BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H, Ohlstein EH. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2016;69:1-11. [DOI: 10.1124/pr.116.012864] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 7.2] [Reference Citation Analysis]
Number Citing Articles
1 Bresnitz W, Lorca RA. Potassium Channels in the Uterine Vasculature: Role in Healthy and Complicated Pregnancies. Int J Mol Sci 2022;23:9446. [PMID: 36012712 DOI: 10.3390/ijms23169446] [Reference Citation Analysis]
2 Zhou F, Metzner K, Engel P, Balzulat A, Sisignano M, Ruth P, Lukowski R, Schmidtko A, Lu R. Slack Potassium Channels Modulate TRPA1-Mediated Nociception in Sensory Neurons. Cells 2022;11:1693. [DOI: 10.3390/cells11101693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Liu Y, Zhang F, Song Y, Wang R, Zhang Q, Shen Z, Zhang F, Zhong D, Wang X, Guo Q, Tang Q, Zhang Z. The Slack Channel Deletion Causes Mechanical Pain Hypersensitivity in Mice. Front Mol Neurosci 2022;15:811441. [DOI: 10.3389/fnmol.2022.811441] [Reference Citation Analysis]
4 Sahu G, Turner RW. The Molecular Basis for the Calcium-Dependent Slow Afterhyperpolarization in CA1 Hippocampal Pyramidal Neurons. Front Physiol 2021;12:759707. [PMID: 35002757 DOI: 10.3389/fphys.2021.759707] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
5 Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K+ channels and their implications for disease mechanisms. Pharmacol Ther 2021;227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
6 Gray R, Johnston D. Sodium sensitivity of KNa channels in mouse CA1 neurons. J Neurophysiol 2021;125:1690-7. [PMID: 33788620 DOI: 10.1152/jn.00064.2021] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Silic MR, Black MM, Zhang G. Phylogenetic and developmental analyses indicate complex functions of calcium-activated potassium channels in zebrafish embryonic development. Dev Dyn 2021. [PMID: 33728688 DOI: 10.1002/dvdy.329] [Reference Citation Analysis]
8 Wu J, Kaczmarek LK. Modulation of Neuronal Potassium Channels During Auditory Processing. Front Neurosci 2021;15:596478. [PMID: 33613177 DOI: 10.3389/fnins.2021.596478] [Reference Citation Analysis]
9 McCoy MT, Jayanthi S, Cadet JL. Potassium Channels and Their Potential Roles in Substance Use Disorders. Int J Mol Sci 2021;22:1249. [PMID: 33513859 DOI: 10.3390/ijms22031249] [Reference Citation Analysis]
10 Barrett PQ, Guagliardo NA, Bayliss DA. Ion Channel Function and Electrical Excitability in the Zona Glomerulosa: A Network Perspective on Aldosterone Regulation. Annu Rev Physiol 2021;83:451-75. [PMID: 33176563 DOI: 10.1146/annurev-physiol-030220-113038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Molecular and Cellular Neuroscience 2020;108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
12 Lorigo M, Oliveira N, Cairrao E. Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020;9:E1956. [PMID: 32854241 DOI: 10.3390/cells9091956] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 0.5] [Reference Citation Analysis]
13 Bertrand JA, Schicht M, Stamer WD, Baker D, Sherwood JM, Lütjen-Drecoll E, Selwood DL, Overby DR. The β4-Subunit of the Large-Conductance Potassium Ion Channel KCa1.1 Regulates Outflow Facility in Mice. Invest Ophthalmol Vis Sci 2020;61:41. [PMID: 32203982 DOI: 10.1167/iovs.61.3.41] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Amador-Muñoz D, Gutiérrez ÁM, Payán-Gómez C, Matheus LM. In silico and in vitro analysis of cation-activated potassium channels in human corneal endothelial cells. Exp Eye Res 2020;197:108114. [PMID: 32561484 DOI: 10.1016/j.exer.2020.108114] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Flavahan S, Flavahan NA. Cooling-induced dilatation of cutaneous arteries is mediated by increased myoendothelial communication. Am J Physiol Heart Circ Physiol 2020;319:H123-32. [PMID: 32469638 DOI: 10.1152/ajpheart.00159.2020] [Reference Citation Analysis]
16 Laur N, Kinscherf R, Pomytkin K, Kaiser L, Knes O, Deigner HP. ICP-MS trace element analysis in serum and whole blood. PLoS One 2020;15:e0233357. [PMID: 32433650 DOI: 10.1371/journal.pone.0233357] [Cited by in Crossref: 11] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
17 Yool AJ, Ramesh S. Molecular Targets for Combined Therapeutic Strategies to Limit Glioblastoma Cell Migration and Invasion. Front Pharmacol 2020;11:358. [PMID: 32292341 DOI: 10.3389/fphar.2020.00358] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
18 Quraishi IH, Mercier MR, McClure H, Couture RL, Schwartz ML, Lukowski R, Ruth P, Kaczmarek LK. Impaired motor skill learning and altered seizure susceptibility in mice with loss or gain of function of the Kcnt1 gene encoding Slack (KNa1.1) Na+-activated K+ channels. Sci Rep 2020;10:3213. [PMID: 32081855 DOI: 10.1038/s41598-020-60028-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
19 Mao X, Bruneau N, Gao Q, Becq H, Jia Z, Xi H, Shu L, Wang H, Szepetowski P, Aniksztejn L. The Epilepsy of Infancy With Migrating Focal Seizures: Identification of de novo Mutations of the KCNT2 Gene That Exert Inhibitory Effects on the Corresponding Heteromeric KNa1.1/KNa1.2 Potassium Channel. Front Cell Neurosci 2020;14:1. [PMID: 32038177 DOI: 10.3389/fncel.2020.00001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
20 Barrera P, Skorka C, Boktor M, Dave N, Jimenez V. A Novel Calcium-Activated Potassium Channel Controls Membrane Potential and Intracellular pH in Trypanosoma cruzi. Front Cell Infect Microbiol 2019;9:464. [PMID: 32010643 DOI: 10.3389/fcimb.2019.00464] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Jayanthi S, Torres OV, Ladenheim B, Cadet JL. A Single Prior Injection of Methamphetamine Enhances Methamphetamine Self-Administration (SA) and Blocks SA-Induced Changes in DNA Methylation and mRNA Expression of Potassium Channels in the Rat Nucleus Accumbens. Mol Neurobiol 2020;57:1459-72. [PMID: 31758400 DOI: 10.1007/s12035-019-01830-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
22 Krabbendam IE, Honrath B, Bothof L, Silva-Pavez E, Huerta H, Peñaranda Fajardo NM, Dekker F, Schmidt M, Culmsee C, César Cárdenas J, Kruyt F, Dolga AM. SK channel activation potentiates auranofin-induced cell death in glio- and neuroblastoma cells. Biochem Pharmacol 2020;171:113714. [PMID: 31738894 DOI: 10.1016/j.bcp.2019.113714] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
23 Madreiter-Sokolowski CT, Ramadani-Muja J, Ziomek G, Burgstaller S, Bischof H, Koshenov Z, Gottschalk B, Malli R, Graier WF. Tracking intra- and inter-organelle signaling of mitochondria. FEBS J 2019;286:4378-401. [PMID: 31661602 DOI: 10.1111/febs.15103] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
24 Shim H, Brown BM, Singh L, Singh V, Fettinger JC, Yarov-Yarovoy V, Wulff H. The Trials and Tribulations of Structure Assisted Design of KCa Channel Activators. Front Pharmacol 2019;10:972. [PMID: 31616290 DOI: 10.3389/fphar.2019.00972] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
25 Quraishi IH, Stern S, Mangan KP, Zhang Y, Ali SR, Mercier MR, Marchetto MC, McLachlan MJ, Jones EM, Gage FH, Kaczmarek LK. An Epilepsy-Associated KCNT1 Mutation Enhances Excitability of Human iPSC-Derived Neurons by Increasing Slack KNa Currents. J Neurosci 2019;39:7438-49. [PMID: 31350261 DOI: 10.1523/JNEUROSCI.1628-18.2019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 28] [Article Influence: 6.7] [Reference Citation Analysis]
26 Cameron JM, Maljevic S, Nair U, Aung YH, Cogné B, Bézieau S, Blair E, Isidor B, Zweier C, Reis A, Koenig MK, Maarup T, Sarco D, Afenjar A, Huq AHMM, Kukolich M, Billette de Villemeur T, Nava C, Héron B, Petrou S, Berkovic SF. Encephalopathies with KCNC1 variants: genotype-phenotype-functional correlations. Ann Clin Transl Neurol 2019;6:1263-72. [PMID: 31353855 DOI: 10.1002/acn3.50822] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
27 Xu Y, McDermott AE. Inactivation in the potassium channel KcsA. J Struct Biol X 2019;3:100009. [PMID: 32647814 DOI: 10.1016/j.yjsbx.2019.100009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
28 Tabakmakher VM, Krylov NA, Kuzmenkov AI, Efremov RG, Vassilevski AA. Kalium 2.0, a comprehensive database of polypeptide ligands of potassium channels. Sci Data 2019;6:73. [PMID: 31133708 DOI: 10.1038/s41597-019-0074-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
29 Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019;72:100760. [PMID: 31078724 DOI: 10.1016/j.preteyeres.2019.05.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
30 Li Y, Hu H, O'Neil RG. Caveolae facilitate TRPV4-mediated Ca2+ signaling and the hierarchical activation of Ca2+-activated K+ channels in K+-secreting renal collecting duct cells. Am J Physiol Renal Physiol 2018;315:F1626-36. [PMID: 30207167 DOI: 10.1152/ajprenal.00076.2018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
31 Lee CH, MacKinnon R. Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 2018;360:508-13. [PMID: 29724949 DOI: 10.1126/science.aas9466] [Cited by in Crossref: 73] [Cited by in F6Publishing: 81] [Article Influence: 18.3] [Reference Citation Analysis]
32 Smith CO, Wang YT, Nadtochiy SM, Miller JH, Jonas EA, Dirksen RT, Nehrke K, Brookes PS. Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization. FASEB J 2018;:fj201800139R. [PMID: 29863912 DOI: 10.1096/fj.201800139R] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
33 Dopico AM, Bukiya AN, Jaggar JH. Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Arch 2018;470:1271-89. [PMID: 29748711 DOI: 10.1007/s00424-018-2151-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
34 Cordero-Morales JF, Vásquez V. How lipids contribute to ion channel function, a fat perspective on direct and indirect interactions. Curr Opin Struct Biol 2018;51:92-8. [PMID: 29602157 DOI: 10.1016/j.sbi.2018.03.015] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
35 Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H2S: Implications in hypertension. Biochem Pharmacol 2018;149:42-59. [PMID: 29330066 DOI: 10.1016/j.bcp.2018.01.017] [Cited by in Crossref: 42] [Cited by in F6Publishing: 47] [Article Influence: 10.5] [Reference Citation Analysis]
36 Brown BM, Shim H, Wulff H. Are there superagonists for calcium-activated potassium channels? Channels (Austin) 2017;11:504-6. [PMID: 28876978 DOI: 10.1080/19336950.2017.1376971] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
37 Lu R, Flauaus C, Kennel L, Petersen J, Drees O, Kallenborn-Gerhardt W, Ruth P, Lukowski R, Schmidtko A. KCa3.1 channels modulate the processing of noxious chemical stimuli in mice. Neuropharmacology 2017;125:386-95. [PMID: 28823609 DOI: 10.1016/j.neuropharm.2017.08.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 2.2] [Reference Citation Analysis]
38 Krabbendam IE, Honrath B, Culmsee C, Dolga AM. Mitochondrial Ca2+-activated K+ channels and their role in cell life and death pathways. Cell Calcium 2018;69:101-11. [PMID: 28818302 DOI: 10.1016/j.ceca.2017.07.005] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 6.4] [Reference Citation Analysis]
39 Smith CO, Nehrke K, Brookes PS. The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 2017;474:2067-94. [PMID: 28600454 DOI: 10.1042/BCJ20160623] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 5.2] [Reference Citation Analysis]
40 Shipston MJ. Control of anterior pituitary cell excitability by calcium-activated potassium channels. Mol Cell Endocrinol 2018;463:37-48. [PMID: 28596131 DOI: 10.1016/j.mce.2017.06.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]