BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shipman SL, Nivala J, Macklis JD, Church GM. Molecular recordings by directed CRISPR spacer acquisition. Science 2016;353:aaf1175. [PMID: 27284167 DOI: 10.1126/science.aaf1175] [Cited by in Crossref: 117] [Cited by in F6Publishing: 87] [Article Influence: 19.5] [Reference Citation Analysis]
Number Citing Articles
1 Goren M, Yosef I, Qimron U. Sensitizing pathogens to antibiotics using the CRISPR-Cas system. Drug Resist Updat 2017;30:1-6. [PMID: 28363331 DOI: 10.1016/j.drup.2016.11.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
2 Borton MA, Daly RA, O'banion B, Hoyt DW, Marcus DN, Welch S, Hastings SS, Meulia T, Wolfe RA, Booker AE, Sharma S, Cole DR, Wunch K, Moore JD, Darrah TH, Wilkins MJ, Wrighton KC. Comparative genomics and physiology of the genus Methanohalophilus , a prevalent methanogen in hydraulically fractured shale. Environ Microbiol 2018;20:4596-611. [DOI: 10.1111/1462-2920.14467] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
3 Yang G, Huang X. Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regen 2019;8:33-41. [PMID: 31666940 DOI: 10.1016/j.cr.2019.08.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
4 Blundell JR, Schwartz K, Francois D, Fisher DS, Sherlock G, Levy SF. The dynamics of adaptive genetic diversity during the early stages of clonal evolution. Nat Ecol Evol 2019;3:293-301. [PMID: 30598529 DOI: 10.1038/s41559-018-0758-1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
5 Yao QF, Zhu QY, Bu ZQ, Liu QY, Quan MX, Huang WT. DNA nanosensing systems for tunable detection of metal ions and molecular crypto-steganography. Biosens Bioelectron 2022;195:113645. [PMID: 34571483 DOI: 10.1016/j.bios.2021.113645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Barrangou R, Horvath P. A decade of discovery: CRISPR functions and applications. Nat Microbiol 2017;2:17092. [PMID: 28581505 DOI: 10.1038/nmicrobiol.2017.92] [Cited by in Crossref: 147] [Cited by in F6Publishing: 121] [Article Influence: 29.4] [Reference Citation Analysis]
7 Ledford H. Five big mysteries about CRISPR's origins. Nature 2017;541:280-2. [PMID: 28102279 DOI: 10.1038/541280a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.6] [Reference Citation Analysis]
8 Borkowski O, Gilbert C, Ellis T. On the record with E. coli DNA. Science 2016;353:444-5. [DOI: 10.1126/science.aah4438] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
9 Yao QF, Quan MX, Yang JH, Liu QY, Bu ZQ, Huang WT. Multifunctional Carbon Nanocomposites as Nanoneurons from Multimode and Multianalyte Sensing to Molecular Logic Computing, Steganography, and Cryptography. Small 2021;:e2103983. [PMID: 34668311 DOI: 10.1002/smll.202103983] [Reference Citation Analysis]
10 Bhattarai-Kline S, Lear SK, Fishman CB, Lopez SC, Lockshin ER, Schubert MG, Nivala J, Church GM, Shipman SL. Recording gene expression order in DNA by CRISPR addition of retron barcodes. Nature 2022. [PMID: 35896746 DOI: 10.1038/s41586-022-04994-6] [Reference Citation Analysis]
11 Nivala J, Shipman SL, Church GM. Spontaneous CRISPR loci generation in vivo by non-canonical spacer integration. Nat Microbiol 2018;3:310-8. [PMID: 29379209 DOI: 10.1038/s41564-017-0097-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Wang F, Qi LS. Applications of CRISPR Genome Engineering in Cell Biology. Trends Cell Biol 2016;26:875-88. [PMID: 27599850 DOI: 10.1016/j.tcb.2016.08.004] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 8.5] [Reference Citation Analysis]
13 Yoganand KN, Muralidharan M, Nimkar S, Anand B. Fidelity of prespacer capture and processing is governed by the PAM-mediated interactions of Cas1-2 adaptation complex in CRISPR-Cas type I-E system. J Biol Chem 2019;294:20039-53. [PMID: 31748409 DOI: 10.1074/jbc.RA119.009438] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
14 Wang Y, Huang C, Zhao W. Recent advances of the biological and biomedical applications of CRISPR/Cas systems. Mol Biol Rep 2022. [PMID: 35705772 DOI: 10.1007/s11033-022-07519-6] [Reference Citation Analysis]
15 Moch C, Fromant M, Blanquet S, Plateau P. DNA binding specificities of Escherichia coli Cas1-Cas2 integrase drive its recruitment at the CRISPR locus. Nucleic Acids Res 2017;45:2714-23. [PMID: 28034956 DOI: 10.1093/nar/gkw1309] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
16 Santiago-Frangos A, Buyukyoruk M, Wiegand T, Krishna P, Wiedenheft B. Distribution and phasing of sequence motifs that facilitate CRISPR adaptation. Curr Biol 2021;31:3515-3524.e6. [PMID: 34174210 DOI: 10.1016/j.cub.2021.05.068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Nivala J, Shipman SL, Church GM. Spontaneous CRISPR loci generation in vivo by non-canonical spacer integration. Nat Microbiol 2018;3:310-8. [PMID: 29379209 DOI: 10.1038/s41564-017-0097-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
18 Künne T, Kieper SN, Bannenberg JW, Vogel AI, Miellet WR, Klein M, Depken M, Suarez-Diez M, Brouns SJ. Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation. Mol Cell 2016;63:852-64. [PMID: 27546790 DOI: 10.1016/j.molcel.2016.07.011] [Cited by in Crossref: 87] [Cited by in F6Publishing: 71] [Article Influence: 14.5] [Reference Citation Analysis]
19 Gangadharan S, Raman K. The art of molecular computing: Whence and whither. Bioessays 2021;43:e2100051. [PMID: 34101866 DOI: 10.1002/bies.202100051] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Liu Y, Ren Y, Li J, Wang F, Wang F, Ma C, Chen D, Jiang X, Fan C, Zhang H, Liu K. In vivo processing of digital information molecularly with targeted specificity and robust reliability. Sci Adv 2022;8:eabo7415. [PMID: 35930647 DOI: 10.1126/sciadv.abo7415] [Reference Citation Analysis]
21 Emrani J, Ahmed M, Newman RH, Thomas MD, Mowa CN, Teleha J. Introducing Chemistry Students to Emerging Technologies in Gene Editing, Their Applications, and Ethical Considerations. J Chem Educ 2020;97:1931-43. [DOI: 10.1021/acs.jchemed.9b01154] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Shipman SL, Nivala J, Macklis JD, Church GM. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 2017;547:345-9. [PMID: 28700573 DOI: 10.1038/nature23017] [Cited by in Crossref: 150] [Cited by in F6Publishing: 90] [Article Influence: 30.0] [Reference Citation Analysis]
23 Goren MG, Doron S, Globus R, Amitai G, Sorek R, Qimron U. Repeat Size Determination by Two Molecular Rulers in the Type I-E CRISPR Array. Cell Rep 2016;16:2811-8. [PMID: 27626652 DOI: 10.1016/j.celrep.2016.08.043] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
24 Leenay RT, Beisel CL. Deciphering, Communicating, and Engineering the CRISPR PAM. J Mol Biol 2017;429:177-91. [PMID: 27916599 DOI: 10.1016/j.jmb.2016.11.024] [Cited by in Crossref: 90] [Cited by in F6Publishing: 67] [Article Influence: 15.0] [Reference Citation Analysis]
25 Matsoukas IG. Commentary: CRISPR-Cas Encoding of a Digital Movie into the Genomes of a Population of Living Bacteria. Front Bioeng Biotechnol 2017;5:57. [PMID: 29021981 DOI: 10.3389/fbioe.2017.00057] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
26 El Ouar I, Djekoun A. Therapeutic and diagnostic relevance of Crispr technology. Biomed Pharmacother 2021;138:111487. [PMID: 33774312 DOI: 10.1016/j.biopha.2021.111487] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Jones A, Reijmers LG. Mapping Brain Activity onto Molecularly Defined Cells. Neuron 2017;96:248-9. [PMID: 29024648 DOI: 10.1016/j.neuron.2017.09.054] [Reference Citation Analysis]
28 Ishiguro S, Mori H, Yachie N. DNA event recorders send past information of cells to the time of observation. Curr Opin Chem Biol 2019;52:54-62. [PMID: 31200335 DOI: 10.1016/j.cbpa.2019.05.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Hao Y, Li Q, Fan C, Wang F. Data Storage Based on DNA. Small Structures 2021;2:2000046. [DOI: 10.1002/sstr.202000046] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
30 Silas S, Lucas-Elio P, Jackson SA, Aroca-Crevillén A, Hansen LL, Fineran PC, Fire AZ, Sánchez-Amat A. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. Elife 2017;6:e27601. [PMID: 28826484 DOI: 10.7554/eLife.27601] [Cited by in Crossref: 41] [Cited by in F6Publishing: 23] [Article Influence: 8.2] [Reference Citation Analysis]
31 Budhathoki JB, Xiao Y, Schuler G, Hu C, Cheng A, Ding F, Ke A. Real-time observation of CRISPR spacer acquisition by Cas1-Cas2 integrase. Nat Struct Mol Biol 2020;27:489-99. [PMID: 32367067 DOI: 10.1038/s41594-020-0415-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
32 Song X, Reif J. Nucleic Acid Databases and Molecular-Scale Computing. ACS Nano 2019;13:6256-68. [PMID: 31117381 DOI: 10.1021/acsnano.9b02562] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
33 Jiang C, Zhang Y, Wang F, Liu H. Toward Smart Information Processing with Synthetic DNA Molecules. Macromol Rapid Commun 2021;42:e2100084. [PMID: 33864315 DOI: 10.1002/marc.202100084] [Reference Citation Analysis]
34 Racovita A, Jaramillo A. Reinforcement learning in synthetic gene circuits. Biochem Soc Trans 2020;48:1637-43. [PMID: 32756895 DOI: 10.1042/BST20200008] [Reference Citation Analysis]
35 Cubbon A, Ivancic-Bace I, Bolt EL. CRISPR-Cas immunity, DNA repair and genome stability. Biosci Rep 2018;38:BSR20180457. [PMID: 30209206 DOI: 10.1042/BSR20180457] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
36 Dickinson GD, Mortuza GM, Clay W, Piantanida L, Green CM, Watson C, Hayden EJ, Andersen T, Kuang W, Graugnard E, Zadegan R, Hughes WL. An alternative approach to nucleic acid memory. Nat Commun 2021;12:2371. [PMID: 33888693 DOI: 10.1038/s41467-021-22277-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
37 Klompe SE, Sternberg SH. Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems. CRISPR J 2018;1:141-58. [PMID: 31021200 DOI: 10.1089/crispr.2018.0012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 7.5] [Reference Citation Analysis]
38 Nicholson TJ, Jackson SA, Croft BI, Staals RHJ, Fineran PC, Brown CM. Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems. RNA Biol 2019;16:566-76. [PMID: 30157725 DOI: 10.1080/15476286.2018.1509662] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
39 Zhang F. Development of CRISPR-Cas systems for genome editing and beyond. Quart Rev Biophys 2019;52. [DOI: 10.1017/s0033583519000052] [Cited by in Crossref: 41] [Cited by in F6Publishing: 1] [Article Influence: 13.7] [Reference Citation Analysis]
40 Ju XD, Xu J, Sun ZS. CRISPR Editing in Biological and Biomedical Investigation. J Cell Biochem 2018;119:52-61. [PMID: 28543738 DOI: 10.1002/jcb.26154] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
41 Park J, Lim JM, Jung I, Heo SJ, Park J, Chang Y, Kim HK, Jung D, Yu JH, Min S, Yoon S, Cho SR, Park T, Kim HH. Recording of elapsed time and temporal information about biological events using Cas9. Cell 2021;184:1047-1063.e23. [PMID: 33539780 DOI: 10.1016/j.cell.2021.01.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
42 Wang JY, Pausch P, Doudna JA. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat Rev Microbiol 2022. [PMID: 35562427 DOI: 10.1038/s41579-022-00739-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Schmidt F, Platt RJ. Applications of CRISPR-Cas for synthetic biology and genetic recording. Current Opinion in Systems Biology 2017;5:9-15. [DOI: 10.1016/j.coisb.2017.05.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
44 Choi J, Chen W, Minkina A, Chardon FM, Suiter CC, Regalado SG, Domcke S, Hamazaki N, Lee C, Martin B, Daza RM, Shendure J. A time-resolved, multi-symbol molecular recorder via sequential genome editing. Nature 2022. [PMID: 35794474 DOI: 10.1038/s41586-022-04922-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Lau CH. Applications of CRISPR-Cas in Bioengineering, Biotechnology, and Translational Research. CRISPR J 2018;1:379-404. [PMID: 31021245 DOI: 10.1089/crispr.2018.0026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
46 Chakraborty S, von Mentzer A, Begum YA, Manzur M, Hasan M, Ghosh AN, Hossain MA, Camilli A, Qadri F. Phenotypic and genomic analyses of bacteriophages targeting environmental and clinical CS3-expressing enterotoxigenic Escherichia coli (ETEC) strains. PLoS One 2018;13:e0209357. [PMID: 30571788 DOI: 10.1371/journal.pone.0209357] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Meiser LC, Nguyen BH, Chen YJ, Nivala J, Strauss K, Ceze L, Grass RN. Synthetic DNA applications in information technology. Nat Commun 2022;13:352. [PMID: 35039502 DOI: 10.1038/s41467-021-27846-9] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 [DOI: 10.1145/3363384.3363387] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
49 McKay LJ, Nigro OD, Dlakić M, Luttrell KM, Rusch DB, Fields MW, Inskeep WP. Sulfur cycling and host-virus interactions in Aquificales-dominated biofilms from Yellowstone's hottest ecosystems. ISME J 2021. [PMID: 34650231 DOI: 10.1038/s41396-021-01132-4] [Reference Citation Analysis]
50 Srivastava AK, Arosio P, Poli M, Bou-Abdallah F. A Novel Approach for the Synthesis of Human Heteropolymer Ferritins of Different H to L Subunit Ratios. J Mol Biol 2021;433:167198. [PMID: 34391801 DOI: 10.1016/j.jmb.2021.167198] [Reference Citation Analysis]
51 Zou ZP, Ye BC. Long-Term Rewritable Report and Recording of Environmental Stimuli in Engineered Bacterial Populations. ACS Synth Biol 2020;9:2440-9. [PMID: 32794765 DOI: 10.1021/acssynbio.0c00193] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Wright AV, Liu JJ, Knott GJ, Doxzen KW, Nogales E, Doudna JA. Structures of the CRISPR genome integration complex. Science 2017;357:1113-8. [PMID: 28729350 DOI: 10.1126/science.aao0679] [Cited by in Crossref: 82] [Cited by in F6Publishing: 66] [Article Influence: 16.4] [Reference Citation Analysis]
53 Munck C, Sheth RU, Freedberg DE, Wang HH. Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR-Cas spacer acquisition platform. Nat Commun 2020;11:95. [PMID: 31911609 DOI: 10.1038/s41467-019-14012-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
54 Wang L, Yu X, Li M, Sun G, Zou L, Li T, Hou L, Guo Y, Shen D, Qu D, Cheng X, Chen L. Filamentation initiated by Cas2 and its association with the acquisition process in cells. Int J Oral Sci 2019;11:29. [PMID: 31578319 DOI: 10.1038/s41368-019-0063-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
55 Xue C, Sashital DG. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus 2019;8. [PMID: 30724156 DOI: 10.1128/ecosalplus.ESP-0008-2018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
56 [DOI: 10.1101/348987] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
57 Park S, Kim CH, Jeong ST, Lee SY. Surrogate strains of human pathogens for field release. Bioengineered 2018;9:17-24. [PMID: 28692329 DOI: 10.1080/21655979.2017.1349044] [Reference Citation Analysis]
58 Simon AJ, Morrow BR, Ellington AD. Retroelement-Based Genome Editing and Evolution. ACS Synth Biol 2018;7:2600-11. [PMID: 30256621 DOI: 10.1021/acssynbio.8b00273] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 7.8] [Reference Citation Analysis]
59 Endo M, Maruoka H, Okabe S. Advanced Technologies for Local Neural Circuits in the Cerebral Cortex. Front Neuroanat 2021;15:757499. [PMID: 34803616 DOI: 10.3389/fnana.2021.757499] [Reference Citation Analysis]
60 Bhattarai-Kline S, Lear SK, Shipman SL. One-step data storage in cellular DNA. Nat Chem Biol 2021;17:232-3. [PMID: 33500580 DOI: 10.1038/s41589-021-00737-2] [Reference Citation Analysis]
61 Musharova O, Vyhovskyi D, Medvedeva S, Guzina J, Zhitnyuk Y, Djordjevic M, Severinov K, Savitskaya E. Avoidance of Trinucleotide Corresponding to Consensus Protospacer Adjacent Motif Controls the Efficiency of Prespacer Selection during Primed Adaptation. mBio 2018;9:e02169-18. [PMID: 30514784 DOI: 10.1128/mBio.02169-18] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
62 Schmidt F, Zimmermann J, Tanna T, Farouni R, Conway T, Macpherson AJ, Platt RJ. Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science 2022;376:eabm6038. [PMID: 35549411 DOI: 10.1126/science.abm6038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
63 Tang W, Liu DR. Rewritable multi-event analog recording in bacterial and mammalian cells. Science 2018;360:eaap8992. [PMID: 29449507 DOI: 10.1126/science.aap8992] [Cited by in Crossref: 98] [Cited by in F6Publishing: 79] [Article Influence: 24.5] [Reference Citation Analysis]
64 Farzadfard F, Lu TK. Emerging applications for DNA writers and molecular recorders. Science 2018;361:870-5. [PMID: 30166483 DOI: 10.1126/science.aat9249] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 11.8] [Reference Citation Analysis]
65 Bodle JC, Gersbach CA. CRISPR Clocks: The Times They Are a-Changin'. CRISPR J 2021;4:160-3. [PMID: 33876949 DOI: 10.1089/crispr.2021.29123.ger] [Reference Citation Analysis]
66 Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018;172:1239-59. [DOI: 10.1016/j.cell.2017.11.032] [Cited by in Crossref: 329] [Cited by in F6Publishing: 246] [Article Influence: 82.3] [Reference Citation Analysis]
67 Shiriaeva AA, Savitskaya E, Datsenko KA, Vvedenskaya IO, Fedorova I, Morozova N, Metlitskaya A, Sabantsev A, Nickels BE, Severinov K, Semenova E. Detection of spacer precursors formed in vivo during primed CRISPR adaptation. Nat Commun 2019;10:4603. [PMID: 31601800 DOI: 10.1038/s41467-019-12417-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
68 Farzadfard F, Gharaei N, Citorik RJ, Lu TK. Efficient retroelement-mediated DNA writing in bacteria. Cell Syst 2021:S2405-4712(21)00251-9. [PMID: 34358440 DOI: 10.1016/j.cels.2021.07.001] [Reference Citation Analysis]
69 Gholizadeh P, Köse Ş, Dao S, Ganbarov K, Tanomand A, Dal T, Aghazadeh M, Ghotaslou R, Ahangarzadeh Rezaee M, Yousefi B, Samadi Kafil H. How CRISPR-Cas System Could Be Used to Combat Antimicrobial Resistance. Infect Drug Resist 2020;13:1111-21. [PMID: 32368102 DOI: 10.2147/IDR.S247271] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
70 Bonomo ME, Deem MW. The physicist's guide to one of biotechnology's hottest new topics: CRISPR-Cas. Phys Biol 2018;15:041002. [PMID: 29543191 DOI: 10.1088/1478-3975/aab6d6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
71 Sheth RU, Wang HH. DNA-based memory devices for recording cellular events. Nat Rev Genet 2018;19:718-32. [PMID: 30237447 DOI: 10.1038/s41576-018-0052-8] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
72 Ceze L, Nivala J, Strauss K. Molecular digital data storage using DNA. Nat Rev Genet 2019;20:456-66. [PMID: 31068682 DOI: 10.1038/s41576-019-0125-3] [Cited by in Crossref: 96] [Cited by in F6Publishing: 53] [Article Influence: 32.0] [Reference Citation Analysis]
73 Heler R, Wright AV, Vucelja M, Bikard D, Doudna JA, Marraffini LA. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response. Mol Cell 2017;65:168-75. [PMID: 28017588 DOI: 10.1016/j.molcel.2016.11.031] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
74 Loveless TB, Grotts JH, Schechter MW, Forouzmand E, Carlson CK, Agahi BS, Liang G, Ficht M, Liu B, Xie X, Liu CC. Lineage tracing and analog recording in mammalian cells by single-site DNA writing. Nat Chem Biol 2021;17:739-47. [PMID: 33753928 DOI: 10.1038/s41589-021-00769-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and gene editing technologies. Mol Cell 2021:S1097-2765(21)01039-X. [PMID: 34968414 DOI: 10.1016/j.molcel.2021.12.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 25.0] [Reference Citation Analysis]
76 Tanna T, Ramachanderan R, Platt RJ. Engineered bacteria to report gut function: technologies and implementation. Curr Opin Microbiol 2021;59:24-33. [PMID: 32828048 DOI: 10.1016/j.mib.2020.07.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
77 Lederer AR, La Manno G. The emergence and promise of single-cell temporal-omics approaches. Current Opinion in Biotechnology 2020;63:70-8. [DOI: 10.1016/j.copbio.2019.12.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
78 Ramachandran A, Summerville L, Learn BA, DeBell L, Bailey S. Processing and integration of functionally oriented prespacers in the Escherichia coli CRISPR system depends on bacterial host exonucleases. J Biol Chem 2020;295:3403-14. [PMID: 31914418 DOI: 10.1074/jbc.RA119.012196] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
79 Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol 2016;34:933-41. [DOI: 10.1038/nbt.3659] [Cited by in Crossref: 491] [Cited by in F6Publishing: 403] [Article Influence: 81.8] [Reference Citation Analysis]
80 Lim CK, Nirantar S, Yew WS, Poh CL. Novel Modalities in DNA Data Storage. Trends Biotechnol 2021:S0167-7799(20)30333-4. [PMID: 33455842 DOI: 10.1016/j.tibtech.2020.12.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Schmidt F, Cherepkova MY, Platt RJ. Transcriptional recording by CRISPR spacer acquisition from RNA. Nature 2018;562:380-5. [DOI: 10.1038/s41586-018-0569-1] [Cited by in Crossref: 55] [Cited by in F6Publishing: 37] [Article Influence: 13.8] [Reference Citation Analysis]
82 Shiriaeva A, Fedorov I, Vyhovskyi D, Severinov K. Detection of CRISPR adaptation. Biochem Soc Trans 2020;48:257-69. [PMID: 32010936 DOI: 10.1042/BST20190662] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
83 Schmidt ST, Zimmerman SM, Wang J, Kim SK, Quake SR. Quantitative Analysis of Synthetic Cell Lineage Tracing Using Nuclease Barcoding. ACS Synth Biol 2017;6:936-42. [PMID: 28264564 DOI: 10.1021/acssynbio.6b00309] [Cited by in Crossref: 54] [Cited by in F6Publishing: 38] [Article Influence: 10.8] [Reference Citation Analysis]
84 Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490-507. [PMID: 31147612 DOI: 10.1038/s41580-019-0131-5] [Cited by in Crossref: 353] [Cited by in F6Publishing: 299] [Article Influence: 176.5] [Reference Citation Analysis]
85 Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJ. CRISPR-Cas: Adapting to change. Science 2017;356:eaal5056. [PMID: 28385959 DOI: 10.1126/science.aal5056] [Cited by in Crossref: 202] [Cited by in F6Publishing: 168] [Article Influence: 40.4] [Reference Citation Analysis]
86 Spanjaard B, Junker JP. Methods for lineage tracing on the organism-wide level. Curr Opin Cell Biol 2017;49:16-21. [PMID: 29175321 DOI: 10.1016/j.ceb.2017.11.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
87 McGinn J, Marraffini LA. Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat Rev Microbiol 2019;17:7-12. [PMID: 30171202 DOI: 10.1038/s41579-018-0071-7] [Cited by in Crossref: 93] [Cited by in F6Publishing: 73] [Article Influence: 46.5] [Reference Citation Analysis]
88 Kempton HR, Love KS, Guo LY, Qi LS. Scalable biological signal recording in mammalian cells using Cas12a base editors. Nat Chem Biol. [DOI: 10.1038/s41589-022-01034-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Mori H, Evans-Yamamoto D, Ishiguro S, Tomita M, Yachie N. Fast and global detection of periodic sequence repeats in large genomic resources. Nucleic Acids Res 2019;47:e8. [PMID: 30304510 DOI: 10.1093/nar/gky890] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
90 [DOI: 10.1101/2020.02.21.958983] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
91 Pineda M, Moghadam F, Ebrahimkhani MR, Kiani S. Engineered CRISPR Systems for Next Generation Gene Therapies. ACS Synth Biol 2017;6:1614-26. [PMID: 28558198 DOI: 10.1021/acssynbio.7b00011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
92 Zhu QY, Zhang FR, Du Y, Zhang XX, Lu JY, Yao QF, Huang WT, Ding XZ, Xia LQ. Graphene-Based Steganographically Aptasensing System for Information Computing, Encryption and Hiding, Fluorescence Sensing and in Vivo Imaging of Fish Pathogens. ACS Appl Mater Interfaces 2019;11:8904-14. [PMID: 30730133 DOI: 10.1021/acsami.8b22592] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
93 Bender G, Fahrioglu Yamaci R, Taneri B. CRISPR and KRAS: a match yet to be made. J Biomed Sci 2021;28:77. [PMID: 34781949 DOI: 10.1186/s12929-021-00772-0] [Reference Citation Analysis]
94 Jiang W, Oikonomou P, Tavazoie S. Comprehensive Genome-wide Perturbations via CRISPR Adaptation Reveal Complex Genetics of Antibiotic Sensitivity. Cell 2020;180:1002-1017.e31. [PMID: 32109417 DOI: 10.1016/j.cell.2020.02.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
95 Fu BX, Wainberg M, Kundaje A, Fire AZ. High-Throughput Characterization of Cascade type I-E CRISPR Guide Efficacy Reveals Unexpected PAM Diversity and Target Sequence Preferences. Genetics 2017;206:1727-38. [PMID: 28634160 DOI: 10.1534/genetics.117.202580] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
96 Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH. DNA sequencing at 40: past, present and future. Nature 2017;550:345-53. [DOI: 10.1038/nature24286] [Cited by in Crossref: 411] [Cited by in F6Publishing: 274] [Article Influence: 82.2] [Reference Citation Analysis]
97 Srivastava AK, Flint N, Kreckel H, Gryzik M, Poli M, Arosio P, Bou-abdallah F. Thermodynamic and Kinetic Studies of the Interaction of Nuclear Receptor Coactivator-4 (NCOA4) with Human Ferritin. Biochemistry 2020;59:2707-17. [DOI: 10.1021/acs.biochem.0c00246] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
98 Bhan N, Callisto A, Strutz J, Glaser J, Kalhor R, Boyden ES, Church G, Kording K, Tyo KEJ. Recording Temporal Signals with Minutes Resolution Using Enzymatic DNA Synthesis. J Am Chem Soc 2021;143:16630-40. [PMID: 34591459 DOI: 10.1021/jacs.1c07331] [Reference Citation Analysis]
99 McKenna A, Gagnon JA. Recording development with single cell dynamic lineage tracing. Development 2019;146:dev169730. [PMID: 31249005 DOI: 10.1242/dev.169730] [Cited by in Crossref: 59] [Cited by in F6Publishing: 50] [Article Influence: 19.7] [Reference Citation Analysis]
100 Tanna T, Schmidt F, Cherepkova MY, Okoniewski M, Platt RJ. Recording transcriptional histories using Record-seq. Nat Protoc 2020;15:513-39. [DOI: 10.1038/s41596-019-0253-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
101 Frieda KL, Linton JM, Hormoz S, Choi J, Chow KK, Singer ZS, Budde MW, Elowitz MB, Cai L. Synthetic recording and in situ readout of lineage information in single cells. Nature 2017;541:107-11. [PMID: 27869821 DOI: 10.1038/nature20777] [Cited by in Crossref: 245] [Cited by in F6Publishing: 195] [Article Influence: 40.8] [Reference Citation Analysis]
102 Yim SS, McBee RM, Song AM, Huang Y, Sheth RU, Wang HH. Robust direct digital-to-biological data storage in living cells. Nat Chem Biol 2021;17:246-53. [PMID: 33432236 DOI: 10.1038/s41589-020-00711-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
103 Hu J, Li L, Wang R, Huang T, Huang Y, Liu Y, Yang X, Chen M. Isolation of human GBS CC67 strains with high adhesion ability to HBMECs. Clin Microbiol Infect 2019;25:768-70. [PMID: 30685499 DOI: 10.1016/j.cmi.2019.01.009] [Reference Citation Analysis]
104 Sheth RU, Yim SS, Wu FL, Wang HH. Multiplex recording of cellular events over time on CRISPR biological tape. Science 2017;358:1457-61. [PMID: 29170279 DOI: 10.1126/science.aao0958] [Cited by in Crossref: 73] [Cited by in F6Publishing: 54] [Article Influence: 14.6] [Reference Citation Analysis]
105 Beisel CL. CRISPR tool puts RNA on the record. Nature 2018;562:347-9. [DOI: 10.1038/d41586-018-06869-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
106 Lau CH, Reeves R, Bolt EL. Adaptation processes that build CRISPR immunity: creative destruction, updated. Essays Biochem 2019;63:227-35. [PMID: 31186288 DOI: 10.1042/EBC20180073] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
107 Wu WY, Jackson SA, Almendros C, Haagsma AC, Yilmaz S, Gort G, van der Oost J, Brouns SJJ, Staals RHJ. Adaptation by Type V-A and V-B CRISPR-Cas Systems Demonstrates Conserved Protospacer Selection Mechanisms Between Diverse CRISPR-Cas Types. CRISPR J 2022. [PMID: 35833800 DOI: 10.1089/crispr.2021.0150] [Reference Citation Analysis]
108 Long C, Dai L, E C, Da LT, Yu J. Allosteric regulation in CRISPR/Cas1-Cas2 protospacer acquisition mediated by DNA and Cas2. Biophys J 2021;120:3126-37. [PMID: 34197800 DOI: 10.1016/j.bpj.2021.06.007] [Reference Citation Analysis]