldi V, Buscarinu MC, Reniè R, Bigi R, Pellicciari G, Morena E, Romano C, Marrone A, Mechelli R, Salvetti M, Ristori G. Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started? Front Immunol 2021;12:755333. [PMID: 34646278 DOI: 10.3389/fimmu.2021.755333] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
335 Marongiu L, Valache M, Facchini FA, Granucci F. How dendritic cells sense and respond to viral infections. Clin Sci (Lond) 2021;135:2217-42. [PMID: 34623425 DOI: 10.1042/CS20210577] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
336 Xia H, Zhang Z, You F. Inhibiting ACSL1 related ferroptosis restrains MHV-A59 infection.. [DOI: 10.1101/2021.10.14.464337] [Reference Citation Analysis]
337 Guo Y, Wang B, Gao H, Gao L, Hua R, Xu JD. ACE2 in the Gut: The Center of the 2019-nCoV Infected Pathology. Front Mol Biosci 2021;8:708336. [PMID: 34631794 DOI: 10.3389/fmolb.2021.708336] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
338 Zhang Q, Friedman PA. Receptor-Loaded Virion Endangers GPCR Signaling: Mechanistic Exploration of SARS-CoV-2 Infections and Pharmacological Implications. Int J Mol Sci 2021;22:10963. [PMID: 34681624 DOI: 10.3390/ijms222010963] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
339 Schult D, Reitmeier S, Koyumdzhieva P, Lahmer T, Middelhoff M, Erber J, Schneider J, Kager J, Frolova M, Horstmann J, Fricke L, Steiger K, Jesinghaus M, Janssen K, Protzer U, Neuhaus K, Schmid RM, Haller D, Quante M. Gut Bacterial Dysbiosis and Instability is Associated with the Onset of Complications and Mortality in COVID-19.. [DOI: 10.1101/2021.10.08.463613] [Reference Citation Analysis]
340 Almeida A, Baixauli J, Cienfuegos JA, Valentí V, Rotellar F. Concomitant aortic, inferior mesenteric artery thrombosis and sigmoid colon perforation in severe covid-19 disease. Cir Esp 2021. [PMID: 34629480 DOI: 10.1016/j.ciresp.2021.09.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
341 Sang Y, Miller LC, Nelli RK, Giménez-Lirola LG. Harness Organoid Models for Virological Studies in Animals: A Cross-Species Perspective. Front Microbiol 2021;12:725074. [PMID: 34603253 DOI: 10.3389/fmicb.2021.725074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
342 Sözeri B, Çağlayan Ş, Atasayan V, Ulu K, Coşkuner T, Pelin Akbay Ö, Hasbal Akkuş C, Atay G, Salı E, Karacan M, Öner T, Erdoğan S, Demir F. The clinical course and short-term health outcomes of multisystem inflammatory syndrome in children in the single pediatric rheumatology center. Postgrad Med 2021;133:994-1000. [PMID: 34605352 DOI: 10.1080/00325481.2021.1987732] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
343 Iakobachvili N, Leon-Icaza SA, Knoops K, Sachs N, Mazères S, Simeone R, Peixoto A, Bernard C, Murris-Espin M, Mazières J, Cam K, Chalut C, Guilhot C, López-Iglesias C, Ravelli RBG, Neyrolles O, Meunier E, Lugo-Villarino G, Clevers H, Cougoule C, Peters PJ. Mycobacteria-host interactions in human bronchiolar airway organoids. Mol Microbiol 2021. [PMID: 34605588 DOI: 10.1111/mmi.14824] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
344 Klinakis A, Cournia Z, Rampias T. N-terminal domain mutations of the spike protein are structurally implicated in epitope recognition in emerging SARS-CoV-2 strains. Comput Struct Biotechnol J 2021. [PMID: 34630935 DOI: 10.1016/j.csbj.2021.10.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
345 Tizenberg BN, Brenner LA, Lowry CA, Okusaga OO, Benavides DR, Hoisington AJ, Benros ME, Stiller JW, Kessler RC, Postolache TT. Biological and Psychological Factors Determining Neuropsychiatric Outcomes in COVID-19. Curr Psychiatry Rep 2021;23:68. [PMID: 34648081 DOI: 10.1007/s11920-021-01275-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
346 Jabczyk M, Nowak J, Hudzik B, Zubelewicz-Szkodzińska B. Microbiota and Its Impact on the Immune System in COVID-19-A Narrative Review. J Clin Med 2021;10:4537. [PMID: 34640553 DOI: 10.3390/jcm10194537] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
347 Markova TN, Lysenko MA, Ivanova AA, Pavlova ES, Ponomareva AA, Chibisova VV, Isaev TK, Sinyavkin DO, Mkrtumyan AM. Prevalence of carbohydrate metabolism disorders in patients with new coronavirus infection. Diabetes mellitus 2021;24:222-230. [DOI: 10.14341/dm12712] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
348 Economou V, Sakkas H, Bezirtzoglou E, Papa A, Soultos N. SARS–CoV–2 and Food—How Confident Are We about Them? Hygiene 2021;1:80-98. [DOI: 10.3390/hygiene1030008] [Reference Citation Analysis]
349 Nataf S, Pays L. Molecular Insights into SARS-CoV2-Induced Alterations of the Gut/Brain Axis. Int J Mol Sci 2021;22:10440. [PMID: 34638785 DOI: 10.3390/ijms221910440] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
350 Knyazev E, Nersisyan S, Tonevitsky A. Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Front Immunol 2021;12:636966. [PMID: 34557180 DOI: 10.3389/fimmu.2021.636966] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
351 Luo Y, Zhang M, Chen Y, Chen Y, Zhu D. Application of Human Induced Pluripotent Stem Cell-Derived Cellular and Organoid Models for COVID-19 Research. Front Cell Dev Biol 2021;9:720099. [PMID: 34552930 DOI: 10.3389/fcell.2021.720099] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
352 Liu Z, Xu W, Chen Z, Fu W, Zhan W, Gao Y, Zhou J, Zhou Y, Wu J, Wang Q, Zhang X, Hao A, Wu W, Zhang Q, Li Y, Fan K, Chen R, Jiang Q, Mayer CT, Schoofs T, Xie Y, Jiang S, Wen Y, Yuan Z, Wang K, Lu L, Sun L, Wang Q. An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope. Protein Cell 2021. [PMID: 34554412 DOI: 10.1007/s13238-021-00871-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
353 Chen J, Hall S, Vitetta L. Altered gut microbial metabolites could mediate the effects of risk factors in Covid-19. Rev Med Virol 2021;31:1-13. [PMID: 34546607 DOI: 10.1002/rmv.2211] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
354 Miloradovic D, Pavlovic D, Jankovic MG, Nikolic S, Papic M, Milivojevic N, Stojkovic M, Ljujic B. Human Embryos, Induced Pluripotent Stem Cells, and Organoids: Models to Assess the Effects of Environmental Plastic Pollution. Front Cell Dev Biol 2021;9:709183. [PMID: 34540831 DOI: 10.3389/fcell.2021.709183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
355 Zhang C, Li W, Lei X, Xie Z, Qi L, Wang H, Xiao X, Xiao J, Zheng Y, Dong C, Zheng X, Chen S, Chen J, Sun B, Qin J, Zhai Q, Li J, Wei B, Wang J, Wang H. Targeting lysophospholipid acid receptor 1 and ROCK kinases promotes antiviral innate immunity. Sci Adv 2021;7:eabb5933. [PMID: 34533996 DOI: 10.1126/sciadv.abb5933] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
356 Beumer J, Geurts MH, Lamers MM, Puschhof J, Zhang J, van der Vaart J, Mykytyn AZ, Breugem TI, Riesebosch S, Schipper D, van den Doel PB, de Lau W, Pleguezuelos-Manzano C, Busslinger G, Haagmans BL, Clevers H. A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat Commun 2021;12:5498. [PMID: 34535662 DOI: 10.1038/s41467-021-25729-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
357 Zhao Y, Huang B, Ma H, Shang Y, Nie X, Zou L. Follow-up Study on the Outcomes of Recovered Pregnant Women with a History of COVID-19 in the First and Second Trimesters: A Case Series from China. Matern Fetal Med 2021;3:24-32. [PMID: 34522894 DOI: 10.1097/FM9.0000000000000080] [Reference Citation Analysis]
358 İnanç İ, Erdemli E. Histopathological features of SARS-CoV-2 infection and relationships with organoid technology. J Int Med Res 2021;49:3000605211044382. [PMID: 34521239 DOI: 10.1177/03000605211044382] [Reference Citation Analysis]
359 Yu J, Collins ND, Mercado NB, Mcmahan K, Chandrashekar A, Liu J, Anioke T, Chang A, Giffin VM, Hope DL, Sellers D, Nampanya F, Gardner S, Barrett J, Wan H, Velasco J, Teow E, Cook A, Van Ry A, Pessaint L, Andersen H, Lewis MG, Hofer C, Burke DS, Barkei EK, King HA, Subra C, Bolton D, Modjarrad K, Michael NL, Barouch DH. Protective Efficacy of Gastrointestinal SARS-CoV-2 Delivery Against Intranasal and Intratracheal SARS-CoV-2 Challenge in Rhesus Macaques.. [DOI: 10.1101/2021.09.13.460191] [Reference Citation Analysis]
360 Elmentaite R, Kumasaka N, Roberts K, Fleming A, Dann E, King HW, Kleshchevnikov V, Dabrowska M, Pritchard S, Bolt L, Vieira SF, Mamanova L, Huang N, Perrone F, Goh Kai'En I, Lisgo SN, Katan M, Leonard S, Oliver TRW, Hook CE, Nayak K, Campos LS, Domínguez Conde C, Stephenson E, Engelbert J, Botting RA, Polanski K, van Dongen S, Patel M, Morgan MD, Marioni JC, Bayraktar OA, Meyer KB, He X, Barker RA, Uhlig HH, Mahbubani KT, Saeb-Parsy K, Zilbauer M, Clatworthy MR, Haniffa M, James KR, Teichmann SA. Cells of the human intestinal tract mapped across space and time. Nature 2021;597:250-5. [PMID: 34497389 DOI: 10.1038/s41586-021-03852-1] [Cited by in Crossref: 73] [Cited by in F6Publishing: 84] [Article Influence: 36.5] [Reference Citation Analysis]
361 Blanchard-Rohner G, Didierlaurent A, Tilmanne A, Smeesters P, Marchant A. Pediatric COVID-19: Immunopathogenesis, Transmission and Prevention. Vaccines (Basel) 2021;9:1002. [PMID: 34579240 DOI: 10.3390/vaccines9091002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
362 Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021;12:683002. [PMID: 34489934 DOI: 10.3389/fimmu.2021.683002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
363 Bellavite P. Reappraisal of Dietary Phytochemicals for Coronavirus Infection: Focus on Hesperidin and Quercetin. Antioxidants - Benefits, Sources, Mechanisms of Action 2021. [DOI: 10.5772/intechopen.95529] [Reference Citation Analysis]
364 DeVoe C, Segal MR, Wang L, Stanley K, Madera S, Fan J, Schouest J, Graham-Ojo R, Nichols A, Prasad PA, Ghale R, Love C, Abe-Jones Y, Kangelaris KN, Patterson SL, Yokoe DS, Langelier CR. Increased rates of secondary bacterial infections, including Enterococcus bacteremia, in patients hospitalized with coronavirus disease 2019 (COVID-19). Infect Control Hosp Epidemiol 2021;:1-8. [PMID: 34486503 DOI: 10.1017/ice.2021.391] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
365 Yaqub N, Wayne G, Birchall M, Song W. Recent advances in human respiratory epithelium models for drug discovery. Biotechnol Adv 2021;:107832. [PMID: 34481894 DOI: 10.1016/j.biotechadv.2021.107832] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
366 Silva-Lagos LA, Pillay J, van Meurs M, Smink A, van der Voort PHJ, de Vos P. DAMPening COVID-19 Severity by Attenuating Danger Signals. Front Immunol 2021;12:720192. [PMID: 34456928 DOI: 10.3389/fimmu.2021.720192] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
367 Jakobsson J, Cotgreave I, Furberg M, Arnberg N, Svensson M. Potential Physiological and Cellular Mechanisms of Exercise That Decrease the Risk of Severe Complications and Mortality Following SARS-CoV-2 Infection. Sports (Basel) 2021;9:121. [PMID: 34564326 DOI: 10.3390/sports9090121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
368 Martin-Cardona A, Lloreta Trull J, Albero-González R, Paraira Beser M, Andújar X, Ruiz-Ramirez P, Tur-Martínez J, Ferrer C, De Marcos Izquierdo JA, Pérez-Madrigal A, Goiburú González L, Espinós Perez J, Esteve M. SARS-CoV-2 identified by transmission electron microscopy in lymphoproliferative and ischaemic intestinal lesions of COVID-19 patients with acute abdominal pain: two case reports. BMC Gastroenterol 2021;21:334. [PMID: 34445965 DOI: 10.1186/s12876-021-01905-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
369 Giovannoni F, Li Z, Remes-Lenicov F, Dávola ME, Elizalde M, Paletta A, Ashkar AA, Mossman KL, Dugour AV, Figueroa JM, Barquero AA, Ceballos A, Garcia CC, Quintana FJ. AHR signaling is induced by infection with coronaviruses. Nat Commun 2021;12:5148. [PMID: 34446714 DOI: 10.1038/s41467-021-25412-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
370 Sun G, Cui Q, Garcia G Jr, Wang C, Zhang M, Arumugaswami V, Riggs AD, Shi Y. Comparative transcriptomic analysis of SARS-CoV-2 infected cell model systems reveals differential innate immune responses. Sci Rep 2021;11:17146. [PMID: 34433867 DOI: 10.1038/s41598-021-96462-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
371 Desai P, Diamond MS, Thackray LB. Helminth-virus interactions: determinants of coinfection outcomes. Gut Microbes 2021;13:1961202. [PMID: 34428107 DOI: 10.1080/19490976.2021.1961202] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
372 Özdemir S, Algin A. Evaluation of Hematological Parameters in Predicting Short-Term Mortality for COVID 19 Patients with Gastrointestinal Symptoms: A Case-Control Study. Journal of Contemporary Medicine 2021. [DOI: 10.16899/jcm.972664] [Reference Citation Analysis]
373 Lehmann M, Allers K, Heldt C, Meinhardt J, Schmidt F, Rodriguez-Sillke Y, Kunkel D, Schumann M, Böttcher C, Stahl-Hennig C, Elezkurtaj S, Bojarski C, Radbruch H, Corman VM, Schneider T, Loddenkemper C, Moos V, Weidinger C, Kühl AA, Siegmund B. Human small intestinal infection by SARS-CoV-2 is characterized by a mucosal infiltration with activated CD8+ T cells. Mucosal Immunol 2021;14:1381-92. [PMID: 34420043 DOI: 10.1038/s41385-021-00437-z] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
374 Fardoos R, Asowata OE, Herbert N, Nyquist SK, Zungu Y, Singh A, Ngoepe A, Mbano IM, Mthabela N, Ramjit D, Karim F, Kuhn W, Madela FG, Manzini VT, Anderson F, Berger B, Pers TH, Shalek AK, Leslie A, Kløverpris HN. HIV infection drives interferon signaling within intestinal SARS-CoV-2 target cells. JCI Insight 2021;6:148920. [PMID: 34252054 DOI: 10.1172/jci.insight.148920] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
375 O'Donnell JS, Chappell KJ. Chronic SARS-CoV-2, a Cause of Post-acute COVID-19 Sequelae (Long-COVID)? Front Microbiol 2021;12:724654. [PMID: 34408742 DOI: 10.3389/fmicb.2021.724654] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
376 Pasero D, Cossu AP, Terragni P. Multi-Drug Resistance Bacterial Infections in Critically Ill Patients Admitted with COVID-19. Microorganisms 2021;9:1773. [PMID: 34442852 DOI: 10.3390/microorganisms9081773] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
377 Kapczynski DR, Sweeney R, Suarez DL, Spackman E, Pantin-jackwood M. Development of an in vitro model for animal species susceptibility to SARS-CoV-2 replication based on expression of ACE2 and TMPRSS2 in avian cells.. [DOI: 10.1101/2021.08.18.456916] [Reference Citation Analysis]
378 Shpichka A, Bikmulina P, Peshkova M, Heydari Z, Kosheleva N, Vosough M, Timashev P. Organoids in modelling infectious diseases. Drug Discov Today 2021:S1359-6446(21)00363-9. [PMID: 34418577 DOI: 10.1016/j.drudis.2021.08.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
379 Velikova T, Snegarova V, Kukov A, Batselova H, Mihova A, Nakov R. Gastrointestinal mucosal immunity and COVID-19. World J Gastroenterol 2021; 27(30): 5047-5059 [PMID: 34497434 DOI: 10.3748/wjg.v27.i30.5047] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
380 Tindle C, Fuller M, Fonseca A, Taheri S, Ibeawuchi SR, Beutler N, Katkar GD, Claire A, Castillo V, Hernandez M, Russo H, Duran J, Crotty Alexander LE, Tipps A, Lin G, Thistlethwaite PA, Chattopadhyay R, Rogers TF, Sahoo D, Ghosh P, Das S. Adult stem cell-derived complete lung organoid models emulate lung disease in COVID-19. Elife 2021;10:e66417. [PMID: 34463615 DOI: 10.7554/eLife.66417] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
381 Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A, Akkerman N, Saftien A, Boot C, de Waal A, Beumer J, Dutta D, Heo I, Clevers H. Intestinal organoid cocultures with microbes. Nat Protoc 2021. [PMID: 34381208 DOI: 10.1038/s41596-021-00589-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 12.5] [Reference Citation Analysis]
382 Li A, Zhao K, Zhang B, Hua R, Fang Y, Jiang W, Zhang J, Hui L, Zheng Y, Li Y, Zhu C, Wang PH, Peng K, Xia Y. SARS-CoV-2 NSP12 Protein Is Not an Interferon-β Antagonist. J Virol 2021;95:e0074721. [PMID: 34133897 DOI: 10.1128/JVI.00747-21] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
383 Poletti M, Treveil A, Csabai L, Gul L, Modos D, Madgwick M, Olbei M, Bohar B, Valdeolivas A, Turei D, Verstockt B, Triana S, Alexandrov T, Saez-rodriguez J, Stanifer ML, Boulant S, Korcsmaros T. Reprogramming of the intestinal epithelial-immune cell interactome during SARS-CoV-2 infection.. [DOI: 10.1101/2021.08.09.455656] [Reference Citation Analysis]
384 Heydari Z, Moeinvaziri F, Agarwal T, Pooyan P, Shpichka A, Maiti TK, Timashev P, Baharvand H, Vosough M. Organoids: a novel modality in disease modeling. Biodes Manuf 2021;:1-28. [PMID: 34395032 DOI: 10.1007/s42242-021-00150-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
385 Bauer MS, Gruber S, Hausch A, Milles LF, Nicolaus T, Schendel LC, López Navajas P, Procko E, Lietha D, Bernardi RC, Gaub HE, Lipfert J. A Tethered Ligand Assay to Probe SARS-CoV-2:ACE2 Interactions.. [DOI: 10.1101/2021.08.08.455468] [Reference Citation Analysis]
386 Johnson SD, Olwenyi OA, Bhyravbhatla N, Thurman M, Pandey K, Klug EA, Johnston M, Dyavar SR, Acharya A, Podany AT, Fletcher CV, Mohan M, Singh K, Byrareddy SN. Therapeutic implications of SARS-CoV-2 dysregulation of the gut-brain-lung axis. World J Gastroenterol 2021; 27(29): 4763-4783 [PMID: 34447225 DOI: 10.3748/wjg.v27.i29.4763] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
387 Reyes J, Fontes D, Bazzi A, Otero M, Ahmed K, Kinzel M. Effect of saliva fluid properties on pathogen transmissibility. Sci Rep 2021;11:16051. [PMID: 34362974 DOI: 10.1038/s41598-021-95559-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
388 Choi JY, Mahadik B, Fisher JP. 3D printing technologies for in vitro vaccine testing platforms and vaccine delivery systems against infectious diseases. Essays Biochem 2021;65:519-31. [PMID: 34342360 DOI: 10.1042/EBC20200105] [Reference Citation Analysis]
389 Nijenhuis W, Damstra HG, van Grinsven EJ, Iwanski MK, Praest P, Soltani ZE, van Grinsven MM, Brunsveld JE, de Kort T, Rodenburg LW, de Jong DC, Raeven HH, Spelier S, Amatngalim GD, Akhmanova A, Nijhuis M, Lebbink RJ, Beekman JM, Kapitein LC. Optical nanoscopy reveals SARS-CoV-2-induced remodeling of human airway cells.. [DOI: 10.1101/2021.08.05.455126] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
390 Wang JY, Roehrl MW, Roehrl VB, Roehrl MH. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases. bioRxiv 2021:2021. [PMID: 34373855 DOI: 10.1101/2021.07.30.454526] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
391 Chen KG, Park K, Spence JR. Studying SARS-CoV-2 infectivity and therapeutic responses with complex organoids. Nat Cell Biol 2021;23:822-33. [PMID: 34341531 DOI: 10.1038/s41556-021-00721-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
392 Pommerenke C, Rand U, Uphoff CC, Nagel S, Zaborski M, Hauer V, Kaufmann M, Meyer C, Denkmann SA, Riese P, Eschke K, Kim Y, Safranko ZM, Kurolt IC, Markotic A, Cicin-Sain L, Steenpass L. Identification of cell lines CL-14, CL-40 and CAL-51 as suitable models for SARS-CoV-2 infection studies. PLoS One 2021;16:e0255622. [PMID: 34339474 DOI: 10.1371/journal.pone.0255622] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
393 Levy E, Stintzi A, Cohen A, Desjardins Y, Marette A, Spahis S. Critical appraisal of the mechanisms of gastrointestinal and hepatobiliary infection by COVID-19. Am J Physiol Gastrointest Liver Physiol 2021;321:G99-G112. [PMID: 34009033 DOI: 10.1152/ajpgi.00106.2021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
394 Zhang T, Liu D, Tian D, Xia L. The roles of nausea and vomiting in COVID-19: did we miss something? J Microbiol Immunol Infect 2021;54:541-6. [PMID: 34435559 DOI: 10.1016/j.jmii.2020.10.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
395 Liu JJ, Sloan ME, Owings AH, Figgins E, Gauthier J, Gharaibeh R, Robinson T, Williams H, Sindel CB, Backus F, Ayyalasomayajula K, Parker A, Senitko M, Abraham GE 3rd, Claggett B, Horwitz BH, Jobin C, Adelman RM, Diamond G, Glover SC. Increased ACE2 Levels and Mortality Risk of Patients With COVID-19 on Proton Pump Inhibitor Therapy. Am J Gastroenterol 2021;116:1638-45. [PMID: 34047305 DOI: 10.14309/ajg.0000000000001311] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
396 Mendonça L, Howe A, Gilchrist JB, Sheng Y, Sun D, Knight ML, Zanetti-Domingues LC, Bateman B, Krebs AS, Chen L, Radecke J, Li VD, Ni T, Kounatidis I, Koronfel MA, Szynkiewicz M, Harkiolaki M, Martin-Fernandez ML, James W, Zhang P. Correlative multi-scale cryo-imaging unveils SARS-CoV-2 assembly and egress. Nat Commun 2021;12:4629. [PMID: 34330917 DOI: 10.1038/s41467-021-24887-y] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 24.0] [Reference Citation Analysis]
397 Kleinstreuer N, Holmes A. Harnessing the power of microphysiological systems for COVID-19 research. Drug Discov Today 2021:S1359-6446(21)00330-5. [PMID: 34332095 DOI: 10.1016/j.drudis.2021.06.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
398 Hung YP, Lee CC, Lee JC, Tsai PJ, Ko WC. Gut Dysbiosis during COVID-19 and Potential Effect of Probiotics. Microorganisms 2021;9. [PMID: 34442684 DOI: 10.3390/microorganisms9081605] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
399 Prelli Bozzo C, Nchioua R, Volcic M, Koepke L, Krüger J, Schütz D, Heller S, Stürzel CM, Kmiec D, Conzelmann C, Müller J, Zech F, Braun E, Groß R, Wettstein L, Weil T, Weiß J, Diofano F, Rodríguez Alfonso AA, Wiese S, Sauter D, Münch J, Goffinet C, Catanese A, Schön M, Boeckers TM, Stenger S, Sato K, Just S, Kleger A, Sparrer KMJ, Kirchhoff F. IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nat Commun 2021;12:4584. [PMID: 34321474 DOI: 10.1038/s41467-021-24817-y] [Cited by in Crossref: 48] [Cited by in F6Publishing: 56] [Article Influence: 24.0] [Reference Citation Analysis]
400 Rajan A, Weaver AM, Aloisio GM, Jelinski J, Johnson HL, Venable SF, McBride T, Aideyan L, Piedra FA, Ye X, Melicoff-Portillo E, Yerramilli MRK, Zeng XL, Mancini MA, Stossi F, Maresso AW, Kotkar SA, Estes MK, Blutt S, Avadhanula V, Piedra PA. The human nose organoid respiratory virus model: an ex-vivo human challenge model to study RSV and SARS-CoV-2 pathogenesis and evaluate therapeutics. bioRxiv 2021:2021. [PMID: 34341793 DOI: 10.1101/2021.07.28.453844] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
401 Venzon M, Bernard-Raichon L, Klein J, Axelrad J, Hussey G, Sullivan A, Casanovas-Massana A, Noval M, Valero-Jimenez A, Gago J, Wilder E, Team YIR, Iwasaki A, Thorpe L, Littman D, Dittmann M, Stapleford K, Shopsin B, Torres V, Ko A, Cadwell K, Schluter J. Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation. Res Sq 2021:rs. [PMID: 34341786 DOI: 10.21203/rs.3.rs-726620/v1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
402 Triana S, Stanifer ML, Metz-Zumaran C, Shahraz M, Mukenhirn M, Kee C, Serger C, Koschny R, Ordoñez-Rueda D, Paulsen M, Benes V, Boulant S, Alexandrov T. Single-cell transcriptomics reveals immune response of intestinal cell types to viral infection. Mol Syst Biol 2021;17:e9833. [PMID: 34309190 DOI: 10.15252/msb.20209833] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
403 Lavelle EC, Ward RW. Mucosal vaccines - fortifying the frontiers. Nat Rev Immunol 2021. [PMID: 34312520 DOI: 10.1038/s41577-021-00583-2] [Cited by in Crossref: 90] [Cited by in F6Publishing: 101] [Article Influence: 45.0] [Reference Citation Analysis]
404 Golota AS, Kamilova TA, Shneider OV, Vologzhanin DA, Sherbak SG. Pathogenesis of the initial stages of severe COVID-19. Journal of Clinical Practice 2021;12:83-102. [DOI: 10.17816/clinpract71351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
405 Landay A, Bartley JM, Banerjee D, Hargis G, Haynes L, Keshavarzian A, Kuo C, Kwon OS, Li S, Li S, Oh J, Ozbolat IT, Ucar D, Xu M, Yao X, Unutmaz D, Kuchel GA. Network Topology of Biological Aging and Geroscience-Guided Approaches to COVID-19. Front Aging 2021;2. [DOI: 10.3389/fragi.2021.695218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
406 de Oliveira M, De Sibio MT, Costa FAS, Sakalem ME. Airway and Alveoli Organoids as Valuable Research Tools in COVID-19. ACS Biomater Sci Eng 2021;7:3487-502. [PMID: 34288642 DOI: 10.1021/acsbiomaterials.1c00306] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
407 Pérez-Gómez A, Vitallé J, Gasca-Capote C, Gutierrez-Valencia A, Trujillo-Rodriguez M, Serna-Gallego A, Muñoz-Muela E, Jiménez-Leon MLR, Rafii-El-Idrissi Benhnia M, Rivas-Jeremias I, Sotomayor C, Roca-Oporto C, Espinosa N, Infante-Domínguez C, Crespo-Rivas JC, Fernández-Villar A, Pérez-González A, López-Cortés LF, Poveda E, Ruiz-Mateos E; Virgen del Rocío Hospital COVID-19 Working Team. Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection. Cell Mol Immunol 2021. [PMID: 34290398 DOI: 10.1038/s41423-021-00728-2] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 14.5] [Reference Citation Analysis]
408 Woodall MNJ, Masonou T, Case KM, Smith CM. Human models for COVID-19 research. J Physiol 2021. [PMID: 34287894 DOI: 10.1113/JP281499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
409 Azar J, Bahmad HF, Daher D, Moubarak MM, Hadadeh O, Monzer A, Al Bitar S, Jamal M, Al-Sayegh M, Abou-Kheir W. The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update. Int J Mol Sci 2021;22:7667. [PMID: 34299287 DOI: 10.3390/ijms22147667] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
410 Simsek C, Erul E, Balaban HY. Role of gastrointestinal system on transmission and pathogenesis of SARS-CoV-2. World J Clin Cases 2021; 9(20): 5427-5434 [PMID: 34307596 DOI: 10.12998/wjcc.v9.i20.5427] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
411 Robinot R, Hubert M, de Melo GD, Lazarini F, Bruel T, Smith N, Levallois S, Larrous F, Fernandes J, Gellenoncourt S, Rigaud S, Gorgette O, Thouvenot C, Trébeau C, Mallet A, Duménil G, Gobaa S, Etournay R, Lledo PM, Lecuit M, Bourhy H, Duffy D, Michel V, Schwartz O, Chakrabarti LA. SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nat Commun 2021;12:4354. [PMID: 34272374 DOI: 10.1038/s41467-021-24521-x] [Cited by in Crossref: 65] [Cited by in F6Publishing: 69] [Article Influence: 32.5] [Reference Citation Analysis]
412 Jang KK, Kaczmarek ME, Dallari S, Chen Y, Tada T, Axelrad J, Landau NR, Stapleford KA, Cadwell K. Variable susceptibility of intestinal organoid-derived monolayers to SARS-CoV-2 infection.. [DOI: 10.1101/2021.07.16.452680] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
413 Lee H, Im JS, Choi DB, Woo D. Trends in the global organoid technology and industry: from organogenesis in a dish to the commercialization of organoids. Organoid 2021;1:e11. [DOI: 10.51335/organoid.2021.1.e11] [Reference Citation Analysis]
414 Rapier-sharman N, Krapohl J, Beausoleil EJ, Gifford KTL, Hinatsu BR, Hoffmann CS, Komer M, Scott TM, Pickett BE. Preprocessing of Public RNA-Sequencing Datasets to Facilitate Downstream Analyses of Human Diseases. Data 2021;6:75. [DOI: 10.3390/data6070075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
415 Varbanov M, Bertrand I, Philippot S, Retourney C, Gardette M, Hartard C, Jeulin H, Duval RE, Loret JF, Schvoerer E, Gantzer C. Somatic coliphages are conservative indicators of SARS-CoV-2 inactivation during heat and alkaline pH treatments. Sci Total Environ 2021;797:149112. [PMID: 34346352 DOI: 10.1016/j.scitotenv.2021.149112] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
416 Chen DY, Khan N, Close BJ, Goel RK, Blum B, Tavares AH, Kenney D, Conway HL, Ewoldt JK, Chitalia VC, Crossland NA, Chen CS, Kotton DN, Baker SC, Fuchs SY, Connor JH, Douam F, Emili A, Saeed M. SARS-CoV-2 disrupts proximal elements in the JAK-STAT pathway. J Virol 2021;:JVI0086221. [PMID: 34260266 DOI: 10.1128/JVI.00862-21] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
417 Dallner M, Harlow J, Nasheri N. Human Coronaviruses Do Not Transfer Efficiently between Surfaces in the Absence of Organic Materials. Viruses 2021;13:1352. [PMID: 34372557 DOI: 10.3390/v13071352] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
418 Ahn JH, Kim J, Hong SP, Choi SY, Yang MJ, Ju YS, Kim YT, Kim HM, Rahman MDT, Chung MK, Hong SD, Bae H, Lee CS, Koh GY. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J Clin Invest 2021;131:148517. [PMID: 34003804 DOI: 10.1172/JCI148517] [Cited by in Crossref: 62] [Cited by in F6Publishing: 69] [Article Influence: 31.0] [Reference Citation Analysis]
419 Yu Z, Yang Z, Wang Y, Zhou F, Li S, Li C, Li L, Zhang W, Li X. Recent advance of ACE2 and microbiota dysfunction in COVID-19 pathogenesis. Heliyon 2021;7:e07548. [PMID: 34296023 DOI: 10.1016/j.heliyon.2021.e07548] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
420 Lean FZX, Núñez A, Spiro S, Priestnall SL, Vreman S, Bailey D, James J, Wrigglesworth E, Suarez-Bonnet A, Conceicao C, Thakur N, Byrne AMP, Ackroyd S, Delahay RJ, van der Poel WHM, Brown IH, Fooks AR, Brookes SM. Differential susceptibility of SARS-CoV-2 in animals: Evidence of ACE2 host receptor distribution in companion animals, livestock and wildlife by immunohistochemical characterisation. Transbound Emerg Dis 2021. [PMID: 34245662 DOI: 10.1111/tbed.14232] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
421 Beneš J, Nováková D. Pathogenesis of covid-19: principles of viral infection and immune response. Intervencni a akutni kardiologie 2021;20:73-77. [DOI: 10.36290/kar.2021.023] [Reference Citation Analysis]
422 Amjad W, Haider R, Malik A, Qureshi W. Insights into the management of anorectal disease in the coronavirus 2019 disease era. Therap Adv Gastroenterol 2021;14:17562848211028117. [PMID: 34290826 DOI: 10.1177/17562848211028117] [Reference Citation Analysis]
423 Sun Z, He G, Huang N, Thilakavathy K, Lim JCW, Kumar SS, Xiong C. Glycyrrhizic Acid: A Natural Plant Ingredient as a Drug Candidate to Treat COVID-19. Front Pharmacol 2021;12:707205. [PMID: 34305613 DOI: 10.3389/fphar.2021.707205] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
424 Albert S, Ruíz A, Pemán J, Salavert M, Domingo-Calap P. Lack of evidence for infectious SARS-CoV-2 in feces and sewage. Eur J Clin Microbiol Infect Dis 2021. [PMID: 34240259 DOI: 10.1007/s10096-021-04304-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
425 Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Profile from Jurkat T-Lymphoblasts Provides a Molecular Guide for Investigating Autoimmune Sequelae of COVID-19. bioRxiv 2021:2021. [PMID: 34729561 DOI: 10.1101/2021.07.05.451199] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
426 Kim T, Lee JS, Ju YS. Experimental Models for SARS-CoV-2 Infection. Mol Cells 2021;44:377-83. [PMID: 34187969 DOI: 10.14348/molcells.2021.0094] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
427 Chen ZR, Liu J, Liao ZG, Zhou J, Peng HW, Gong F, Hu JF, Zhou Y. COVID-19 and gastroenteric manifestations . World J Clin Cases 2021; 9(19): 4990-4997 [PMID: 34307549 DOI: 10.12998/wjcc.v9.i19.4990] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
428 Boutin S, Hildebrand D, Boulant S, Kreuter M, Rüter J, Pallerla SR, Velavan TP, Nurjadi D. Host factors facilitating SARS-CoV-2 virus infection and replication in the lungs. Cell Mol Life Sci 2021;78:5953-76. [PMID: 34223911 DOI: 10.1007/s00018-021-03889-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
429 Gaussen A, Hornby L, Rockl G, O'Brien S, Delage G, Sapir-Pichhadze R, Drews SJ, Weiss MJ, Lewin A. Evidence of SARS-CoV-2 Infection in Cells, Tissues, and Organs and the Risk of Transmission Through Transplantation. Transplantation 2021;105:1405-22. [PMID: 33724248 DOI: 10.1097/TP.0000000000003744] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
430 Silva RR, Ribeiro CJN, Moura TR, Santos MB, Santos AD, Tavares DS, Santos PL. Basic sanitation: a new indicator for the spread of COVID-19? Trans R Soc Trop Med Hyg 2021;115:832-40. [PMID: 33547895 DOI: 10.1093/trstmh/traa187] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
431 Hayashi T, Murakami K, Hirano J, Fujii Y, Yamaoka Y, Ohashi H, Watashi K, Estes MK, Muramatsu M. Dasabuvir inhibits human norovirus infection in human intestinal enteroids.. [DOI: 10.1101/2021.07.02.450857] [Reference Citation Analysis]
432 Luthra-Guptasarma M, Guptasarma P. Does chronic inflammation cause acute inflammation to spiral into hyper-inflammation in a manner modulated by diet and the gut microbiome, in severe Covid-19? Bioessays 2021;:e2000211. [PMID: 34213801 DOI: 10.1002/bies.202000211] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
433 van Eijk LE, Binkhorst M, Bourgonje AR, Offringa AK, Mulder DJ, Bos EM, Kolundzic N, Abdulle AE, van der Voort PH, Olde Rikkert MG, van der Hoeven JG, den Dunnen WF, Hillebrands JL, van Goor H. COVID-19: immunopathology, pathophysiological mechanisms, and treatment options. J Pathol 2021;254:307-31. [PMID: 33586189 DOI: 10.1002/path.5642] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 24.0] [Reference Citation Analysis]
434 van de Ven K, van Dijken H, Wijsman L, Gomersbach A, Schouten T, Kool J, Lenz S, Roholl P, Meijer A, van Kasteren P, de Jonge J. Pathology and immunity after SARS-CoV-2 infection in male ferrets is affected by age and inoculation route.. [DOI: 10.1101/2021.06.30.450298] [Reference Citation Analysis]
435 Magro F, Nuzzo A, Abreu C, Libânio D, Rodriguez-Lago I, Pawlak K, Hollenbach M, Brouwer WP, Siau K. COVID-19 in gastroenterology: Where are we now? Current evidence on the impact of COVID-19 in gastroenterology. United European Gastroenterol J 2021. [PMID: 34190413 DOI: 10.1002/ueg2.12115] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
436 Niesor EJ, Boivin G, Rhéaume E, Shi R, Lavoie V, Goyette N, Picard ME, Perez A, Laghrissi-Thode F, Tardif JC. Inhibition of the 3CL Protease and SARS-CoV-2 Replication by Dalcetrapib. ACS Omega 2021;6:16584-91. [PMID: 34235330 DOI: 10.1021/acsomega.1c01797] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
437 Gaibani P, D'Amico F, Bartoletti M, Lombardo D, Rampelli S, Fornaro G, Coladonato S, Siniscalchi A, Re MC, Viale P, Brigidi P, Turroni S, Giannella M. The Gut Microbiota of Critically Ill Patients With COVID-19. Front Cell Infect Microbiol 2021;11:670424. [PMID: 34268136 DOI: 10.3389/fcimb.2021.670424] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
438 Ramirez Alvarez C, Kee C, Sharma AK, Thomas L, Schmidt FI, Stanifer ML, Boulant S, Herrmann C. The endogenous cellular protease inhibitor SPINT2 controls SARS-CoV-2 viral infection and is associated to disease severity. PLoS Pathog 2021;17:e1009687. [PMID: 34181691 DOI: 10.1371/journal.ppat.1009687] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
439 Fakhoury HMA, Kvietys PR, Shakir I, Shams H, Grant WB, Alkattan K. Lung-Centric Inflammation of COVID-19: Potential Modulation by Vitamin D. Nutrients 2021;13:2216. [PMID: 34203190 DOI: 10.3390/nu13072216] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
440 van der Vaart J, Lamers MM, Haagmans BL, Clevers H. Advancing lung organoids for COVID-19 research. Dis Model Mech 2021;14:dmm049060. [PMID: 34219165 DOI: 10.1242/dmm.049060] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
441 Li XG, Chen MX, Zhao SQ, Wang XQ. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip. Stem Cell Rev Rep 2021. [PMID: 34181185 DOI: 10.1007/s12015-021-10205-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
442 Jafari Khaljiri H, Jamalkhah M, Amini Harandi A, Pakdaman H, Moradi M, Mowla A. Comprehensive Review on Neuro-COVID-19 Pathophysiology and Clinical Consequences. Neurotox Res 2021;39:1613-29. [PMID: 34169404 DOI: 10.1007/s12640-021-00389-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
443 Britton GJ, Chen-Liaw A, Cossarini F, Livanos AE, Spindler MP, Plitt T, Eggers J, Mogno I, Gonzalez-Reiche AS, Siu S, Tankelevich M, Grinspan LT, Dixon RE, Jha D, van de Guchte A, Khan Z, Martinez-Delgado G, Amanat F, Hoagland DA, tenOever BR, Dubinsky MC, Merad M, van Bakel H, Krammer F, Bongers G, Mehandru S, Faith JJ. Limited intestinal inflammation despite diarrhea, fecal viral RNA and SARS-CoV-2-specific IgA in patients with acute COVID-19. Sci Rep 2021;11:13308. [PMID: 34172783 DOI: 10.1038/s41598-021-92740-9] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
444 Tavakol DN, Fleischer S, Vunjak-Novakovic G. Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell 2021;28:993-1015. [PMID: 34087161 DOI: 10.1016/j.stem.2021.05.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
445 Kino T, Burd I, Segars JH. Dexamethasone for Severe COVID-19: How Does It Work at Cellular and Molecular Levels? Int J Mol Sci 2021;22:6764. [PMID: 34201797 DOI: 10.3390/ijms22136764] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
446 Bauer L, Lendemeijer B, Leijten L, Embregts CWE, Rockx B, Kushner SA, de Vrij FMS, van Riel D. Replication Kinetics, Cell Tropism, and Associated Immune Responses in SARS-CoV-2- and H5N1 Virus-Infected Human Induced Pluripotent Stem Cell-Derived Neural Models. mSphere 2021;6:e0027021. [PMID: 34160239 DOI: 10.1128/mSphere.00270-21] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
447 Megyeri K, Dernovics Á, Al-Luhaibi ZII, Rosztóczy A. COVID-19-associated diarrhea. World J Gastroenterol 2021; 27(23): 3208-3222 [PMID: 34163106 DOI: 10.3748/wjg.v27.i23.3208] [Cited by in CrossRef: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
448 Newsome RC, Gauthier J, Hernandez MC, Abraham GE, Robinson TO, Williams HB, Sloan M, Owings A, Laird H, Christian T, Pride Y, Wilson KJ, Hasan M, Parker A, Senitko M, Glover SC, Gharaibeh RZ, Jobin C. The gut microbiome of COVID-19 recovered patients returns to uninfected status in a minority-dominated United States cohort. Gut Microbes 2021;13:1-15. [PMID: 34100340 DOI: 10.1080/19490976.2021.1926840] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
449 Pedrosa CDSG, Goto-Silva L, Temerozo JR, Souza LRQ, Vitória G, Ornelas IM, Karmirian K, Mendes MA, Gomes IC, Sacramento CQ, Fintelman-Rodrigues N, Cardoso Soares V, Silva Gomes Dias SD, Salerno JA, Puig-Pijuan T, Oliveira JT, Aragão LGHS, Torquato TCQ, Veríssimo C, Biagi D, Cruvinel EM, Dariolli R, Furtado DR, Borges HL, Bozza PT, Rehen S, Moreno L Souza T, Guimarães MZP. Non-permissive SARS-CoV-2 infection in human neurospheres. Stem Cell Res 2021;54:102436. [PMID: 34186311 DOI: 10.1016/j.scr.2021.102436] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
450 Izquierdo-Lara R, Elsinga G, Heijnen L, Munnink BBO, Schapendonk CME, Nieuwenhuijse D, Kon M, Lu L, Aarestrup FM, Lycett S, Medema G, Koopmans MPG, de Graaf M. Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium. Emerg Infect Dis 2021;27:1405-15. [PMID: 33900177 DOI: 10.3201/eid2705.204410] [Cited by in Crossref: 92] [Cited by in F6Publishing: 105] [Article Influence: 46.0] [Reference Citation Analysis]
451 Pedrosa CDSG, Goto-Silva L, Temerozo JR, Souza LRQ, Vitória G, Ornelas IM, Karmirian K, Mendes MA, Gomes IC, Sacramento CQ, Fintelman-Rodrigues N, Soares VC, Dias SDSG, Salerno JA, Puig-Pijuan T, Oliveira JT, Aragão LGHS, Torquato TCQ, Veríssimo C, Biagi D, Cruvinel EM, Dariolli R, Furtado DR, Borges HL, Bozza PT, Rehen S, Souza TML, Guimarães MZP. Non-permissive SARS-CoV-2 infection in human neurospheres. bioRxiv 2021:2020. [PMID: 33052345 DOI: 10.1101/2020.09.11.293951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
452 Tamama K. Potential benefits of dietary seaweeds as protection against COVID-19. Nutr Rev 2021;79:814-23. [PMID: 33341894 DOI: 10.1093/nutrit/nuaa126] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
453 Echavarría-Consuegra L, Cook GM, Busnadiego I, Lefèvre C, Keep S, Brown K, Doyle N, Dowgier G, Franaszek K, Moore NA, Siddell SG, Bickerton E, Hale BG, Firth AE, Brierley I, Irigoyen N. Manipulation of the unfolded protein response: A pharmacological strategy against coronavirus infection. PLoS Pathog 2021;17:e1009644. [PMID: 34138976 DOI: 10.1371/journal.ppat.1009644] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
454 Li J, Richards EM, Handberg EM, Pepine CJ, Raizada MK. Distinct Gene Expression Profiles in Colonic Organoids from Normotensive and the Spontaneously Hypertensive Rats. Cells 2021;10:1523. [PMID: 34204247 DOI: 10.3390/cells10061523] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
455 Sayed S. COVID-19 and Malignancy: Exploration of the possible genetic and epigenetic interlinks and overview of the vaccination scenario. Cancer Treat Res Commun 2021;28:100425. [PMID: 34171559 DOI: 10.1016/j.ctarc.2021.100425] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
456 Hennon TR, Yu KOA, Penque MD, Abdul-Aziz R, Chang AC, McGreevy MB, Pastore JV, Prout AJ, Schaefer BA, Alibrahim OS, Gomez-Duarte OG, Hicar MD. COVID-19 associated Multisystem Inflammatory Syndrome in Children (MIS-C) guidelines; revisiting the Western New York approach as the pandemic evolves. Prog Pediatr Cardiol 2021;62:101407. [PMID: 34121829 DOI: 10.1016/j.ppedcard.2021.101407] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
457 Kee C, Metz-zumaran C, Doldan P, Guo C, Stanifer ML, Boulant S. Increased sensitivity of SARS-CoV-2 to type III interferon in human intestinal epithelial cells.. [DOI: 10.1101/2021.06.14.448464] [Reference Citation Analysis]
458 Griffin BD, Warner BM, Chan M, Mendoza EJ, Tailor N, Banadyga L, Leung A, He S, Boese AS, Audet J, Cao W, Moffat E, Garnett L, Tierney K, Tran KN, Albietz A, Manguiat K, Soule G, Bello A, Vendramelli R, Lin J, Deschambault Y, Zhu W, Safronetz D, Wood H, Mubareka S, Strong JE, Embury-hyatt C, Kobasa D. Exposure route, sex, and age influence disease outcome in a golden Syrian hamster model of SARS-CoV-2 infection.. [DOI: 10.1101/2021.06.12.448196] [Reference Citation Analysis]
459 Osman IO, Melenotte C, Brouqui P, Million M, Lagier JC, Parola P, Stein A, La Scola B, Meddeb L, Mege JL, Raoult D, Devaux CA. Expression of ACE2, Soluble ACE2, Angiotensin I, Angiotensin II and Angiotensin-(1-7) Is Modulated in COVID-19 Patients. Front Immunol 2021;12:625732. [PMID: 34194422 DOI: 10.3389/fimmu.2021.625732] [Cited by in Crossref: 29] [Cited by in F6Publishing: 35] [Article Influence: 14.5] [Reference Citation Analysis]
460 Khan M, Mathew BJ, Gupta P, Garg G, Khadanga S, Vyas AK, Singh AK. Gut Dysbiosis and IL-21 Response in Patients with Severe COVID-19. Microorganisms 2021;9:1292. [PMID: 34199203 DOI: 10.3390/microorganisms9061292] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
461 Pesce M, Agostoni P, Bøtker HE, Brundel B, Davidson SM, De Caterina R, Ferdinandy P, Girao H, Gyöngyösi M, Hulot JS, Lecour S, Perrino C, Schulz R, Sluijter JPG, Steffens S, Tancevski I, Gollmann-Tepeköylü C, Tschöpe C, van Linthout S, Madonna R. COVID-19 related cardiac complications - from clinical evidences to basic mechanisms. Opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2021:cvab201. [PMID: 34117887 DOI: 10.1093/cvr/cvab201] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
462 Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther 2021;6:233. [PMID: 34117216 DOI: 10.1038/s41392-021-00653-w] [Cited by in Crossref: 101] [Cited by in F6Publishing: 106] [Article Influence: 50.5] [Reference Citation Analysis]
463 Shang Z, Chan SY, Liu WJ, Li P, Huang W. Recent Insights into Emerging Coronavirus: SARS-CoV-2. ACS Infect Dis 2021;7:1369-88. [PMID: 33296169 DOI: 10.1021/acsinfecdis.0c00646] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
464 Le BL, Andreoletti G, Oskotsky T, Vallejo-Gracia A, Rosales R, Yu K, Kosti I, Leon KE, Bunis DG, Li C, Kumar GR, White KM, García-Sastre A, Ott M, Sirota M. Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Sci Rep 2021;11:12310. [PMID: 34112877 DOI: 10.1038/s41598-021-91625-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
465 Sender R, Bar-On YM, Gleizer S, Bernshtein B, Flamholz A, Phillips R, Milo R. The total number and mass of SARS-CoV-2 virions. Proc Natl Acad Sci U S A 2021;118:e2024815118. [PMID: 34083352 DOI: 10.1073/pnas.2024815118] [Cited by in Crossref: 79] [Cited by in F6Publishing: 95] [Article Influence: 39.5] [Reference Citation Analysis]
466 Utay NS, Asmuth DM, Gharakhanian S, Contreras M, Warner CD, Detzel CJ. Potential use of serum-derived bovine immunoglobulin/protein isolate for the management of COVID-19. Drug Dev Res 2021. [PMID: 34110032 DOI: 10.1002/ddr.21841] [Reference Citation Analysis]
467 Dyavar SR, Singh R, Emani R, Pawar GP, Chaudhari VD, Podany AT, Avedissian SN, Fletcher CV, Salunke DB. Role of toll-like receptor 7/8 pathways in regulation of interferon response and inflammatory mediators during SARS-CoV2 infection and potential therapeutic options. Biomed Pharmacother 2021;141:111794. [PMID: 34153851 DOI: 10.1016/j.biopha.2021.111794] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
468 Giron LB, Dweep H, Yin X, Wang H, Damra M, Goldman AR, Gorman N, Palmer CS, Tang HY, Shaikh MW, Forsyth CB, Balk RA, Zilberstein NF, Liu Q, Kossenkov A, Keshavarzian A, Landay A, Abdel-Mohsen M. Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Front Immunol 2021;12:686240. [PMID: 34177935 DOI: 10.3389/fimmu.2021.686240] [Cited by in Crossref: 41] [Cited by in F6Publishing: 50] [Article Influence: 20.5] [Reference Citation Analysis]
469 Spadaccini M, Canziani L, Aghemo A, Lleo A, Maselli R, Anderloni A, Carrara S, Fugazza A, Pellegatta G, Galtieri PA, Hassan C, Greenwald D, Pochapin M, Wallace M, Sharma P, Roesch T, Bhandari P, Emura F, Raju GS, Repici A. What gastroenterologists should know about SARS-CoV 2 vaccine: World Endoscopy Organization perspective. United European Gastroenterol J 2021. [PMID: 34102015 DOI: 10.1002/ueg2.12103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
470 Mohanty S, Paul S, Ahmad Y. Understanding the SARS-CoV-2 virus to mitigate current and future pandemic(s). Virusdisease 2021;:1-10. [PMID: 34109260 DOI: 10.1007/s13337-021-00696-1] [Reference Citation Analysis]
471 Barreda-Manso MA, Nieto-Díaz M, Soto A, Muñoz-Galdeano T, Reigada D, Maza RM. In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3'-UTR. Int J Mol Sci 2021;22:6094. [PMID: 34198800 DOI: 10.3390/ijms22116094] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
472 Battaglini D, Robba C, Fedele A, Trancǎ S, Sukkar SG, Di Pilato V, Bassetti M, Giacobbe DR, Vena A, Patroniti N, Ball L, Brunetti I, Torres Martí A, Rocco PRM, Pelosi P. The Role of Dysbiosis in Critically Ill Patients With COVID-19 and Acute Respiratory Distress Syndrome. Front Med (Lausanne) 2021;8:671714. [PMID: 34150807 DOI: 10.3389/fmed.2021.671714] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
473 Bein A, Kim S, Goyal G, Cao W, Fadel C, Naziripour A, Sharma S, Swenor B, Logrande N, Nurani A, Miao VN, Navia AW, Ziegler CGK, Ordovas-montañes J, Prabhala P, Kim MS, Prantil-baun R, Rodas M, Jiang A, Tillya G, Shalek AK, Ingber DE. Enteric coronavirus infection and treatment modeled with an immunocompetent human intestine-on-a-chip.. [DOI: 10.1101/2021.06.03.446968] [Reference Citation Analysis]
474 da Silva da Costa FA, Soares MR, Malagutti-Ferreira MJ, da Silva GR, Lívero FADR, Ribeiro-Paes JT. Three-Dimensional Cell Cultures as a Research Platform in Lung Diseases and COVID-19. Tissue Eng Regen Med 2021. [PMID: 34080133 DOI: 10.1007/s13770-021-00348-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
475 Lee HK, Jung O, Hennighausen L. JAK inhibitors dampen activation of interferon-stimulated transcription of ACE2 isoforms in human airway epithelial cells. Commun Biol 2021;4:654. [PMID: 34079039 DOI: 10.1038/s42003-021-02167-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
476 Hysenaj L, Little S, Kulhanek K, Gbenedio OM, Rodriguez L, Shen A, Lone JC, Lupin-Jimenez LC, Bonser LR, Serwas NK, Bahl K, Mick E, Li JZ, Ding VW, Matsumoto S, Maishan M, Simoneau C, Fragiadakis G, Jablons DM, Langelier CR, Matthay M, Ott M, Krummel M, Combes AJ, Sil A, Erle DJ, Kratz JR, Roose JP. SARS-CoV-2 infection studies in lung organoids identify TSPAN8 as novel mediator. bioRxiv 2021:2021. [PMID: 34100012 DOI: 10.1101/2021.06.01.446640] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
477 Restini C, Belavek T, Bernal R, Ibrahim V, Irwin K, Kim M, Merlo C. The Significance of Angiotensin-Converting Enzyme-2 (ACE2) in SARSCov- 2 Infection and COVID-19. COVID 2021;2. [DOI: 10.2174/2666796701999201218141035] [Reference Citation Analysis]
478 Biagioli M, Marchianò S, Roselli R, Di Giorgio C, Bellini R, Bordoni M, Gidari A, Sabbatini S, Francisci D, Fiorillo B, Catalanotti B, Distrutti E, Carino A, Zampella A, Costantino G, Fiorucci S. Discovery of a AHR pelargonidin agonist that counter-regulates Ace2 expression and attenuates ACE2-SARS-CoV-2 interaction. Biochem Pharmacol 2021;188:114564. [PMID: 33872570 DOI: 10.1016/j.bcp.2021.114564] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
479 Bangma A, Voskuil MD, Weersma RK. TNFα-Antagonist Use and Mucosal Inflammation Are Associated with Increased Intestinal Expression of SARS-CoV-2 Host Protease TMPRSS2 in Patients with Inflammatory Bowel Disease. Gastroenterology 2021;160:2621-2. [PMID: 32553760 DOI: 10.1053/j.gastro.2020.05.091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
480 Abbas M, Moradi F, Hu W, Regudo KL, Osborne M, Pettipas J, Atallah DS, Hachem R, Ott-peron N, Stuart JA. Vertebrate cell culture as an experimental approach – limitations and solutions. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2021;254:110570. [DOI: 10.1016/j.cbpb.2021.110570] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
481 Miller J, Yan KS. COVID-19 Gastrointestinal Symptoms and Attenuation of the Immune Response to SARS-CoV-2. Gastroenterology 2021;160:2251-4. [PMID: 33753106 DOI: 10.1053/j.gastro.2021.03.029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
482 Xing J, Zhou X, Fang M, Zhang E, Minze LJ, Zhang Z. DHX15 is required to control RNA virus-induced intestinal inflammation. Cell Rep 2021;35:109205. [PMID: 34161762 DOI: 10.1016/j.celrep.2021.109205] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
483 Puschhof J, Pleguezuelos-Manzano C, Clevers H. Organoids and organs-on-chips: Insights into human gut-microbe interactions. Cell Host Microbe 2021;29:867-78. [PMID: 34111395 DOI: 10.1016/j.chom.2021.04.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 9.5] [Reference Citation Analysis]
484 Livanos AE, Jha D, Cossarini F, Gonzalez-Reiche AS, Tokuyama M, Aydillo T, Parigi TL, Ladinsky MS, Ramos I, Dunleavy K, Lee B, Dixon RE, Chen ST, Martinez-Delgado G, Nagula S, Bruce EA, Ko HM, Glicksberg BS, Nadkarni G, Pujadas E, Reidy J, Naymagon S, Grinspan A, Ahmad J, Tankelevich M, Bram Y, Gordon R, Sharma K, Houldsworth J, Britton GJ, Chen-Liaw A, Spindler MP, Plitt T, Wang P, Cerutti A, Faith JJ, Colombel JF, Kenigsberg E, Argmann C, Merad M, Gnjatic S, Harpaz N, Danese S, Cordon-Cardo C, Rahman A, Schwartz RE, Kumta NA, Aghemo A, Bjorkman PJ, Petralia F, van Bakel H, Garcia-Sastre A, Mehandru S. Intestinal Host Response to SARS-CoV-2 Infection and COVID-19 Outcomes in Patients With Gastrointestinal Symptoms. Gastroenterology 2021;160:2435-2450.e34. [PMID: 33676971 DOI: 10.1053/j.gastro.2021.02.056] [Cited by in Crossref: 60] [Cited by in F6Publishing: 66] [Article Influence: 30.0] [Reference Citation Analysis]
485 Mallapaty S. The mini lungs and other organoids helping to beat COVID. Nature 2021;593:492-4. [PMID: 34040221 DOI: 10.1038/d41586-021-01395-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
486 Martinez MA, Franco S. Impact of COVID-19 in Liver Disease Progression. Hepatol Commun 2021. [PMID: 34222744 DOI: 10.1002/hep4.1745] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
487 Gragueb-Chatti I, Lopez A, Hamidi D, Guervilly C, Loundou A, Daviet F, Cassir N, Papazian L, Forel JM, Leone M, Dellamonica J, Hraiech S. Impact of dexamethasone on the incidence of ventilator-associated pneumonia and blood stream infections in COVID-19 patients requiring invasive mechanical ventilation: a multicenter retrospective study. Ann Intensive Care 2021;11:87. [PMID: 34057642 DOI: 10.1186/s13613-021-00876-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
488 Yu J. Organoids: A New Model for SARS-CoV-2 Translational Research. Int J Stem Cells 2021;14:138-49. [PMID: 33632991 DOI: 10.15283/ijsc20169] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
489 Plat J, van Brakel L, Mensink RP. Plant stanol esters might optimise the immune response and improve the SARS-CoV-2/COVID-19 vaccine efficacy in overweight and obese subjects. Br J Nutr 2021;:1-2. [PMID: 34044900 DOI: 10.1017/S0007114521001781] [Reference Citation Analysis]
490 Howell MC, Green R, McGill AR, Dutta R, Mohapatra S, Mohapatra SS. SARS-CoV-2-Induced Gut Microbiome Dysbiosis: Implications for Colorectal Cancer. Cancers (Basel) 2021;13:2676. [PMID: 34071688 DOI: 10.3390/cancers13112676] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
491 Crawford SE, Ramani S, Blutt SE, Estes MK. Organoids to Dissect Gastrointestinal Virus-Host Interactions: What Have We Learned? Viruses 2021;13:999. [PMID: 34071878 DOI: 10.3390/v13060999] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
492 Klooster JPT, Bol-Schoenmakers M, van Summeren K, van Vliet ALW, de Haan CAM, van Kuppeveld FJM, Verkoeijen S, Pieters R. Enterocytes, fibroblasts and myeloid cells synergize in anti-bacterial and anti-viral pathways with IL22 as the central cytokine. Commun Biol 2021;4:631. [PMID: 34045640 DOI: 10.1038/s42003-021-02176-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
493 de Dios-Figueroa GT, Aguilera-Marquez JDR, Camacho-Villegas TA, Lugo-Fabres PH. 3D Cell Culture Models in COVID-19 Times: A Review of 3D Technologies to Understand and Accelerate Therapeutic Drug Discovery. Biomedicines 2021;9:602. [PMID: 34073231 DOI: 10.3390/biomedicines9060602] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
494 Dopazo J, Maya-Miles D, García F, Lorusso N, Calleja MÁ, Pareja MJ, López-Miranda J, Rodríguez-Baño J, Padillo J, Túnez I, Romero-Gómez M. Implementing Personalized Medicine in COVID-19 in Andalusia: An Opportunity to Transform the Healthcare System. J Pers Med 2021;11:475. [PMID: 34073493 DOI: 10.3390/jpm11060475] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
495 Murphy Jones L, Khatri P. Multisystem inflammatory syndrome in children: a microcosm of challenges and opportunities for translational bioinformatics in pediatric research. Curr Opin Pediatr 2021;33:325-30. [PMID: 33871421 DOI: 10.1097/MOP.0000000000001012] [Reference Citation Analysis]
496 Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis (Lond) 2021;53:737-54. [PMID: 34024217 DOI: 10.1080/23744235.2021.1924397] [Cited by in Crossref: 201] [Cited by in F6Publishing: 118] [Article Influence: 100.5] [Reference Citation Analysis]
497 De Angelis ML, Francescangeli F, Rossi R, Giuliani A, De Maria R, Zeuner A. Repeated Exposure to Subinfectious Doses of SARS-CoV-2 May Promote T Cell Immunity and Protection against Severe COVID-19. Viruses 2021;13:961. [PMID: 34067349 DOI: 10.3390/v13060961] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
498 Mahmoud IS, Jarrar YB. Targeting the intestinal TMPRSS2 protease to prevent SARS-CoV-2 entry into enterocytes-prospects and challenges. Mol Biol Rep 2021;48:4667-75. [PMID: 34023987 DOI: 10.1007/s11033-021-06390-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
499 Beumer J, Geurts MH, Lamers MM, Puschhof J, Zhang J, van der Vaart J, Mykytyn AZ, Breugem TI, Riesebosch S, Schipper D, van den Doel PB, Lau WD, Pleguezuelos-manzano C, Busslinger G, Haagmans BL, Clevers H. A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses.. [DOI: 10.1101/2021.05.20.444952] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
500 Millet JK, Jaimes JA, Whittaker GR. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol Rev 2021;45:fuaa057. [PMID: 33118022 DOI: 10.1093/femsre/fuaa057] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 20.0] [Reference Citation Analysis]
501 Ebisudani T, Sugimoto S, Haga K, Mitsuishi A, Takai-Todaka R, Fujii M, Toshimitsu K, Hamamoto J, Sugihara K, Hishida T, Asamura H, Fukunaga K, Yasuda H, Katayama K, Sato T. Direct derivation of human alveolospheres for SARS-CoV-2 infection modeling and drug screening. Cell Rep 2021;35:109218. [PMID: 34038715 DOI: 10.1016/j.celrep.2021.109218] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
502 Wu CT, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, Jiang S, Demeter J, Bevacqua RJ, Chang CA, Whitener RL, Stalder AK, Zhu B, Chen H, Goltsev Y, Tzankov A, Nayak JV, Nolan GP, Matter MS, Andino R, Jackson PK. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab 2021;33:1565-1576.e5. [PMID: 34081912 DOI: 10.1016/j.cmet.2021.05.013] [Cited by in Crossref: 106] [Cited by in F6Publishing: 120] [Article Influence: 53.0] [Reference Citation Analysis]
503 von Stillfried S, Villwock S, Bülow RD, Djudjaj S, Buhl EM, Maurer A, Ortiz-Brüchle N, Celec P, Klinkhammer BM, Wong DWL, Cacchi C, Braunschweig T, Knüchel-Clarke R, Dahl E, Boor P. SARS-CoV-2 RNA screening in routine pathology specimens. Microb Biotechnol 2021;14:1627-41. [PMID: 33993637 DOI: 10.1111/1751-7915.13828] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
504 Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduct Target Ther 2021;6:177. [PMID: 33986257 DOI: 10.1038/s41392-021-00566-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
505 Dobrzański L, Dobrzańska-danikiewicz A, Dobrzański L. Effect of Biomedical Materials in the Implementation of a Long and Healthy Life Policy. Processes 2021;9:865. [DOI: 10.3390/pr9050865] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
506 Ma S, Zhao H, Galan EA. Integrating Engineering, Automation, and Intelligence to Catalyze the Biomedical Translation of Organoids. Adv Biol (Weinh) 2021;5:e2100535. [PMID: 33984193 DOI: 10.1002/adbi.202100535] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
507 Stevens BR, Ellory JC, Preston RL. B(0)AT1 Amino Acid Transporter Complexed With SARS-CoV-2 Receptor ACE2 Forms a Heterodimer Functional Unit: In Situ Conformation Using Radiation Inactivation Analysis. Function (Oxf) 2021;2:zqab027. [PMID: 34847569 DOI: 10.1093/function/zqab027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
508 Rijsbergen LC, Lamers MM, Comvalius AD, Koutstaal RW, Schipper D, Duprex WP, Haagmans BL, de Vries RD, de Swart RL. Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures. mSphere 2021;6:e00237-21. [PMID: 33980679 DOI: 10.1128/mSphere.00237-21] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
509 Yang M, Yang Y, He Q, Zhu P, Liu M, Xu J, Zhao M. Intestinal Microbiota-A Promising Target for Antiviral Therapy? Front Immunol 2021;12:676232. [PMID: 34054866 DOI: 10.3389/fimmu.2021.676232] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
510 Triana S, Metz-Zumaran C, Ramirez C, Kee C, Doldan P, Shahraz M, Schraivogel D, Gschwind AR, Sharma AK, Steinmetz LM, Herrmann C, Alexandrov T, Boulant S, Stanifer ML. Single-cell analyses reveal SARS-CoV-2 interference with intrinsic immune response in the human gut. Mol Syst Biol 2021;17:e10232. [PMID: 33904651 DOI: 10.15252/msb.202110232] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 17.5] [Reference Citation Analysis]
511 Tang Q, Wang Y, Ou L, Li J, Zheng K, Zhan H, Gu J, Zhou G, Xie S, Zhang J, Huang W, Wang S, Wang X. Downregulation of ACE2 expression by SARS-CoV-2 worsens the prognosis of KIRC and KIRP patients via metabolism and immunoregulation. Int J Biol Sci 2021;17:1925-39. [PMID: 34131396 DOI: 10.7150/ijbs.57802] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
512 Rowley AH. Diagnosing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Related Multisystem Inflammatory Syndrome in Children (MIS-C): Focus on the Gastrointestinal Tract and the Myocardium. Clin Infect Dis 2021;72:e402-3. [PMID: 32717055 DOI: 10.1093/cid/ciaa1080] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
513 Akkiz H. Implications of the Novel Mutations in the SARS-CoV-2 Genome for Transmission, Disease Severity, and the Vaccine Development. Front Med (Lausanne) 2021;8:636532. [PMID: 34026780 DOI: 10.3389/fmed.2021.636532] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 15.0] [Reference Citation Analysis]
514 Kiener M, Roldan N, Machahua C, Sengupta A, Geiser T, Guenat OT, Funke-Chambour M, Hobi N, Kruithof-de Julio M. Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Front Med (Lausanne) 2021;8:644678. [PMID: 34026781 DOI: 10.3389/fmed.2021.644678] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
515 Tindle C, Fuller M, Fonseca A, Taheri S, Ibeawuchi SR, Beutler N, Claire A, Castillo V, Hernandez M, Russo H, Duran J, Crotty Alexander LE, Tipps A, Lin G, Thistlethwaite PA, Chattopadhyay R, Rogers TF, Sahoo D, Ghosh P, Das S. Adult Stem Cell-derived Complete Lung Organoid Models Emulate Lung Disease in COVID-19. bioRxiv. 2020;2020:; 344002. [PMID: 33106807 DOI: 10.1101/2020.10.17.344002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
516 Fukuta M, Mao ZQ, Morita K, Moi ML. Stability and Infectivity of SARS-CoV-2 and Viral RNA in Water, Commercial Beverages, and Bodily Fluids. Front Microbiol 2021;12:667956. [PMID: 34025624 DOI: 10.3389/fmicb.2021.667956] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
517 Shapira T, Monreal IA, Dion SP, Jager M, Désilets A, Olmstead AD, Vandal T, Buchholz DW, Imbiakha B, Gao G, Chin A, Rees WD, Steiner T, Nabi IR, Marsault E, Sahler J, August A, Van de Walle G, Whittaker GR, Boudreault PL, Aguilar HC, Leduc R, Jean F. A novel highly potent inhibitor of TMPRSS2-like proteases blocks SARS-CoV-2 variants of concern and is broadly protective against infection and mortality in mice. bioRxiv 2021:2021. [PMID: 33972944 DOI: 10.1101/2021.05.03.442520] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
518 Lalioti V, González-sanz S, Lois-bermejo I, González-jiménez P, Viedma-poyatos Á, Merino A, A. Pajares M, Pérez-sala D. Immunolocalization studies of vimentin and ACE2 on the surface of cells exposed to SARS-CoV-2 Spike proteins.. [DOI: 10.1101/2021.05.04.442648] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
519 Nayak T, De D, Dhal PK. The differences in SARS-CoV and SARS-CoV-2 specific co-expression network mediated biological process in human gut enterocytes. Infect Genet Evol 2021;92:104892. [PMID: 33957338 DOI: 10.1016/j.meegid.2021.104892] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
520 Grudlewska-Buda K, Wiktorczyk-Kapischke N, Wałecka-Zacharska E, Kwiecińska-Piróg J, Buszko K, Leis K, Juszczuk K, Gospodarek-Komkowska E, Skowron K. SARS-CoV-2-Morphology, Transmission and Diagnosis during Pandemic, Review with Element of Meta-Analysis. J Clin Med 2021;10:1962. [PMID: 34063654 DOI: 10.3390/jcm10091962] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
521 Lamers MM, Breugem TI, Mykytyn AZ, Wang Y, Groen N, Knoops K, Schipper D, van der Vaart J, Koopman CD, Zhang J, Wu DC, van den Doel PB, Bestebroer T, Geurtsvankessel CH, Peters PJ, Muraro MJ, Clevers H, Wu NC, Haagmans BL. Human organoid systems reveal in vitro correlates of fitness for SARS-CoV-2 B.1.1.7.. [DOI: 10.1101/2021.05.03.441080] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
522 Weidinger C, Hegazy AN, Glauben R, Siegmund B. COVID-19-from mucosal immunology to IBD patients. Mucosal Immunol 2021;14:566-73. [PMID: 33608656 DOI: 10.1038/s41385-021-00384-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
523 Siam MHB, Al Mosabbir A, Nishat NH, Ahmed A, Hossain MS. Clinical Spectrum, Geographical Variability of COVID-19, and its Implications. COVID 2021;2:2-10. [DOI: 10.2174/2666796701999201117103814] [Reference Citation Analysis]
524 Afshar-Oromieh A, Prosch H, Schaefer-Prokop C, Bohn KP, Alberts I, Mingels C, Thurnher M, Cumming P, Shi K, Peters A, Geleff S, Lan X, Wang F, Huber A, Gräni C, Heverhagen JT, Rominger A, Fontanellaz M, Schöder H, Christe A, Mougiakakou S, Ebner L. A comprehensive review of imaging findings in COVID-19 - status in early 2021. Eur J Nucl Med Mol Imaging 2021;48:2500-24. [PMID: 33932183 DOI: 10.1007/s00259-021-05375-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
525 Keuchel M, Bota M, Baltes P. Infectious diseases affecting the small bowel - what not to miss. Curr Opin Gastroenterol 2021;37:255-66. [PMID: 33769379 DOI: 10.1097/MOG.0000000000000720] [Reference Citation Analysis]
526 Anand U, Adelodun B, Pivato A, Suresh S, Indari O, Jakhmola S, Jha HC, Jha PK, Tripathi V, Di Maria F. A review of the presence of SARS-CoV-2 RNA in wastewater and airborne particulates and its use for virus spreading surveillance. Environ Res 2021;196:110929. [PMID: 33640498 DOI: 10.1016/j.envres.2021.110929] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 16.0] [Reference Citation Analysis]
527 Chen C, Ji W, Niu Y. Primate Organoids and Gene-Editing Technologies toward Next-Generation Biomedical Research. Trends Biotechnol 2021:S0167-7799(21)00085-8. [PMID: 33941418 DOI: 10.1016/j.tibtech.2021.03.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
528 Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer's disease: how one crisis worsens the other. Transl Neurodegener 2021;10:15. [PMID: 33941272 DOI: 10.1186/s40035-021-00237-2] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 14.5] [Reference Citation Analysis]
529 Youhanna S, Wright SC, Lauschke VM. Organotypic human ex vivo models for coronavirus disease 2019 research and drug development. Curr Opin Pharmacol 2021;59:11-8. [PMID: 34029832 DOI: 10.1016/j.coph.2021.04.006] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
530 Jia W, Wang J, Sun B, Zhou J, Shi Y, Zhou Z. The Mechanisms and Animal Models of SARS-CoV-2 Infection. Front Cell Dev Biol 2021;9:578825. [PMID: 33987176 DOI: 10.3389/fcell.2021.578825] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
531 Zhang S, Huang W, Ren L, Ju X, Gong M, Rao J, Sun L, Li P, Ding Q, Wang J, Zhang QC. Analysis of viral RNA-host protein interactomes enables rapid antiviral drug discovery.. [DOI: 10.1101/2021.04.25.441316] [Reference Citation Analysis]
532 Llorens S, Nava E, Muñoz-López M, Sánchez-Larsen Á, Segura T. Neurological Symptoms of COVID-19: The Zonulin Hypothesis. Front Immunol 2021;12:665300. [PMID: 33981312 DOI: 10.3389/fimmu.2021.665300] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
533 Patten JJ, Keiser PT, Gysi D, Menichetti G, Mori H, Donahue CJ, Gan X, Do Valle I, Geoghegan-Barek K, Anantpadma M, Berrigan JL, Jalloh S, Ayazika T, Wagner F, Zitnik M, Ayehunie S, Anderson D, Loscalzo J, Gummuluru S, Namchuk MN, Barabasi AL, Davey RA. Multidose evaluation of 6,710 drug repurposing library identifies potent SARS-CoV-2 infection inhibitors In Vitro and In Vivo. bioRxiv 2021:2021. [PMID: 33907750 DOI: 10.1101/2021.04.20.440626] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
534 Valdez-Cruz NA, García-Hernández E, Espitia C, Cobos-Marín L, Altamirano C, Bando-Campos CG, Cofas-Vargas LF, Coronado-Aceves EW, González-Hernández RA, Hernández-Peralta P, Juárez-López D, Ortega-Portilla PA, Restrepo-Pineda S, Zelada-Cordero P, Trujillo-Roldán MA. Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microb Cell Fact 2021;20:88. [PMID: 33888152 DOI: 10.1186/s12934-021-01576-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
535 Müller TM, Becker E, Wiendl M, Schulze LL, Voskens C, Völkl S, Kremer AE, Neurath MF, Zundler S. Circulating Adaptive Immune Cells Expressing the Gut Homing Marker α4β7 Integrin Are Decreased in COVID-19. Front Immunol 2021;12:639329. [PMID: 33959123 DOI: 10.3389/fimmu.2021.639329] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
536 Mittal S, Federman HG, Sievert D, Gleeson JG. The Neurobiology of Modern Viral Scourges: ZIKV and COVID-19. Neuroscientist 2021;:10738584211009149. [PMID: 33874789 DOI: 10.1177/10738584211009149] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
537 Yusuf F, Fahriani M, Mamada SS, Frediansyah A, Abubakar A, Maghfirah D, Fajar JK, Maliga HA, Ilmawan M, Emran TB, Ophinni Y, Innayah MR, Masyeni S, Ghouth ASB, Yusuf H, Dhama K, Nainu F, Harapan H. Global prevalence of prolonged gastrointestinal symptoms in COVID-19 survivors and potential pathogenesis: A systematic review and meta-analysis. F1000Res 2021;10:301. [PMID: 34131481 DOI: 10.12688/f1000research.52216.1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
538 Wang Y, Chen X, Wang F, Geng J, Liu B, Han F. Value of anal swabs for SARS-COV-2 detection: a literature review. Int J Med Sci 2021;18:2389-93. [PMID: 33967616 DOI: 10.7150/ijms.59382] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
539 Wolday D, Tasew G, Amogne W, Urban B, Schallig HD, Harris V, Rinke de Wit TF. Interrogating the Impact of Intestinal Parasite-Microbiome on Pathogenesis of COVID-19 in Sub-Saharan Africa. Front Microbiol 2021;12:614522. [PMID: 33935986 DOI: 10.3389/fmicb.2021.614522] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
540 Yeo CD, Yun Y, Ahn DH, Hwang Y, Yang SH, Won H, Cho HJ, Park CK, Kim SJ, Park JY. Therapeutic applications of three-dimensional organoid models in lung cancer. Organoid 2021;1:e6. [DOI: 10.51335/organoid.2021.1.e6] [Reference Citation Analysis]
541 Wang H, Yang J. Colorectal Cancer that Highly Express Both ACE2 and TMPRSS2, Suggesting Severe Symptoms to SARS-CoV-2 Infection. Pathol Oncol Res 2021;27:612969. [PMID: 34257580 DOI: 10.3389/pore.2021.612969] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
542 Troisi J, Venutolo G, Pujolassos Tanyà M, Delli Carri M, Landolfi A, Fasano A. COVID-19 and the gastrointestinal tract: Source of infection or merely a target of the inflammatory process following SARS-CoV-2 infection? World J Gastroenterol 2021; 27(14): 1406-1418 [PMID: 33911464 DOI: 10.3748/wjg.v27.i14.1406] [Cited by in CrossRef: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
543 Caruso FP, Scala G, Cerulo L, Ceccarelli M. A review of COVID-19 biomarkers and drug targets: resources and tools. Brief Bioinform 2021;22:701-13. [PMID: 33279954 DOI: 10.1093/bib/bbaa328] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
544 Martin-Sancho L, Lewinski MK, Pache L, Stoneham CA, Yin X, Becker ME, Pratt D, Churas C, Rosenthal SB, Liu S, Weston S, De Jesus PD, O'Neill AM, Gounder AP, Nguyen C, Pu Y, Curry HM, Oom AL, Miorin L, Rodriguez-Frandsen A, Zheng F, Wu C, Xiong Y, Urbanowski M, Shaw ML, Chang MW, Benner C, Hope TJ, Frieman MB, García-Sastre A, Ideker T, Hultquist JF, Guatelli J, Chanda SK. Functional landscape of SARS-CoV-2 cellular restriction. Mol Cell 2021;81:2656-2668.e8. [PMID: 33930332 DOI: 10.1016/j.molcel.2021.04.008] [Cited by in Crossref: 60] [Cited by in F6Publishing: 68] [Article Influence: 30.0] [Reference Citation Analysis]
545 Mulay A, Konda B, Garcia G Jr, Yao C, Beil S, Villalba JM, Koziol C, Sen C, Purkayastha A, Kolls JK, Pociask DA, Pessina P, de Aja JS, Garcia-de-Alba C, Kim CF, Gomperts B, Arumugaswami V, Stripp BR. SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. Cell Rep 2021;35:109055. [PMID: 33905739 DOI: 10.1016/j.celrep.2021.109055] [Cited by in Crossref: 75] [Cited by in F6Publishing: 68] [Article Influence: 37.5] [Reference Citation Analysis]
546 Mithal A, Hume AJ, Lindstrom-Vautrin J, Villacorta-Martin C, Olejnik J, Bullitt E, Hinds A, Mühlberger E, Mostoslavsky G. Human Pluripotent Stem Cell-Derived Intestinal Organoids Model SARS-CoV-2 Infection Revealing a Common Epithelial Inflammatory Response. Stem Cell Reports 2021;16:940-53. [PMID: 33852884 DOI: 10.1016/j.stemcr.2021.02.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
547 Mahler M, Meroni PL, Infantino M, Buhler KA, Fritzler MJ. Circulating Calprotectin as a Biomarker of COVID-19 Severity. Expert Rev Clin Immunol 2021;17:431-43. [PMID: 33750254 DOI: 10.1080/1744666X.2021.1905526] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 17.5] [Reference Citation Analysis]
548 Lõhmussaar K, Oka R, Espejo Valle-Inclan J, Smits MHH, Wardak H, Korving J, Begthel H, Proost N, van de Ven M, Kranenburg OW, Jonges TGN, Zweemer RP, Veersema S, van Boxtel R, Clevers H. Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer. Cell Stem Cell 2021;28:1380-1396.e6. [PMID: 33852917 DOI: 10.1016/j.stem.2021.03.012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 14.0] [Reference Citation Analysis]
549 Yang Y, Huang W, Fan Y, Chen GQ. Gastrointestinal Microenvironment and the Gut-Lung Axis in the Immune Responses of Severe COVID-19. Front Mol Biosci 2021;8:647508. [PMID: 33912590 DOI: 10.3389/fmolb.2021.647508] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
550 Lamers MM, Mykytyn AZ, Breugem TI, Wang Y, Wu DC, Riesebosch S, van den Doel PB, Schipper D, Bestebroer T, Wu NC, Haagmans BL. Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. eLife 2021;10:e66815. [DOI: 10.7554/elife.66815] [Cited by in Crossref: 46] [Cited by in F6Publishing: 53] [Article Influence: 23.0] [Reference Citation Analysis]
551 Brooks EF, Bhatt AS. The gut microbiome: a missing link in understanding the gastrointestinal manifestations of COVID-19? Cold Spring Harb Mol Case Stud 2021;7:a006031. [PMID: 33593727 DOI: 10.1101/mcs.a006031] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
552 Elmentaite R, Kumasaka N, King H, Roberts K, Dabrowska M, Pritchard S, Bolt L, Vieira S, Mamanova L, Huang N, Goh Kai’en I, Stephenson E, Engelbert J, Botting R, Fleming A, Dann E, Lisgo S, Katan M, Leonard S, Oliver T, Hook C, Nayak K, Perrone F, Campos L, Dominguez-conde C, Polanski K, Van Dongen S, Patel M, Morgan M, Marioni J, Bayraktar O, Meyer K, Zilbauer M, Uhlig H, Clatworthy M, Mahbubani K, Saeb Parsy K, Haniffa M, James K, Teichmann S. Cells of the human intestinal tract mapped across space and time.. [DOI: 10.1101/2021.04.07.438755] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
553 Alberca GGF, Solis-Castro RL, Solis-Castro ME, Alberca RW. Coronavirus disease–2019 and the intestinal tract: An overview. World J Gastroenterol 2021; 27(13): 1255-1266 [PMID: 33833480 DOI: 10.3748/wjg.v27.i13.1255] [Cited by in CrossRef: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
554 Alonso-Bellido IM, Bachiller S, Vázquez G, Cruz-Hernández L, Martínez E, Ruiz-Mateos E, Deierborg T, Venero JL, Real LM, Ruiz R. The Other Side of SARS-CoV-2 Infection: Neurological Sequelae in Patients. Front Aging Neurosci 2021;13:632673. [PMID: 33889082 DOI: 10.3389/fnagi.2021.632673] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
555 Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen-ome from HS-Sultan B-Lymphoblasts Offers a Molecular Map for Investigating Autoimmune Sequelae of COVID-19. bioRxiv 2021:2021. [PMID: 33851168 DOI: 10.1101/2021.04.05.438500] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
556 Ghandikota S, Sharma M, Jegga AG. Secondary analysis of transcriptomes of SARS-CoV-2 infection models to characterize COVID-19. Patterns (N Y) 2021;2:100247. [PMID: 33842903 DOI: 10.1016/j.patter.2021.100247] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
557 Barrantes FJ. The unfolding palette of COVID-19 multisystemic syndrome and its neurological manifestations. Brain Behav Immun Health 2021;14:100251. [PMID: 33842898 DOI: 10.1016/j.bbih.2021.100251] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
558 Ott IM, Strine MS, Watkins AE, Boot M, Kalinich CC, Harden CA, Vogels CBF, Casanovas-Massana A, Moore AJ, Muenker MC, Nakahata M, Tokuyama M, Nelson A, Fournier J, Bermejo S, Campbell M, Datta R, Dela Cruz CS, Farhadian SF, Ko AI, Iwasaki A, Grubaugh ND, Wilen CB, Wyllie AL; Yale IMPACT Research team3. Stability of SARS-CoV-2 RNA in Nonsupplemented Saliva. Emerg Infect Dis 2021;27:1146-50. [PMID: 33754989 DOI: 10.3201/eid2704.204199] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 17.5] [Reference Citation Analysis]
559 Patel RH, Acharya A, Chand HS, Mohan M, Byrareddy SN. Human Immunodeficiency Virus and Severe Acute Respiratory Syndrome Coronavirus 2 Coinfection: A Systematic Review of the Literature and Challenges. AIDS Res Hum Retroviruses 2021;37:266-82. [PMID: 33599163 DOI: 10.1089/AID.2020.0284] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
560 Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, Chung AC, Cheung CP, Tso EY, Fung KS, Chan V, Ling L, Joynt G, Hui DS, Chow KM, Ng SSS, Li TC, Ng RW, Yip TC, Wong GL, Chan FK, Wong CK, Chan PK, Ng SC. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021;70:698-706. [PMID: 33431578 DOI: 10.1136/gutjnl-2020-323020] [Cited by in Crossref: 470] [Cited by in F6Publishing: 454] [Article Influence: 235.0] [Reference Citation Analysis]
561 Neurath MF, Überla K, Ng SC. Gut as viral reservoir: lessons from gut viromes, HIV and COVID-19. Gut 2021;70:1605-8. [PMID: 33903146 DOI: 10.1136/gutjnl-2021-324622] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
562 Jiao L, Li H, Xu J, Yang M, Ma C, Li J, Zhao S, Wang H, Yang Y, Yu W, Wang J, Yang J, Long H, Gao J, Ding K, Wu D, Kuang D, Zhao Y, Liu J, Lu S, Liu H, Peng X. The Gastrointestinal Tract Is an Alternative Route for SARS-CoV-2 Infection in a Nonhuman Primate Model. Gastroenterology 2021;160:1647-61. [PMID: 33307034 DOI: 10.1053/j.gastro.2020.12.001] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 29.0] [Reference Citation Analysis]
563 Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021;171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 19.0] [Reference Citation Analysis]
564 Meng XJ, Liang TJ. SARS-CoV-2 Infection in the Gastrointestinal Tract: Fecal-Oral Route of Transmission for COVID-19? Gastroenterology 2021;160:1467-9. [PMID: 33422479 DOI: 10.1053/j.gastro.2021.01.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
565 González N, Marquès M, Domingo JL. Respiratory viruses in foods and their potential transmission through the diet: A review of the literature. Environ Res 2021;195:110826. [PMID: 33529649 DOI: 10.1016/j.envres.2021.110826] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
566 Le BL, Andreoletti G, Oskotsky T, Vallejo-Gracia A, Rosales R, Yu K, Kosti I, Leon KE, Bunis DG, Li C, Kumar GR, White KM, García-Sastre A, Ott M, Sirota M. Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Res Sq 2021:rs. [PMID: 33821262 DOI: 10.21203/rs.3.rs-333578/v1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
567 Ye C, Qi L, Wang J, Zheng S. COVID-19 Pandemic: Advances in Diagnosis, Treatment, Organoid Applications and Impacts on Cancer Patient Management. Front Med (Lausanne) 2021;8:606755. [PMID: 33855032 DOI: 10.3389/fmed.2021.606755] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
568 von Stillfried S, Boor P. Detection methods for SARS-CoV-2 in tissue. Pathologe 2021. [PMID: 33770236 DOI: 10.1007/s00292-021-00920-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
569 Egilmezer E, Rawlinson WD. Review of studies of severe acute respiratory syndrome related coronavirus-2 pathogenesis in human organoid models. Rev Med Virol 2021. [PMID: 33763936 DOI: 10.1002/rmv.2227] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
570 Li Y, Handley SA, Baldridge MT. The dark side of the gut: Virome-host interactions in intestinal homeostasis and disease. J Exp Med 2021;218:e20201044. [PMID: 33760921 DOI: 10.1084/jem.20201044] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
571 Razeghian-Jahromi I, Zibaeenezhad MJ, Lu Z, Zahra E, Mahboobeh R, Lionetti V. Angiotensin-converting enzyme 2: a double-edged sword in COVID-19 patients with an increased risk of heart failure. Heart Fail Rev 2021;26:371-80. [PMID: 32844337 DOI: 10.1007/s10741-020-10016-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
572 Geurts MH, van der Vaart J, Beumer J, Clevers H. The Organoid Platform: Promises and Challenges as Tools in the Fight against COVID-19. Stem Cell Reports 2021;16:412-8. [PMID: 33691146 DOI: 10.1016/j.stemcr.2020.11.009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
573 Heneghan CJ, Spencer EA, Brassey J, Plüddemann A, Onakpoya IJ, Evans DH, Conly JM, Jefferson T. SARS-CoV-2 and the role of orofecal transmission: a systematic review. F1000Res 2021;10:231. [DOI: 10.12688/f1000research.51592.1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
574 Chathappady House NN, Palissery S, Sebastian H. Corona Viruses: A Review on SARS, MERS and COVID-19. Microbiol Insights 2021;14:11786361211002481. [PMID: 33795938 DOI: 10.1177/11786361211002481] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
575 Carvacho I, Piesche M. RGD-binding integrins and TGF-β in SARS-CoV-2 infections - novel targets to treat COVID-19 patients? Clin Transl Immunology 2021;10:e1240. [PMID: 33747508 DOI: 10.1002/cti2.1240] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
576 Kariyawasam JC, Jayarajah U, Riza R, Abeysuriya V, Seneviratne SL. Gastrointestinal manifestations in COVID-19. Trans R Soc Trop Med Hyg 2021:trab042. [PMID: 33728439 DOI: 10.1093/trstmh/trab042] [Cited by in Crossref: 25] [Cited by in F6Publishing: 32] [Article Influence: 12.5] [Reference Citation Analysis]
577 Sokol H, Contreras V, Maisonnasse P, Desmons A, Delache B, Sencio V, Machelart A, Brisebarre A, Humbert L, Deryuter L, Gauliard E, Heumel S, Rainteau D, Dereuddre-Bosquet N, Menu E, Ho Tsong Fang R, Lamaziere A, Brot L, Wahl C, Oeuvray C, Rolhion N, Van Der Werf S, Ferreira S, Le Grand R, Trottein F. SARS-CoV-2 infection in nonhuman primates alters the composition and functional activity of the gut microbiota. Gut Microbes 2021;13:1-19. [PMID: 33685349 DOI: 10.1080/19490976.2021.1893113] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 17.0] [Reference Citation Analysis]
578 Ertas YN, Mahmoodi M, Shahabipour F, Jahed V, Diltemiz SE, Tutar R, Ashammakhi N. Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). Emergent Mater 2021;:1-21. [PMID: 33748672 DOI: 10.1007/s42247-021-00165-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
579 Perez-Bermejo JA, Kang S, Rockwood SJ, Simoneau CR, Joy DA, Silva AC, Ramadoss GN, Flanigan WR, Fozouni P, Li H, Chen PY, Nakamura K, Whitman JD, Hanson PJ, McManus BM, Ott M, Conklin BR, McDevitt TC. SARS-CoV-2 infection of human iPSC-derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Sci Transl Med 2021;13:eabf7872. [PMID: 33723017 DOI: 10.1126/scitranslmed.abf7872] [Cited by in Crossref: 72] [Cited by in F6Publishing: 78] [Article Influence: 36.0] [Reference Citation Analysis]
580 Jangra S, De Vrieze J, Choi A, Rathnasinghe R, Laghlali G, Uvyn A, Van Herck S, Nuhn L, Deswarte K, Zhong Z, Sanders NN, Lienenklaus S, David SA, Strohmeier S, Amanat F, Krammer F, Hammad H, Lambrecht BN, Coughlan L, García‐sastre A, De Geest BG, Schotsaert M. Sterilizing Immunity against SARS‐CoV‐2 Infection in Mice by a Single‐Shot and Lipid Amphiphile Imidazoquinoline TLR7/8 Agonist‐Adjuvanted Recombinant Spike Protein Vaccine**. Angew Chem 2021;133:9553-9. [DOI: 10.1002/ange.202015362] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
581 Jangra S, De Vrieze J, Choi A, Rathnasinghe R, Laghlali G, Uvyn A, Van Herck S, Nuhn L, Deswarte K, Zhong Z, Sanders NN, Lienenklaus S, David SA, Strohmeier S, Amanat F, Krammer F, Hammad H, Lambrecht BN, Coughlan L, García-Sastre A, De Geest BG, Schotsaert M. Sterilizing Immunity against SARS-CoV-2 Infection in Mice by a Single-Shot and Lipid Amphiphile Imidazoquinoline TLR7/8 Agonist-Adjuvanted Recombinant Spike Protein Vaccine*. Angew Chem Int Ed Engl 2021;60:9467-73. [PMID: 33464672 DOI: 10.1002/anie.202015362] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
582 Prados A, Onder L, Cheng HW, Mörbe U, Lütge M, Gil-Cruz C, Perez-Shibayama C, Koliaraki V, Ludewig B, Kollias G. Fibroblastic reticular cell lineage convergence in Peyer's patches governs intestinal immunity. Nat Immunol 2021;22:510-9. [PMID: 33707780 DOI: 10.1038/s41590-021-00894-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
583 He C, Hua X, Sun S, Li S, Wang J, Huang X. Integrated Bioinformatic Analysis of SARS-CoV-2 Infection Related Genes ACE2, BSG and TMPRSS2 in Aerodigestive Cancers. J Inflamm Res 2021;14:791-802. [PMID: 33732005 DOI: 10.2147/JIR.S300127] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
584 Zhang X, Ma Z, Song E, Xu T. Islet organoid as a promising model for diabetes. Protein Cell 2021. [PMID: 33751396 DOI: 10.1007/s13238-021-00831-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
585 Fongaro G, Stoco PH, Souza DSM, Grisard EC, Magri ME, Rogovski P, Schörner MA, Barazzetti FH, Christoff AP, de Oliveira LFV, Bazzo ML, Wagner G, Hernández M, Rodríguez-Lázaro D. The presence of SARS-CoV-2 RNA in human sewage in Santa Catarina, Brazil, November 2019. Sci Total Environ 2021;778:146198. [PMID: 33714813 DOI: 10.1016/j.scitotenv.2021.146198] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 26.0] [Reference Citation Analysis]
586 Basu M, Das SK. Clinical Characteristics of Paediatric Hyperinflammatory Syndrome in the Era of Corona Virus Disease 2019 (COVID-19). Indian J Clin Biochem 2021;:1-12. [PMID: 33716413 DOI: 10.1007/s12291-021-00963-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
587 Brown AN, Strobel G, Hanrahan KC, Sears J. Antiviral Activity of the PropylamylatinTM Formula against the Novel Coronavirus SARS-CoV-2 In Vitro Using Direct Injection and Gas Assays in Virus Suspensions. Viruses 2021;13:415. [PMID: 33807769 DOI: 10.3390/v13030415] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
588 Willforss J, Siino V, Levander F. OmicLoupe: facilitating biological discovery by interactive exploration of multiple omic datasets and statistical comparisons. BMC Bioinformatics 2021;22:107. [PMID: 33663372 DOI: 10.1186/s12859-021-04043-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
589 Pain B. Organoids in domestic animals: with which stem cells? Vet Res 2021;52:38. [PMID: 33663614 DOI: 10.1186/s13567-021-00911-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
590 Lite C, Ahmed SSSJ, Juliet M, Freddy AJ. SARS-CoV-2/human interactome reveals ACE2 locus crosstalk with the immune regulatory network in the host. Pathog Dis 2021;79:ftab005. [PMID: 33469663 DOI: 10.1093/femspd/ftab005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
591 Heuberger J, Trimpert J, Vladimirova D, Goosmann C, Lin M, Schmuck R, Mollenkopf HJ, Brinkmann V, Tacke F, Osterrieder N, Sigal M. Epithelial response to IFN-γ promotes SARS-CoV-2 infection. EMBO Mol Med 2021;13:e13191. [PMID: 33544398 DOI: 10.15252/emmm.202013191] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
592 Ryu G, Shin HW. SARS-CoV-2 Infection of Airway Epithelial Cells. Immune Netw 2021;21:e3. [PMID: 33728096 DOI: 10.4110/in.2021.21.e3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
593 Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected - obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol 2021;17:135-49. [PMID: 33479538 DOI: 10.1038/s41574-020-00462-1] [Cited by in Crossref: 218] [Cited by in F6Publishing: 219] [Article Influence: 109.0] [Reference Citation Analysis]
594 Marasco G, Lenti MV, Cremon C, Barbaro MR, Stanghellini V, Di Sabatino A, Barbara G. Implications of SARS-CoV-2 infection for neurogastroenterology. Neurogastroenterol Motil 2021;33:e14104. [PMID: 33591607 DOI: 10.1111/nmo.14104] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
595 Andrews PLR, Cai W, Rudd JA, Sanger GJ. COVID-19, nausea, and vomiting. J Gastroenterol Hepatol 2021;36:646-56. [PMID: 32955126 DOI: 10.1111/jgh.15261] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
596 Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, Cho A, Jankovic M, Schaefer-Babajew D, Oliveira TY, Cipolla M, Viant C, Barnes CO, Bram Y, Breton G, Hägglöf T, Mendoza P, Hurley A, Turroja M, Gordon K, Millard KG, Ramos V, Schmidt F, Weisblum Y, Jha D, Tankelevich M, Martinez-Delgado G, Yee J, Patel R, Dizon J, Unson-O'Brien C, Shimeliovich I, Robbiani DF, Zhao Z, Gazumyan A, Schwartz RE, Hatziioannou T, Bjorkman PJ, Mehandru S, Bieniasz PD, Caskey M, Nussenzweig MC. Evolution of antibody immunity to SARS-CoV-2. Nature 2021;591:639-44. [PMID: 33461210 DOI: 10.1038/s41586-021-03207-w] [Cited by in Crossref: 972] [Cited by in F6Publishing: 979] [Article Influence: 486.0] [Reference Citation Analysis]
597 Iliev ID, Cadwell K. Effects of Intestinal Fungi and Viruses on Immune Responses and Inflammatory Bowel Diseases. Gastroenterology 2021;160:1050-66. [PMID: 33347881 DOI: 10.1053/j.gastro.2020.06.100] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 19.0] [Reference Citation Analysis]
598 Laha S, Saha C, Dutta S, Basu M, Chatterjee R, Ghosh S, Bhattacharyya NP. In silico analysis of altered expression of long non-coding RNA in SARS-CoV-2 infected cells and their possible regulation by STAT1, STAT3 and interferon regulatory factors. Heliyon 2021;7:e06395. [PMID: 33688586 DOI: 10.1016/j.heliyon.2021.e06395] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
599 Shoaib MH, Ahmed FR, Sikandar M, Yousuf RI, Saleem MT. A Journey From SARS-CoV-2 to COVID-19 and Beyond: A Comprehensive Insight of Epidemiology, Diagnosis, Pathogenesis, and Overview of the Progress into Its Therapeutic Management. Front Pharmacol 2021;12:576448. [PMID: 33732150 DOI: 10.3389/fphar.2021.576448] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
600 Trevisan M, Riccetti S, Sinigaglia A, Barzon L. SARS-CoV-2 Infection and Disease Modelling Using Stem Cell Technology and Organoids. Int J Mol Sci 2021;22:2356. [PMID: 33652988 DOI: 10.3390/ijms22052356] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
601 Rauth S, Karmakar S, Batra SK, Ponnusamy MP. Recent advances in organoid development and applications in disease modeling. Biochim Biophys Acta Rev Cancer 2021;1875:188527. [PMID: 33640383 DOI: 10.1016/j.bbcan.2021.188527] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
602 Blondin-Brosseau M, Harlow J, Doctor T, Nasheri N. Examining the persistence of human Coronavirus 229E on fresh produce. Food Microbiol 2021;98:103780. [PMID: 33875208 DOI: 10.1016/j.fm.2021.103780] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
603 López-Cortés A, Guevara-Ramírez P, Kyriakidis NC, Barba-Ostria C, León Cáceres Á, Guerrero S, Ortiz-Prado E, Munteanu CR, Tejera E, Cevallos-Robalino D, Gómez-Jaramillo AM, Simbaña-Rivera K, Granizo-Martínez A, Pérez-M G, Moreno S, García-Cárdenas JM, Zambrano AK, Pérez-Castillo Y, Cabrera-Andrade A, Puig San Andrés L, Proaño-Castro C, Bautista J, Quevedo A, Varela N, Quiñones LA, Paz-Y-Miño C. In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19. Front Pharmacol 2021;12:598925. [PMID: 33716737 DOI: 10.3389/fphar.2021.598925] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
604 Bailey AL, Dmytrenko O, Greenberg L, Bredemeyer AL, Ma P, Liu J, Penna V, Winkler ES, Sviben S, Brooks E, Nair AP, Heck KA, Rali AS, Simpson L, Saririan M, Hobohm D, Stump WT, Fitzpatrick JA, Xie X, Zhang X, Shi PY, Hinson JT, Gi WT, Schmidt C, Leuschner F, Lin CY, Diamond MS, Greenberg MJ, Lavine KJ. SARS-CoV-2 Infects Human Engineered Heart Tissues and Models COVID-19 Myocarditis. JACC Basic Transl Sci 2021;6:331-45. [PMID: 33681537 DOI: 10.1016/j.jacbts.2021.01.002] [Cited by in Crossref: 56] [Cited by in F6Publishing: 44] [Article Influence: 28.0] [Reference Citation Analysis]
605 Drefs J, Salwig S, Lücke J. Visualization of SARS-CoV-2 Infection Scenes by ‘Zero-Shot’ Enhancements of Electron Microscopy Images.. [DOI: 10.1101/2021.02.25.432265] [Reference Citation Analysis]
606 Iftekhar A, Sigal M. Defence and adaptation mechanisms of the intestinal epithelium upon infection. Int J Med Microbiol 2021;311:151486. [PMID: 33684844 DOI: 10.1016/j.ijmm.2021.151486] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
607 Rihn SJ, Merits A, Bakshi S, Turnbull ML, Wickenhagen A, Alexander AJT, Baillie C, Brennan B, Brown F, Brunker K, Bryden SR, Burness KA, Carmichael S, Cole SJ, Cowton VM, Davies P, Davis C, De Lorenzo G, Donald CL, Dorward M, Dunlop JI, Elliott M, Fares M, da Silva Filipe A, Freitas JR, Furnon W, Gestuveo RJ, Geyer A, Giesel D, Goldfarb DM, Goodman N, Gunson R, Hastie CJ, Herder V, Hughes J, Johnson C, Johnson N, Kohl A, Kerr K, Leech H, Lello LS, Li K, Lieber G, Liu X, Lingala R, Loney C, Mair D, McElwee MJ, McFarlane S, Nichols J, Nomikou K, Orr A, Orton RJ, Palmarini M, Parr YA, Pinto RM, Raggett S, Reid E, Robertson DL, Royle J, Cameron-Ruiz N, Shepherd JG, Smollett K, Stewart DG, Stewart M, Sugrue E, Szemiel AM, Taggart A, Thomson EC, Tong L, Torrie LS, Toth R, Varjak M, Wang S, Wilkinson SG, Wyatt PG, Zusinaite E, Alessi DR, Patel AH, Zaid A, Wilson SJ, Mahalingam S. A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research. PLoS Biol 2021;19:e3001091. [PMID: 33630831 DOI: 10.1371/journal.pbio.3001091] [Cited by in Crossref: 102] [Cited by in F6Publishing: 99] [Article Influence: 51.0] [Reference Citation Analysis]
608 Yin Y, Liu XZ, He X, Zhou LQ. Exogenous Coronavirus Interacts With Endogenous Retrotransposon in Human Cells. Front Cell Infect Microbiol 2021;11:609160. [PMID: 33732659 DOI: 10.3389/fcimb.2021.609160] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
609 Biagioli M, Marchianò S, Roselli R, Giorgio CD, Bellini R, Bordoni M, Gidari A, Sabbatini S, Francisci D, Fiorillo B, Catalanotti B, Distrutti E, Carino A, Zampella A, Costantino G, Fiorucci S. Discovery of a AhR flavonoid agonist that counter-regulates ACE2 expression in rodent models of inflammation and attenuates ACE2-SARS-CoV2 interaction in vitro.. [DOI: 10.1101/2021.02.24.432203] [Reference Citation Analysis]
610 de Oliveira GLV, Oliveira CNS, Pinzan CF, de Salis LVV, Cardoso CRB. Microbiota Modulation of the Gut-Lung Axis in COVID-19. Front Immunol 2021;12:635471. [PMID: 33717181 DOI: 10.3389/fimmu.2021.635471] [Cited by in Crossref: 64] [Cited by in F6Publishing: 69] [Article Influence: 32.0] [Reference Citation Analysis]
611 Vasques da Costa A, Purcell Goes C, Gama P. Breastfeeding importance and its therapeutic potential against SARS-CoV-2. Physiol Rep 2021;9:e14744. [PMID: 33580917 DOI: 10.14814/phy2.14744] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
612 Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Profile of Human A549 Lung Cells Reveals Viral and Host Etiologic Molecular Attributes of Autoimmunity in COVID-19. bioRxiv 2021:2021. [PMID: 33655248 DOI: 10.1101/2021.02.21.432171] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
613 Puoti MG, Rybak A, Kiparissi F, Gaynor E, Borrelli O. SARS-CoV-2 and the Gastrointestinal Tract in Children. Front Pediatr 2021;9:617980. [PMID: 33692973 DOI: 10.3389/fped.2021.617980] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
614 Zhan GF, Wang Y, Yang N, Luo AL, Li SY. Digestive system involvement of infections with SARS-CoV-2 and other coronaviruses: Clinical manifestations and potential mechanisms. World J Gastroenterol 2021; 27(7): 561-575 [PMID: 33642829 DOI: 10.3748/wjg.v27.i7.561] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
615 Giani AM, Chen S. Human pluripotent stem cell-based organoids and cell platforms for modelling SARS-CoV-2 infection and drug discovery. Stem Cell Res 2021;53:102207. [PMID: 33677394 DOI: 10.1016/j.scr.2021.102207] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
616 Ali W, Zhang H, Wang Z, Chang C, Javed A, Ali K, Du W, Niazi NK, Mao K, Yang Z. Occurrence of various viruses and recent evidence of SARS-CoV-2 in wastewater systems. J Hazard Mater 2021;414:125439. [PMID: 33684818 DOI: 10.1016/j.jhazmat.2021.125439] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
617 Cao C, Lakshminarayanan R, McCracken J, Lai J. Ampullitis Superimposed Obstructive Jaundice in a Patient With COVID-19. Gastroenterology Res 2021;14:41-4. [PMID: 33737998 DOI: 10.14740/gr1353] [Reference Citation Analysis]
618 Hofer M, Lutolf MP. Engineering organoids. Nat Rev Mater 2021;:1-19. [PMID: 33623712 DOI: 10.1038/s41578-021-00279-y] [Cited by in Crossref: 177] [Cited by in F6Publishing: 192] [Article Influence: 88.5] [Reference Citation Analysis]
619 Devaux CA, Lagier JC, Raoult D. New Insights Into the Physiopathology of COVID-19: SARS-CoV-2-Associated Gastrointestinal Illness. Front Med (Lausanne) 2021;8:640073. [PMID: 33681266 DOI: 10.3389/fmed.2021.640073] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 15.5] [Reference Citation Analysis]
620 Gonçalves de Andrade E, Šimončičová E, Carrier M, Vecchiarelli HA, Robert MÈ, Tremblay MÈ. Microglia Fighting for Neurological and Mental Health: On the Central Nervous System Frontline of COVID-19 Pandemic. Front Cell Neurosci 2021;15:647378. [PMID: 33737867 DOI: 10.3389/fncel.2021.647378] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
621 Dai M, Li H, Yan N, Huang J, Zhao L, Xu S, Wu J, Jiang S, Pan C, Liao M. Long-term Survival of SARS-CoV-2 on Salmon as a Source for International Transmission. J Infect Dis 2021;223:537-9. [PMID: 33179031 DOI: 10.1093/infdis/jiaa712] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 9.5] [Reference Citation Analysis]
622 Murgolo N, Therien AG, Howell B, Klein D, Koeplinger K, Lieberman LA, Adam GC, Flynn J, McKenna P, Swaminathan G, Hazuda DJ, Olsen DB. SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLoS Pathog 2021;17:e1009225. [PMID: 33596266 DOI: 10.1371/journal.ppat.1009225] [Cited by in Crossref: 105] [Cited by in F6Publishing: 114] [Article Influence: 52.5] [Reference Citation Analysis]
623 O'Connell L, Winter DC, Aherne CM. The Role of Organoids as a Novel Platform for Modeling of Inflammatory Bowel Disease. Front Pediatr 2021;9:624045. [PMID: 33681101 DOI: 10.3389/fped.2021.624045] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
624 Baker SA, Kwok S, Berry GJ, Montine TJ. Angiotensin-converting enzyme 2 (ACE2) expression increases with age in patients requiring mechanical ventilation. PLoS One 2021;16:e0247060. [PMID: 33592054 DOI: 10.1371/journal.pone.0247060] [Cited by in Crossref: 39] [Cited by in F6Publishing: 52] [Article Influence: 19.5] [Reference Citation Analysis]
625 Siqueira JD, Goes LR, Alves BM, de Carvalho PS, Cicala C, Arthos J, Viola JPB, de Melo AC, Soares MA. SARS-CoV-2 genomic analyses in cancer patients reveal elevated intrahost genetic diversity. Virus Evol 2021;7:veab013. [PMID: 33738124 DOI: 10.1093/ve/veab013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
626 Niikura R, Fujishiro M, Nakai Y, Matsuda K, Kawahara T, Yamada A, Tsuji Y, Hayakawa Y, Koike K. International Observational Survey of the Effectiveness of Personal Protective Equipment during Endoscopic Procedures Performed in Patients with COVID-19. Digestion 2021;102:845-53. [PMID: 33592610 DOI: 10.1159/000513714] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
627 Quinaglia T, Shabani M, Breder I, Silber HA, Lima JAC, Sposito AC. Coronavirus disease-19: The multi-level, multi-faceted vasculopathy. Atherosclerosis 2021;322:39-50. [PMID: 33706082 DOI: 10.1016/j.atherosclerosis.2021.02.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
628 Dobrindt K, Hoagland DA, Seah C, Kassim B, O'Shea CP, Murphy A, Iskhakova M, Fernando MB, Powell SK, Deans PJM, Javidfar B, Peter C, Møller R, Uhl SA, Garcia MF, Kimura M, Iwasawa K, Crary JF, Kotton DN, Takebe T, Huckins LM, tenOever BR, Akbarian S, Brennand KJ. Common Genetic Variation in Humans Impacts In Vitro Susceptibility to SARS-CoV-2 Infection. Stem Cell Reports 2021;16:505-18. [PMID: 33636110 DOI: 10.1016/j.stemcr.2021.02.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 15.0] [Reference Citation Analysis]
629 Harper A, Vijayakumar V, Ouwehand AC, Ter Haar J, Obis D, Espadaler J, Binda S, Desiraju S, Day R. Viral Infections, the Microbiome, and Probiotics. Front Cell Infect Microbiol 2020;10:596166. [PMID: 33643929 DOI: 10.3389/fcimb.2020.596166] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 17.5] [Reference Citation Analysis]
630 Zhao X, Li C, Liu X, Chiu MC, Wang D, Wei Y, Chu H, Cai JP, Hau-Yee Chan I, Kak-Yuen Wong K, Fuk-Woo Chan J, Kai-Wang To K, Yuen KY, Zhou J. Human Intestinal Organoids Recapitulate Enteric Infections of Enterovirus and Coronavirus. Stem Cell Reports 2021;16:493-504. [PMID: 33626333 DOI: 10.1016/j.stemcr.2021.02.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
631 Gleeson J, Wang L, Sievert D, Clark A, Federman H, Gastfriend B, Shusta EV, Palecek SP, Carlin A. A Human 3D neural assembloid model for SARS-CoV-2 infection. Res Sq 2021:rs. [PMID: 33594354 DOI: 10.21203/rs.3.rs-214352/v1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
632 Pascoal LB, Rodrigues PB, Genaro LM, Gomes ABDSP, Toledo-Teixeira DA, Parise PL, Bispo-Dos-Santos K, Simeoni CL, Guimarães PV, Buscaratti LI, Elston JGA, Marques-Souza H, Martins-de-Souza D, Ayrizono MLS, Velloso LA, Proenca-Modena JL, Moraes-Vieira PMM, Mori MAS, Farias AS, Vinolo MAR, Leal RF. Microbiota-derived short-chain fatty acids do not interfere with SARS-CoV-2 infection of human colonic samples. Gut Microbes 2021;13:1-9. [PMID: 33550892 DOI: 10.1080/19490976.2021.1874740] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
633 Laue M, Kauter A, Hoffmann T, Möller L, Michel J, Nitsche A. Morphometry of SARS-CoV and SARS-CoV-2 particles in ultrathin plastic sections of infected Vero cell cultures. Sci Rep 2021;11:3515. [PMID: 33568700 DOI: 10.1038/s41598-021-82852-7] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 29.5] [Reference Citation Analysis]
634 Osman IO, Melenotte C, Brouqui P, Million M, Lagier J, Parola P, Stein A, Scola BL, Meddeb L, Mege J, Raoult D, Devaux CA. Expression of ACE2 receptor, soluble ACE2, Angiotensin I, Angiotensin II and Angiotensin (1-7), is modulated in COVID-19 patients.. [DOI: 10.1101/2021.02.08.21251001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
635 Duzagac F, Saorin G, Memeo L, Canzonieri V, Rizzolio F. Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research. Cancers (Basel) 2021;13:737. [PMID: 33578886 DOI: 10.3390/cancers13040737] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
636 Wiśniewska H, Skonieczna-Żydecka K, Parczewski M, Niścigorska-Olsen J, Karpińska E, Hornung M, Jurczyk K, Witak-Jędra M, Laurans Ł, Maciejewska K, Socha Ł, Leonciuk A, Bander D, Karasińska-Cieślak M, Aksak-Wąs B, Wawrzynowicz-Syczewska M. Hepatotropic Properties of SARS-CoV-2-Preliminary Results of Cross-Sectional Observational Study from the First Wave COVID-19 Pandemic. J Clin Med 2021;10:672. [PMID: 33572429 DOI: 10.3390/jcm10040672] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
637 Wang L, Sievert D, Clark AE, Federman H, Gastfriend BD, Shusta E, Palecek SP, Carlin AF, Gleeson J. A Human 3D neural assembloid model for SARS-CoV-2 infection. bioRxiv 2021:2021. [PMID: 33594369 DOI: 10.1101/2021.02.09.430349] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
638 Ozono S, Zhang Y, Ode H, Sano K, Tan TS, Imai K, Miyoshi K, Kishigami S, Ueno T, Iwatani Y, Suzuki T, Tokunaga K. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat Commun 2021;12:848. [PMID: 33558493 DOI: 10.1038/s41467-021-21118-2] [Cited by in Crossref: 264] [Cited by in F6Publishing: 273] [Article Influence: 132.0] [Reference Citation Analysis]
639 Valenzuela Nieto G, Jara R, Watterson D, Modhiran N, Amarilla AA, Himelreichs J, Khromykh AA, Salinas-Rebolledo C, Pinto T, Cheuquemilla Y, Margolles Y, López González Del Rey N, Miranda-Chacon Z, Cuevas A, Berking A, Deride C, González-Moraga S, Mancilla H, Maturana D, Langer A, Toledo JP, Müller A, Uberti B, Krall P, Ehrenfeld P, Blesa J, Chana-Cuevas P, Rehren G, Schwefel D, Fernandez LÁ, Rojas-Fernandez A. Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody. Sci Rep 2021;11:3318. [PMID: 33558635 DOI: 10.1038/s41598-021-82833-w] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
640 Brisolara KF, Maal-Bared R, Sobsey MD, Reimers RS, Rubin A, Bastian RK, Gerba C, Smith JE, Bibby K, Kester G, Brown S. Assessing and managing SARS-CoV-2 occupational health risk to workers handling residuals and biosolids. Sci Total Environ 2021;774:145732. [PMID: 33611008 DOI: 10.1016/j.scitotenv.2021.145732] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
641 Wyler E, Mösbauer K, Franke V, Diag A, Gottula LT, Arsiè R, Klironomos F, Koppstein D, Hönzke K, Ayoub S, Buccitelli C, Hoffmann K, Richter A, Legnini I, Ivanov A, Mari T, Del Giudice S, Papies J, Praktiknjo S, Meyer TF, Müller MA, Niemeyer D, Hocke A, Selbach M, Akalin A, Rajewsky N, Drosten C, Landthaler M. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience 2021;24:102151. [PMID: 33585804 DOI: 10.1016/j.isci.2021.102151] [Cited by in Crossref: 110] [Cited by in F6Publishing: 122] [Article Influence: 55.0] [Reference Citation Analysis]
642 Bhattacharyya C, Das C, Ghosh A, Singh AK, Mukherjee S, Majumder PP, Basu A, Biswas NK. SARS-CoV-2 mutation 614G creates an elastase cleavage site enhancing its spread in high AAT-deficient regions. Infect Genet Evol 2021;90:104760. [PMID: 33556558 DOI: 10.1016/j.meegid.2021.104760] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
643 Rios CI, Cassatt DR, Hollingsworth BA, Satyamitra MM, Tadesse YS, Taliaferro LP, Winters TA, DiCarlo AL. Commonalities Between COVID-19 and Radiation Injury. Radiat Res 2021;195:1-24. [PMID: 33064832 DOI: 10.1667/RADE-20-00188.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
644 Godoy MG, Kibenge MJT, Kibenge FSB. SARS-CoV-2 transmission via aquatic food animal species or their products: A review. Aquaculture 2021;536:736460. [PMID: 33564203 DOI: 10.1016/j.aquaculture.2021.736460] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
645 Treveil A, Bohar B, Sudhakar P, Gul L, Csabai L, Olbei M, Poletti M, Madgwick M, Andrighetti T, Hautefort I, Modos D, Korcsmaros T. ViralLink: An integrated workflow to investigate the effect of SARS-CoV-2 on intracellular signalling and regulatory pathways. PLoS Comput Biol 2021;17:e1008685. [PMID: 33534793 DOI: 10.1371/journal.pcbi.1008685] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
646 Yang Y, Hu X, Xiong L, Fu P, Feng W, Li W, Zhang L, Sun F. Clinical characteristics of hospitalized mild/moderate COVID-19 patients with a prolonged negative conversion time of SARS-CoV-2 nucleic acid detection. BMC Infect Dis 2021;21:141. [PMID: 33535989 DOI: 10.1186/s12879-021-05851-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
647 Clifford S, Cevik M, Campbell R, O'Shea D, Sutherland R. Expect the unexpected - Implications for next phase of COVID-19 response. Infect Prev Pract 2021;3:100118. [PMID: 34316575 DOI: 10.1016/j.infpip.2021.100118] [Reference Citation Analysis]
648 Donowitz M, Turner JR, Verkman AS, Zachos NC. Current and potential future applications of human stem cell models in drug development. J Clin Invest 2020;130:3342-4. [PMID: 32452833 DOI: 10.1172/JCI138645] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
649 Bisseling TM, van Laarhoven A, Huijbers A, Brink M, Roverts R, Wagner B, Nagtegaal ID, van der Post RS. Coronavirus Disease-19 Presenting as Esophageal Ulceration. Am J Gastroenterol 2021;116:421-4. [PMID: 33086224 DOI: 10.14309/ajg.0000000000000927] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
650 Zuo T, Liu Q, Zhang F, Lui GC, Tso EY, Yeoh YK, Chen Z, Boon SS, Chan FK, Chan PK, Ng SC. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 2021;70:276-84. [PMID: 32690600 DOI: 10.1136/gutjnl-2020-322294] [Cited by in Crossref: 151] [Cited by in F6Publishing: 205] [Article Influence: 75.5] [Reference Citation Analysis]
651 Moreno CC, Yee J, Ahmed FS, Barish MA, Brewington C, Dachman AH, Gollub MJ, Kim DH, McFarland E, Pickhardt PJ, Reddy S, Zalis M, Chang KJ. CT colonography's role in the COVID-19 pandemic: a safe(r), socially distanced total colon examination. Abdom Radiol (NY) 2021;46:486-90. [PMID: 32748251 DOI: 10.1007/s00261-020-02674-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
652 Wang S, Qiu Z, Hou Y, Deng X, Xu W, Zheng T, Wu P, Xie S, Bian W, Zhang C, Sun Z, Liu K, Shan C, Lin A, Jiang S, Xie Y, Zhou Q, Lu L, Huang J, Li X. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res 2021;31:126-40. [PMID: 33420426 DOI: 10.1038/s41422-020-00460-y] [Cited by in Crossref: 249] [Cited by in F6Publishing: 247] [Article Influence: 124.5] [Reference Citation Analysis]
653 Finlay BB, Amato KR, Azad M, Blaser MJ, Bosch TCG, Chu H, Dominguez-Bello MG, Ehrlich SD, Elinav E, Geva-Zatorsky N, Gros P, Guillemin K, Keck F, Korem T, McFall-Ngai MJ, Melby MK, Nichter M, Pettersson S, Poinar H, Rees T, Tropini C, Zhao L, Giles-Vernick T. The hygiene hypothesis, the COVID pandemic, and consequences for the human microbiome. Proc Natl Acad Sci U S A 2021;118:e2010217118. [PMID: 33472859 DOI: 10.1073/pnas.2010217118] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 26.0] [Reference Citation Analysis]
654 Patankar JV, Chiriac MT, Lehmann M, Kühl AA, Atreya R, Becker C, Gonzalez-Acera M, Schmitt H, Gamez-Belmonte R, Mahapatro M, Diemand L, Hartmann L, Mascia F, Hracsko Z, Thonn V, Schödel L, Zielinska M, Yu Y, Erkert L, Li W, Zeitler M, Ruder B, Ganzleben I, Günther C, Voehringer D, Zundler S, Neurath MF, Siegmund B; Callaborators. Severe Acute Respiratory Syndrome Coronavirus 2 Attachment Receptor Angiotensin-Converting Enzyme 2 Is Decreased in Crohn's Disease and Regulated By Microbial and Inflammatory Signaling. Gastroenterology 2021;160:925-928.e4. [PMID: 33075345 DOI: 10.1053/j.gastro.2020.10.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
655 Rössler A. Darmgesundheit: Wichtiges Puzzleteil bei Heuschnupfen. Deutsche Heilpraktiker-Zeitschrift 2021;16:64-68. [DOI: 10.1055/a-1348-6415] [Reference Citation Analysis]
656 Lv L, Jiang H, Chen Y, Gu S, Xia J, Zhang H, Lu Y, Yan R, Li L. The faecal metabolome in COVID-19 patients is altered and associated with clinical features and gut microbes. Anal Chim Acta 2021;1152:338267. [PMID: 33648648 DOI: 10.1016/j.aca.2021.338267] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 17.0] [Reference Citation Analysis]
657 Bertrand I, Challant J, Jeulin H, Hartard C, Mathieu L, Lopez S, Schvoerer E, Courtois S, Gantzer C; Scientific Interest Group Obépine. Epidemiological surveillance of SARS-CoV-2 by genome quantification in wastewater applied to a city in the northeast of France: Comparison of ultrafiltration- and protein precipitation-based methods. Int J Hyg Environ Health 2021;233:113692. [PMID: 33592569 DOI: 10.1016/j.ijheh.2021.113692] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 14.0] [Reference Citation Analysis]
658 Reza-Zaldívar EE, Hernández-Sapiéns MA, Minjarez B, Gómez-Pinedo U, Márquez-Aguirre AL, Mateos-Díaz JC, Matias-Guiu J, Canales-Aguirre AA. Infection Mechanism of SARS-COV-2 and Its Implication on the Nervous System. Front Immunol 2020;11:621735. [PMID: 33584720 DOI: 10.3389/fimmu.2020.621735] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 16.5] [Reference Citation Analysis]
659 Watashi K. Identifying and repurposing antiviral drugs against severe acute respiratory syndrome coronavirus 2 with in silico and in vitro approaches. Biochem Biophys Res Commun 2021;538:137-44. [PMID: 33272566 DOI: 10.1016/j.bbrc.2020.10.094] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
660 Rebendenne A, Valadão ALC, Tauziet M, Maarifi G, Bonaventure B, McKellar J, Planès R, Nisole S, Arnaud-Arnould M, Moncorgé O, Goujon C. SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J Virol 2021:JVI. [PMID: 33514628 DOI: 10.1128/JVI.02415-20] [Cited by in Crossref: 93] [Cited by in F6Publishing: 99] [Article Influence: 46.5] [Reference Citation Analysis]
661 Laporte E, Vennekens A, Vankelecom H. Pituitary Remodeling Throughout Life: Are Resident Stem Cells Involved? Front Endocrinol (Lausanne) 2020;11:604519. [PMID: 33584539 DOI: 10.3389/fendo.2020.604519] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
662 LeSavage BL, Heilshorn SC. Defined matrices bring IBD to 3D. Nat Mater 2021;20:124-5. [PMID: 33504987 DOI: 10.1038/s41563-020-00904-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
663 Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2020;8:620962. [PMID: 33585419 DOI: 10.3389/fbioe.2020.620962] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
664 Cortez V, Schultz-Cherry S. The role of goblet cells in viral pathogenesis. FEBS J 2021. [PMID: 33507606 DOI: 10.1111/febs.15731] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
665 Lopes-Pacheco M, Silva PL, Cruz FF, Battaglini D, Robba C, Pelosi P, Morales MM, Caruso Neves C, Rocco PRM. Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Front Physiol 2021;12:593223. [PMID: 33584343 DOI: 10.3389/fphys.2021.593223] [Cited by in Crossref: 46] [Cited by in F6Publishing: 55] [Article Influence: 23.0] [Reference Citation Analysis]
666 Goyal M, De Bruyne K, van Belkum A, West B. Different SARS-CoV-2 haplotypes associate with geographic origin and case fatality rates of COVID-19 patients. Infect Genet Evol 2021;90:104730. [PMID: 33513449 DOI: 10.1016/j.meegid.2021.104730] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
667 Sencio V, Machado MG, Trottein F. The lung-gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol 2021;14:296-304. [PMID: 33500564 DOI: 10.1038/s41385-020-00361-8] [Cited by in Crossref: 67] [Cited by in F6Publishing: 75] [Article Influence: 33.5] [Reference Citation Analysis]
668 Jones BC, Calà G, De Coppi P, Giobbe GG. Paediatric gastric organoids as a tool for disease modelling and clinical translation. Pediatr Surg Int 2021;37:317-24. [PMID: 33495862 DOI: 10.1007/s00383-020-04821-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
669 Pearson CF, Jeffery R, Thornton EE; Oxford-Cardiff COVID-19 Literature Consortium . Mucosal immune responses in COVID19 - a living review. Oxf Open Immunol 2021;2:iqab002. [PMID: 33585820 DOI: 10.1093/oxfimm/iqab002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
670 Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Atlas from Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. bioRxiv 2021:2021. [PMID: 33501444 DOI: 10.1101/2021.01.24.427965] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
671 Salaris C, Scarpa M, Elli M, Bertolini A, Guglielmetti S, Pregliasco F, Blandizzi C, Brun P, Castagliuolo I. Protective Effects of Lactoferrin against SARS-CoV-2 Infection In Vitro. Nutrients 2021;13:328. [PMID: 33498631 DOI: 10.3390/nu13020328] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 21.5] [Reference Citation Analysis]
672 Guo Z, Jiang S, Li Z, Chen S. Metabolic Syndrome “Interacts” With COVID-19. BIO Integration 2021;1:168-77. [DOI: 10.15212/bioi-2020-0035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
673 Lamers MM, Mykytyn AZ, Breugem TI, Wang Y, Wu DC, Riesebosch S, van den Doel PB, Schipper D, Bestebroer T, Wu NC, Haagmans BL. Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation.. [DOI: 10.1101/2021.01.22.427802] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
674 Yin X, Riva L, Pu Y, Martin-Sancho L, Kanamune J, Yamamoto Y, Sakai K, Gotoh S, Miorin L, De Jesus PD, Yang CC, Herbert KM, Yoh S, Hultquist JF, García-Sastre A, Chanda SK. MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Rep 2021;34:108628. [PMID: 33440148 DOI: 10.1016/j.celrep.2020.108628] [Cited by in Crossref: 179] [Cited by in F6Publishing: 123] [Article Influence: 89.5] [Reference Citation Analysis]
675 Patrick MT, Zhang H, Wasikowski R, Prens EP, Weidinger S, Gudjonsson JE, Elder JT, He K, Tsoi LC. Associations between COVID-19 and skin conditions identified through epidemiology and genomic studies. J Allergy Clin Immunol 2021;147:857-869.e7. [PMID: 33485957 DOI: 10.1016/j.jaci.2021.01.006] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
676 Liu C, Wang K, Zhang M, Hu X, Hu T, Liu Y, Hu Q, Wu S, Yue J. High expression of ACE2 and TMPRSS2 and clinical characteristics of COVID-19 in colorectal cancer patients. NPJ Precis Oncol 2021;5:1. [PMID: 33479506 DOI: 10.1038/s41698-020-00139-y] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 18.0] [Reference Citation Analysis]
677 Wang L, Ye Z, Jang YY. Convergence of human pluripotent stem cell, organoid, and genome editing technologies. Exp Biol Med (Maywood) 2021;246:861-75. [PMID: 33467883 DOI: 10.1177/1535370220985808] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
678 Zhang P, Mendonca L, Howe A, Gilchrist J, Sun D, Knight M, Zanetti-Domingues L, Bateman B, Krebs AS, Chen L, Radecke J, Sheng Y, Li V, Ni T, Kounatidis I, Koronfel M, Szynkiewicz M, Harkiolaki M, Martin-Fernandez M, James W. Correlative Multi-scale Cryo-imaging Unveils SARS-CoV-2 Assembly and Egress. Res Sq 2021:rs. [PMID: 33501431 DOI: 10.21203/rs.3.rs-134794/v1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
679 Gribaldo L, Hurley K, Hiemstra P, Greene C. Increased focus on non-animal models for COVID-19 and non-COVID lung research. Eur Respir J 2021;57:2004267. [PMID: 33446578 DOI: 10.1183/13993003.04267-2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
680 Suresh V, Parida D, Minz AP, Sethi M, Sahoo BS, Senapati S. Tissue Distribution of ACE2 Protein in Syrian Golden Hamster (Mesocricetus auratus) and Its Possible Implications in SARS-CoV-2 Related Studies. Front Pharmacol 2020;11:579330. [PMID: 33568991 DOI: 10.3389/fphar.2020.579330] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
681 Zhang M, Feng C, Zhang X, Hu S, Zhang Y, Min M, Liu B, Ying X, Liu Y. Susceptibility Factors of Stomach for SARS-CoV-2 and Treatment Implication of Mucosal Protective Agent in COVID-19. Front Med (Lausanne). 2020;7:597967. [PMID: 33521016 DOI: 10.3389/fmed.2020.597967] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
682 Synowiec A, Szczepański A, Barreto-Duran E, Lie LK, Pyrc K. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a Systemic Infection. Clin Microbiol Rev 2021;34:e00133-20. [PMID: 33441314 DOI: 10.1128/CMR.00133-20] [Cited by in Crossref: 83] [Cited by in F6Publishing: 89] [Article Influence: 41.5] [Reference Citation Analysis]
683 Kim HS. Do an Altered Gut Microbiota and an Associated Leaky Gut Affect COVID-19 Severity? mBio 2021;12:e03022-20. [PMID: 33436436 DOI: 10.1128/mBio.03022-20] [Cited by in Crossref: 30] [Cited by in F6Publishing: 37] [Article Influence: 15.0] [Reference Citation Analysis]
684 Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, Kastritis E, Pavlakis GN, Dimopoulos MA. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci 2021;28:9. [PMID: 33435929 DOI: 10.1186/s12929-020-00703-5] [Cited by in Crossref: 83] [Cited by in F6Publishing: 90] [Article Influence: 41.5] [Reference Citation Analysis]
685 Grabherr F, Effenberger M, Pedrini A, Mayr L, Schwärzler J, Reider S, Enrich B, Fritsche G, Wildner S, Bellmann-Weiler R, Weiss G, Scholl-Bürgi S, Müller T, Moschen A, Adolph TE, Tilg H. Increased Fecal Neopterin Parallels Gastrointestinal Symptoms in COVID-19. Clin Transl Gastroenterol 2021;12:e00293. [PMID: 33438988 DOI: 10.14309/ctg.0000000000000293] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
686 Li XZ, Qiu Y, Jeffery L, Liu F, Feng R, He JS, Tan JY, Ye ZY, Lin SN, Ghosh S, Iacucci M, Chen MH, Mao R. Down-Regulation of Colonic ACE2 Expression in Patients With Inflammatory Bowel Disease Responding to Anti-TNF Therapy: Implications for COVID-19. Front Med (Lausanne) 2020;7:613475. [PMID: 33511147 DOI: 10.3389/fmed.2020.613475] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
687 Rizvi ZA, Dalal R, Sadhu S, Kumar Y, Shrivastava T, Gupta SK, Agarwal S, Tripathy MR, Yadav AK, Medigeshi GR, Pandey AK, Samal S, Asthana S, Awasthi A. Immunological and cardio-vascular pathologies associated with SARS-CoV-2 infection in golden syrian hamster.. [DOI: 10.1101/2021.01.11.426080] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
688 Lamers MM, van der Vaart J, Knoops K, Riesebosch S, Breugem TI, Mykytyn AZ, Beumer J, Schipper D, Bezstarosti K, Koopman CD, Groen N, Ravelli RBG, Duimel HQ, Demmers JAA, Verjans GMGM, Koopmans MPG, Muraro MJ, Peters PJ, Clevers H, Haagmans BL. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J 2021;40:e105912. [PMID: 33283287 DOI: 10.15252/embj.2020105912] [Cited by in Crossref: 85] [Cited by in F6Publishing: 91] [Article Influence: 42.5] [Reference Citation Analysis]
689 Kronemberger GS, Carneiro FA, Rezende DF, Baptista LS. Spheroids and organoids as humanized 3D scaffold-free engineered tissues for SARS-CoV-2 viral infection and drug screening. Artif Organs 2021;45:548-58. [PMID: 33264436 DOI: 10.1111/aor.13880] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
690 . Organoids enabling COVID-19 research and significance of Biomaterial technologies. J Stem Cells Regen Med 2020;16:32-3. [PMID: 33414578 DOI: 10.46582/jsrm.1602006] [Reference Citation Analysis]
691 Barbosa LC, Gonçalves TL, de Araujo LP, Rosario LVO, Ferrer VP. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul Pharmacol 2021;137:106829. [PMID: 33422689 DOI: 10.1016/j.vph.2021.106829] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
692 Chu H, Hu B, Huang X, Chai Y, Zhou D, Wang Y, Shuai H, Yang D, Hou Y, Zhang X, Yuen TT, Cai JP, Zhang AJ, Zhou J, Yuan S, To KK, Chan IH, Sit KY, Foo DC, Wong IY, Ng AT, Cheung TT, Law SY, Au WK, Brindley MA, Chen Z, Kok KH, Chan JF, Yuen KY. Host and viral determinants for efficient SARS-CoV-2 infection of the human lung. Nat Commun. 2021;12:134. [PMID: 33420022 DOI: 10.1038/s41467-020-20457-w] [Cited by in Crossref: 76] [Cited by in F6Publishing: 79] [Article Influence: 38.0] [Reference Citation Analysis]
693 Chugh RM, Bhanja P, Norris A, Saha S. Experimental Models to Study COVID-19 Effect in Stem Cells. Cells 2021;10:E91. [PMID: 33430424 DOI: 10.3390/cells10010091] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
694 Carbone M, Lednicky J, Xiao SY, Venditti M, Bucci E. Coronavirus 2019 Infectious Disease Epidemic: Where We Are, What Can Be Done and Hope For. J Thorac Oncol 2021;16:546-71. [PMID: 33422679 DOI: 10.1016/j.jtho.2020.12.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
695 Fang FC, Naccache SN, Greninger AL. The Laboratory Diagnosis of Coronavirus Disease 2019- Frequently Asked Questions. Clin Infect Dis 2020;71:2996-3001. [PMID: 32511679 DOI: 10.1093/cid/ciaa742] [Cited by in Crossref: 37] [Cited by in F6Publishing: 43] [Article Influence: 18.5] [Reference Citation Analysis]
696 Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, Cho A, Jankovic M, Schaefer-Babajew D, Oliveira TY, Cipolla M, Viant C, Barnes CO, Hurley A, Turroja M, Gordon K, Millard KG, Ramos V, Schmidt F, Weisblum Y, Jha D, Tankelevich M, Yee J, Shimeliovich I, Robbiani DF, Zhao Z, Gazumyan A, Hatziioannou T, Bjorkman PJ, Mehandru S, Bieniasz PD, Caskey M, Nussenzweig MC, Hagglof T, Schwartz RE, Bram Y, Martinez-Delgado G, Mendoza P, Breton G, Dizon J, Unson-O'Brien C, Patel R. Evolution of Antibody Immunity to SARS-CoV-2. bioRxiv 2021:2020. [PMID: 33173867 DOI: 10.1101/2020.11.03.367391] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 21.0] [Reference Citation Analysis]
697 Mykytyn AZ, Breugem TI, Riesebosch S, Schipper D, van den Doel PB, Rottier RJ, Lamers MM, Haagmans BL. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. Elife 2021;10:e64508. [PMID: 33393462 DOI: 10.7554/eLife.64508] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 35.0] [Reference Citation Analysis]
698 McCormick KD, Mellors JW, Jacobs JL. Adaptation of advanced clinical virology assays from HIV-1 to SARS-CoV-2. Curr Opin HIV AIDS 2021;16:3-10. [PMID: 33186228 DOI: 10.1097/COH.0000000000000656] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
699 Ryan KA, Bewley KR, Fotheringham SA, Slack GS, Brown P, Hall Y, Wand NI, Marriott AC, Cavell BE, Tree JA, Allen L, Aram MJ, Bean TJ, Brunt E, Buttigieg KR, Carter DP, Cobb R, Coombes NS, Findlay-Wilson SJ, Godwin KJ, Gooch KE, Gouriet J, Halkerston R, Harris DJ, Hender TH, Humphries HE, Hunter L, Ho CMK, Kennard CL, Leung S, Longet S, Ngabo D, Osman KL, Paterson J, Penn EJ, Pullan ST, Rayner E, Skinner O, Steeds K, Taylor I, Tipton T, Thomas S, Turner C, Watson RJ, Wiblin NR, Charlton S, Hallis B, Hiscox JA, Funnell S, Dennis MJ, Whittaker CJ, Catton MG, Druce J, Salguero FJ, Carroll MW. Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity. Nat Commun 2021;12:81. [PMID: 33398055 DOI: 10.1038/s41467-020-20439-y] [Cited by in Crossref: 99] [Cited by in F6Publishing: 105] [Article Influence: 49.5] [Reference Citation Analysis]
700 Gholam-Mostafaei FS, Didari T, Ramandi M, Vafaee R, Rostami-Nejad M. Gut microbiota, angiotensin-converting enzyme, celiac disease, and risk of COVID-19 infection: a review. Gastroenterol Hepatol Bed Bench 2021;14:S24-31. [PMID: 35154599] [Reference Citation Analysis]
701 Oishi W, Zhu Y, Maruo C, Saito M, Kitajima M, Sano D. Wastewater-based Epidemiology for Infectious Diseases: The Foundations and Future Perspectives. Mizu Kankyo Gakkaishi 2021;44:125-133. [DOI: 10.2965/jswe.44.125] [Reference Citation Analysis]
702 Trebicka J. Anpassung der Therapie von gastroenterologischen und hepatologischen Erkrankungen bei COVID-19-Infektion. Therapie-Handbuch - Gastroenterologie und Hepatologie 2021. [DOI: 10.1016/b978-3-437-23847-5.00068-5] [Reference Citation Analysis]
703 Denue B, Sepu N. Persistent vomiting as a manifestation of coronavirus disease-2019. Niger J Med 2021;30:218. [DOI: 10.4103/njm.njm_22_21] [Reference Citation Analysis]
704 Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol 2021;18:269-83. [PMID: 33589829 DOI: 10.1038/s41575-021-00416-6] [Cited by in Crossref: 168] [Cited by in F6Publishing: 170] [Article Influence: 84.0] [Reference Citation Analysis]
705 Takashima K, Oshiumi H. [The innate immune response to SARS-CoV-2]. Uirusu 2021;71:33-40. [PMID: 35526992 DOI: 10.2222/jsv.71.33] [Reference Citation Analysis]
706 Li VSW. Modelling intestinal inflammation and infection using 'mini-gut' organoids. Nat Rev Gastroenterol Hepatol 2021;18:89-90. [PMID: 33257835 DOI: 10.1038/s41575-020-00391-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
707 Nardo AD, Schneeweiss-Gleixner M, Bakail M, Dixon ED, Lax SF, Trauner M. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int 2021;41:20-32. [PMID: 33190346 DOI: 10.1111/liv.14730] [Cited by in Crossref: 145] [Cited by in F6Publishing: 135] [Article Influence: 72.5] [Reference Citation Analysis]
708 Calor A, van Weissenbruch M, Senger S. Role of human gastrointestinal organoids in discovery and translational medicine. The Intestine 2021. [DOI: 10.1016/b978-0-12-821269-1.00010-2] [Reference Citation Analysis]
709 Gohil K, Samson R, Dastager S, Dharne M. Probiotics in the prophylaxis of COVID-19: something is better than nothing. 3 Biotech 2021;11:1. [PMID: 33262924 DOI: 10.1007/s13205-020-02554-1] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 13.5] [Reference Citation Analysis]
710 Din AU, Mazhar M, Waseem M, Ahmad W, Bibi A, Hassan A, Ali N, Gang W, Qian G, Ullah R, Shah T, Ullah M, Khan I, Nisar MF, Wu J. SARS-CoV-2 microbiome dysbiosis linked disorders and possible probiotics role. Biomed Pharmacother 2021;133:110947. [PMID: 33197765 DOI: 10.1016/j.biopha.2020.110947] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 26.5] [Reference Citation Analysis]
711 Aldahlawi AM, Zaher KSA. Spotlight on Immunity against COVID-19 with Emphasis on Cytokine Storm. Pharmacophore 2021;12:57-65. [DOI: 10.51847/lyeebiyjer] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
712 Chan C, Foster ST, Chan KG, Cacace MJ, Ladd SL, Sandum CT, Wright PT, Volmert B, Yang W, Aguirre A, Li W, Wright NT. Repositioned Drugs for COVID-19-the Impact on Multiple Organs. SN Compr Clin Med 2021;3:1484-501. [PMID: 33898925 DOI: 10.1007/s42399-021-00874-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
713 Urano E, Okamura T, Kamitani W, Kawaoka Y, Yasutomi Y. Comparison of young and elderly COVID-19 cynomolgus macaque models reflecting human COVID-19 pathological conditions. Translational and Regulatory Sciences 2021;4:20-24. [DOI: 10.33611/trs.2021-027] [Reference Citation Analysis]
714 Dheer R, Young VB. Stem-cell-derived models: tools for studying role of microbiota in intestinal homeostasis and disease. Curr Opin Gastroenterol 2021;37:15-22. [PMID: 33149049 DOI: 10.1097/MOG.0000000000000691] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
715 Moradi-Kalbolandi S, Majidzadeh-A K, Abdolvahab MH, Jalili N, Farahmand L. The Role of Mucosal Immunity and Recombinant Probiotics in SARS-CoV2 Vaccine Development. Probiotics Antimicrob Proteins 2021;13:1239-53. [PMID: 33770348 DOI: 10.1007/s12602-021-09773-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
716 Lv T, Meng F, Yu M, Huang H, Lin X, Zhao B. Defense of COVID-19 by Human Organoids. Phenomics 2021;1:113-28. [PMID: 35233559 DOI: 10.1007/s43657-021-00015-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
717 Stebbing J, Sánchez Nievas G, Falcone M, Youhanna S, Richardson P, Ottaviani S, Shen JX, Sommerauer C, Tiseo G, Ghiadoni L, Virdis A, Monzani F, Rizos LR, Forfori F, Avendaño Céspedes A, De Marco S, Carrozzi L, Lena F, Sánchez-Jurado PM, Lacerenza LG, Cesira N, Caldevilla Bernardo D, Perrella A, Niccoli L, Méndez LS, Matarrese D, Goletti D, Tan YJ, Monteil V, Dranitsaris G, Cantini F, Farcomeni A, Dutta S, Burley SK, Zhang H, Pistello M, Li W, Romero MM, Andrés Pretel F, Simón-Talero RS, García-Molina R, Kutter C, Felce JH, Nizami ZF, Miklosi AG, Penninger JM, Menichetti F, Mirazimi A, Abizanda P, Lauschke VM. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci Adv 2021;7:eabe4724. [PMID: 33187978 DOI: 10.1126/sciadv.abe4724] [Cited by in Crossref: 121] [Cited by in F6Publishing: 129] [Article Influence: 60.5] [Reference Citation Analysis]
718 Marjot T, Webb GJ, Barritt AS 4th, Moon AM, Stamataki Z, Wong VW, Barnes E. COVID-19 and liver disease: mechanistic and clinical perspectives. Nat Rev Gastroenterol Hepatol 2021;18:348-64. [PMID: 33692570 DOI: 10.1038/s41575-021-00426-4] [Cited by in Crossref: 172] [Cited by in F6Publishing: 173] [Article Influence: 86.0] [Reference Citation Analysis]
719 Qu G, Chen J, Huang G, Zhang M, Yu H, Zhu H, Chen L, Wang D, Pei B. A quantitative exploration of symptoms in COVID-19 patients: an observational cohort study. Int J Med Sci 2021;18:1082-95. [PMID: 33456367 DOI: 10.7150/ijms.53596] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
720 Neurath MF. COVID-19: biologic and immunosuppressive therapy in gastroenterology and hepatology. Nat Rev Gastroenterol Hepatol 2021;18:705-15. [PMID: 34188251 DOI: 10.1038/s41575-021-00480-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
721 Suárez-Fariñas M, Tokuyama M, Wei G, Huang R, Livanos A, Jha D, Levescot A, Irizar H, Kosoy R, Cording S, Wang W, Losic B, Ungaro RC, Di'Narzo A, Martinez-Delgado G, Suprun M, Corley MJ, Stojmirovic A, Houten SM, Peters L, Curran M, Brodmerkel C, Perrigoue J, Friedman JR, Hao K, Schadt EE, Zhu J, Ko HM, Cho J, Dubinsky MC, Sands BE, Ndhlovu L, Cerf-Bensusan N, Kasarskis A, Colombel JF, Harpaz N, Argmann C, Mehandru S. Intestinal Inflammation Modulates the Expression of ACE2 and TMPRSS2 and Potentially Overlaps With the Pathogenesis of SARS-CoV-2-related Disease. Gastroenterology 2021;160:287-301.e20. [PMID: 32980345 DOI: 10.1053/j.gastro.2020.09.029] [Cited by in Crossref: 62] [Cited by in F6Publishing: 70] [Article Influence: 31.0] [Reference Citation Analysis]
722 Penninger JM, Grant MB, Sung JJY. The Role of Angiotensin Converting Enzyme 2 in Modulating Gut Microbiota, Intestinal Inflammation, and Coronavirus Infection. Gastroenterology 2021;160:39-46. [PMID: 33130103 DOI: 10.1053/j.gastro.2020.07.067] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 26.5] [Reference Citation Analysis]
723 Sharma AK. Gut Microbiome in COVID-19: New Insights. Delineating Health and Health System: Mechanistic Insights into Covid 19 Complications 2021. [DOI: 10.1007/978-981-16-5105-2_19] [Reference Citation Analysis]
724 Asselah T, Durantel D, Pasmant E, Lau G, Schinazi RF. COVID-19: Discovery, diagnostics and drug development. J Hepatol 2021;74:168-84. [PMID: 33038433 DOI: 10.1016/j.jhep.2020.09.031] [Cited by in Crossref: 183] [Cited by in F6Publishing: 190] [Article Influence: 91.5] [Reference Citation Analysis]
725 Bharadwaj S, Dwivedi VD, Kang SG, Kirtipal N, Sobti RC. Insights Into the Role of Angiotensin-Converting Enzyme 2 in the Onset of Severe Acute Respiratory Syndrome Coronavirus 2 Pathogenesis. Delineating Health and Health System: Mechanistic Insights into Covid 19 Complications 2021. [DOI: 10.1007/978-981-16-5105-2_13] [Reference Citation Analysis]
726 Vespa E, Pugliese N, Colapietro F, Aghemo A. Stay (GI) Healthy: COVID-19 and Gastrointestinal Manifestations. Tech Innov Gastrointest Endosc 2021;23:179-89. [PMID: 33521703 DOI: 10.1016/j.tige.2021.01.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
727 Ho MS, Ho MS, Librach CL. Looking back, moving forward. iPSCs in Tissue Engineering 2021. [DOI: 10.1016/b978-0-12-823809-7.00015-3] [Reference Citation Analysis]
728 Aguirre García MM, Mancilla-galindo J, Paredes-paredes M, Tiburcio ÁZ, Ávila-vanzzini N. Mechanisms of infection by SARS-CoV-2, inflammation and potential links with the microbiome. Future Virology 2021;16:43-57. [DOI: 10.2217/fvl-2020-0310] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
729 Chen S, Zhou J, Ou X, Cheng W, Qin Y, Guo Y, Jiang Y. Alimentary system is directly attacked by SARS-COV-2 and further prevents immune dysregulation caused by COVID-19. Int J Clin Pract 2021;75:e13893. [PMID: 33289233 DOI: 10.1111/ijcp.13893] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
730 Kwak JH, Lee SY, Choi JW; Korean Society of Kawasaki Disease. Clinical features, diagnosis, and outcomes of multisystem inflammatory syndrome in children associated with coronavirus disease 2019. Clin Exp Pediatr 2021;64:68-75. [PMID: 33445833 DOI: 10.3345/cep.2020.01900] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
731 Bonazzetti C, Morena V, Giacomelli A, Oreni L, Casalini G, Galimberti LR, Bolis M, Rimoldi M, Ballone E, Colombo R, Ridolfo AL, Antinori S. Unexpectedly High Frequency of Enterococcal Bloodstream Infections in Coronavirus Disease 2019 Patients Admitted to an Italian ICU: An Observational Study. Crit Care Med 2021;49:e31-40. [PMID: 33122577 DOI: 10.1097/CCM.0000000000004748] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 14.7] [Reference Citation Analysis]
732 Alvarez CR, Sharma AK, Kee C, Thomas L, Boulant S, Herrmann C. SPINT2 controls SARS-CoV-2 viral infection and is associated to disease severity.. [DOI: 10.1101/2020.12.28.424029] [Reference Citation Analysis]
733 Lu CW, Wang SE, Wu WJ, Su LY, Wang CH, Wang PH, Wu CH. Alternative antibiotic feed additives alleviate pneumonia with inhibiting ACE-2 expression in the respiratory system of piglets. Food Sci Nutr 2021;9:1112-20. [PMID: 33598195 DOI: 10.1002/fsn3.2089] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
734 Laney DA, Germain DP, Oliveira JP, Burlina AP, Cabrera GH, Hong GR, Hopkin RJ, Niu DM, Thomas M, Trimarchi H, Wilcox WR, Politei JM, Ortiz A. Fabry disease and COVID-19: international expert recommendations for management based on real-world experience. Clin Kidney J 2020;13:913-25. [PMID: 33391734 DOI: 10.1093/ckj/sfaa227] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
735 Simoneau CR, Ott M. Modeling Multi-organ Infection by SARS-CoV-2 Using Stem Cell Technology. Cell Stem Cell 2020;27:859-68. [PMID: 33275899 DOI: 10.1016/j.stem.2020.11.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
736 Sanyal S. How SARS-CoV-2 (COVID-19) spreads within infected hosts - what we know so far. Emerg Top Life Sci 2020;4:371-8. [PMID: 33269805 DOI: 10.1042/ETLS20200165] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
737 McDonald LT. Healing after COVID-19: are survivors at risk for pulmonary fibrosis? Am J Physiol Lung Cell Mol Physiol 2021;320:L257-65. [PMID: 33355522 DOI: 10.1152/ajplung.00238.2020] [Cited by in Crossref: 80] [Cited by in F6Publishing: 89] [Article Influence: 26.7] [Reference Citation Analysis]
738 Wei Y, Silke JR, Aris P, Xia X. Coronavirus genomes carry the signatures of their habitats. PLoS One 2020;15:e0244025. [PMID: 33351847 DOI: 10.1371/journal.pone.0244025] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
739 Warner FJ, Rajapaksha H, Shackel N, Herath CB. ACE2: from protection of liver disease to propagation of COVID-19. Clin Sci (Lond). 2020;134:3137-3158. [PMID: 33284956 DOI: 10.1042/cs20201268] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
740 Kim M, Fevre C, Lavina M, Disson O, Lecuit M. Live Imaging Reveals Listeria Hijacking of E-Cadherin Recycling as It Crosses the Intestinal Barrier. Curr Biol 2021;31:1037-1047.e4. [PMID: 33333010 DOI: 10.1016/j.cub.2020.11.041] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
741 Follmer C. Viral Infection-Induced Gut Dysbiosis, Neuroinflammation, and α-Synuclein Aggregation: Updates and Perspectives on COVID-19 and Neurodegenerative Disorders. ACS Chem Neurosci 2020;11:4012-6. [PMID: 33244974 DOI: 10.1021/acschemneuro.0c00671] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
742 Barros I, Silva A, de Almeida LP, Miranda CO. Mesenchymal stromal cells to fight SARS-CoV-2: Taking advantage of a pleiotropic therapy. Cytokine Growth Factor Rev 2021;58:114-33. [PMID: 33397585 DOI: 10.1016/j.cytogfr.2020.12.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
743 Peng X, Ouyang J, Isnard S, Lin J, Fombuena B, Zhu B, Routy JP. Sharing CD4+ T Cell Loss: When COVID-19 and HIV Collide on Immune System. Front Immunol 2020;11:596631. [PMID: 33384690 DOI: 10.3389/fimmu.2020.596631] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 13.0] [Reference Citation Analysis]
744 Stanifer M, Boulant S. The origin of diarrhea in rotavirus infection. Science 2020;370:909-10. [PMID: 33214264 DOI: 10.1126/science.abf1914] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
745 García M, Kokkinou E, Carrasco García A, Parrot T, Palma Medina LM, Maleki KT, Christ W, Varnaitė R, Filipovic I, Ljunggren HG, Björkström NK, Folkesson E, Rooyackers O, Eriksson LI, Sönnerborg A, Aleman S, Strålin K, Gredmark-Russ S, Klingström J, Mjösberg J; Karolinska KI/K COVID‐19 Study Group. Innate lymphoid cell composition associates with COVID-19 disease severity. Clin Transl Immunology 2020;9:e1224. [PMID: 33343897 DOI: 10.1002/cti2.1224] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
746 Lean FZX, Lamers MM, Smith SP, Shipley R, Schipper D, Temperton N, Haagmans BL, Banyard AC, Bewley KR, Carroll MW, Brookes SM, Brown I, Nuñez A. Development of immunohistochemistry and in situ hybridisation for the detection of SARS-CoV and SARS-CoV-2 in formalin-fixed paraffin-embedded specimens. Sci Rep 2020;10:21894. [PMID: 33318594 DOI: 10.1038/s41598-020-78949-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
747 Pei R, Feng J, Zhang Y, Sun H, Li L, Yang X, He J, Xiao S, Xiong J, Lin Y, Wen K, Zhou H, Chen J, Rong Z, Chen X. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein Cell. 2020;12:; 1-17. [PMID: 33314005 DOI: 10.1007/s13238-020-00811-w] [Cited by in Crossref: 34] [Cited by in F6Publishing: 40] [Article Influence: 11.3] [Reference Citation Analysis]
748 Zhong M, Lin B, Pathak JL, Gao H, Young AJ, Wang X, Liu C, Wu K, Liu M, Chen JM, Huang J, Lee LH, Qi CL, Ge L, Wang L. ACE2 and Furin Expressions in Oral Epithelial Cells Possibly Facilitate COVID-19 Infection via Respiratory and Fecal-Oral Routes. Front Med (Lausanne) 2020;7:580796. [PMID: 33363183 DOI: 10.3389/fmed.2020.580796] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
749 Ciechanowicz P, Lewandowski K, Szymańska E, Kaniewska M, Rydzewska GM, Walecka I. Skin and gastrointestinal symptoms in COVID-19. Prz Gastroenterol 2020;15:301-8. [PMID: 33777269 DOI: 10.5114/pg.2020.101558] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
750 Nucci M, Barreiros G, Guimarães LF, Deriquehem VAS, Castiñeiras AC, Nouér SA. Increased incidence of candidemia in a tertiary care hospital with the COVID-19 pandemic. Mycoses 2021;64:152-6. [PMID: 33275821 DOI: 10.1111/myc.13225] [Cited by in Crossref: 69] [Cited by in F6Publishing: 75] [Article Influence: 23.0] [Reference Citation Analysis]
751 Aguiar-Oliveira ML, Campos A, R Matos A, Rigotto C, Sotero-Martins A, Teixeira PFP, Siqueira MM. Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance-A Brief Review. Int J Environ Res Public Health 2020;17:E9251. [PMID: 33321987 DOI: 10.3390/ijerph17249251] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 11.0] [Reference Citation Analysis]
752 Makiello P, Svirpliene S, Finlay L, McKnight J. Paediatric inflammatory multisystem syndrome temporally associated with COVID-19: a new virus and a new case presentation. BMJ Case Rep 2020;13:e238531. [PMID: 33298501 DOI: 10.1136/bcr-2020-238531] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
753 Spalinger MR, Hai R, Li J, Santos AN, Nordgren TM, Tremblay ML, Eckmann L, Hanson E, Scharl M, Wu X, Boland BS, McCole DF. Identification of a Novel Susceptibility Marker for SARS-CoV-2 Infection in Human Subjects and Risk Mitigation with a Clinically Approved JAK Inhibitor in Human/Mouse Cells.bioRxiv. 2020;. [PMID: 33330862 DOI: 10.1101/2020.12.09.416586] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
754 Vodnar DC, Mitrea L, Teleky BE, Szabo K, Călinoiu LF, Nemeş SA, Martău GA. Coronavirus Disease (COVID-19) Caused by (SARS-CoV-2) Infections: A Real Challenge for Human Gut Microbiota. Front Cell Infect Microbiol 2020;10:575559. [PMID: 33363049 DOI: 10.3389/fcimb.2020.575559] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
755 Britton GJ, Chen-Liaw A, Cossarini F, Livanos AE, Spindler MP, Plitt T, Eggers J, Mogno I, Gonzalez-Reiche AS, Siu S, Tankelevich M, Grinspan LT, Dixon RE, Jha D, Martinez-Delgado G, Amanat F, Hoagland DA, Oever BR, Dubinsky MC, Merad M, van Bakel H, Krammer F, Bongers G, Mehandru S, Faith JJ.   SARS-CoV-2- specific IgA and limited inflammatory cytokines are present in the stool of select patients with acute COVID-19. 2020 Preprint. Available from: medRxiv:2020.09.03.20183947. [PMID: 32909002 DOI: 10.1101/2020.09.03.20183947] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
756 Padmanabhan P, Desikan R, Dixit NM. Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection. PLoS Comput Biol 2020;16:e1008461. [PMID: 33290397 DOI: 10.1371/journal.pcbi.1008461] [Cited by in Crossref: 52] [Cited by in F6Publishing: 60] [Article Influence: 17.3] [Reference Citation Analysis]
757 Wolff L, Martiny D, Deyi VYM, Maillart E, Clevenbergh P, Dauby N. COVID-19-Associated Fusobacterium nucleatum Bacteremia, Belgium. Emerg Infect Dis 2021;27:975-7. [PMID: 33292922 DOI: 10.3201/eid2703.202284] [Cited by in Crossref: 7] [