BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Veldhuis NA, Poole DP, Grace M, Mcintyre P, Bunnett NW, Christopoulos A. The G Protein–Coupled Receptor–Transient Receptor Potential Channel Axis: Molecular Insights for Targeting Disorders of Sensation and Inflammation. Pharmacol Rev 2014;67:36-73. [DOI: 10.1124/pr.114.009555] [Cited by in Crossref: 106] [Cited by in F6Publishing: 114] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 Lee-rivera I, López E, López-colomé AM. Diversification of PAR signaling through receptor crosstalk. Cell Mol Biol Lett 2022;27. [DOI: 10.1186/s11658-022-00382-0] [Reference Citation Analysis]
2 Leong IL, Yu CM, Shiao LR, Chan P, Wu KC, Leung YM. Sensitivity of Ca(2+)-sensing receptor-transient receptor potential-mediated Ca(2+) influx to extracellular acidity in bEND.3 endothelial cells. Chin J Physiol 2022;65:277-81. [PMID: 36588353 DOI: 10.4103/0304-4920.365460] [Reference Citation Analysis]
3 Semizoglou E, Gentry C, Vastani N, Stucky CL, Andersson DA, Bevan S. TRPA1 analgesia is mediated by kappa opioid receptors.. [DOI: 10.1101/2022.09.01.506151] [Reference Citation Analysis]
4 Fakih D, Migeon T, Moreau N, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. Transient Receptor Potential Channels: Important Players in Ocular Pain and Dry Eye Disease. Pharmaceutics 2022;14:1859. [PMID: 36145607 DOI: 10.3390/pharmaceutics14091859] [Reference Citation Analysis]
5 Zhu Z, Wu Y, Liu Z, Li Y, Jiang M. Role of Ion Channels in the Chemotransduction and Mechanotransduction in Digestive Function and Feeding Behavior. Int J Mol Sci 2022;23:9358. [PMID: 36012643 DOI: 10.3390/ijms23169358] [Reference Citation Analysis]
6 Latorre R, Ramírez-Garcia PD, Hegron A, Grace JL, Retamal JS, Shenoy P, Tran M, Aurelio L, Flynn B, Poole DP, Klein-Cloud R, Jensen DD, Davis TP, Schmidt BL, Quinn JF, Whittaker MR, Veldhuis NA, Bunnett NW. Sustained endosomal release of a neurokinin-1 receptor antagonist from nanostars provides long-lasting relief of chronic pain. Biomaterials 2022;285:121536. [PMID: 35533442 DOI: 10.1016/j.biomaterials.2022.121536] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Speck D, Kleinau G, Szczepek M, Kwiatkowski D, Catar R, Philippe A, Scheerer P. Angiotensin and Endothelin Receptor Structures With Implications for Signaling Regulation and Pharmacological Targeting. Front Endocrinol 2022;13:880002. [DOI: 10.3389/fendo.2022.880002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Nguyen T, Siddiqui G, Veldhuis NA, Poole DP. Diverse Roles of TRPV4 in Macrophages: A Need for Unbiased Profiling. Front Immunol 2022;12:828115. [DOI: 10.3389/fimmu.2021.828115] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Maudsley S, Leysen H, van Gastel J, Martin B. Systems Pharmacology: Enabling Multidimensional Therapeutics. Comprehensive Pharmacology 2022. [DOI: 10.1016/b978-0-12-820472-6.00017-7] [Reference Citation Analysis]
10 Kumar VK. Analgesia. Handbook on Opium 2022. [DOI: 10.1016/b978-0-323-90903-7.00005-3] [Reference Citation Analysis]
11 Leysen H, Walter D, Christiaenssen B, Vandoren R, Harputluoğlu İ, Van Loon N, Maudsley S. GPCRs Are Optimal Regulators of Complex Biological Systems and Orchestrate the Interface between Health and Disease. Int J Mol Sci 2021;22:13387. [PMID: 34948182 DOI: 10.3390/ijms222413387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
12 Peng S, Poole DP, Veldhuis NA. Mini-review: Dissecting receptor-mediated stimulation of TRPV4 in nociceptive and inflammatory pathways. Neurosci Lett 2021;770:136377. [PMID: 34856355 DOI: 10.1016/j.neulet.2021.136377] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Hu F, Song X, Long D. Transient receptor potential ankyrin 1 and calcium: Interactions and association with disease (Review). Exp Ther Med 2021;22:1462. [PMID: 34737802 DOI: 10.3892/etm.2021.10897] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
14 Zhang L, Lu W, Lu C, Guo Y, Chen X, Chen J, Xu F, Wan H, Dong H. Beneficial effect of capsaicin via TRPV4/EDH signals on mesenteric arterioles of normal and colitis mice. Journal of Advanced Research 2021. [DOI: 10.1016/j.jare.2021.11.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Hsu W, Noda M, Yoshioka T, Ito E. A novel strategy for treating cancer: understanding the role of Ca2+ signaling from nociceptive TRP channels in regulating cancer progression. Exploration of Targeted Anti-tumor Therapy. [DOI: 10.37349/etat.2021.00053] [Reference Citation Analysis]
16 Tang W, Zhang L, Li Z. Long noncoding RNA LOC100911498 is a novel regulator of neuropathic pain in rats. Brain Behav 2021;11:e01966. [PMID: 33949153 DOI: 10.1002/brb3.1966] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
17 Perna E, Aguilera-Lizarraga J, Florens MV, Jain P, Theofanous SA, Hanning N, De Man JG, Berg M, De Winter B, Alpizar YA, Talavera K, Vanden Berghe P, Wouters M, Boeckxstaens G. Effect of resolvins on sensitisation of TRPV1 and visceral hypersensitivity in IBS. Gut 2021;70:1275-86. [PMID: 33023902 DOI: 10.1136/gutjnl-2020-321530] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
18 Jeong I, Yun S, Shahapal A, Cho EB, Hwang SW, Seong JY, Park HC. FAM19A5l Affects Mustard Oil-Induced Peripheral Nociception in Zebrafish. Mol Neurobiol 2021. [PMID: 34176096 DOI: 10.1007/s12035-021-02449-z] [Reference Citation Analysis]
19 Elias AE, McBain AJ, O'Neill CA. The role of the skin microbiota in the modulation of cutaneous inflammation-Lessons from the gut. Exp Dermatol 2021. [PMID: 34173265 DOI: 10.1111/exd.14420] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Chinigò G, Castel H, Chever O, Gkika D. TRP Channels in Brain Tumors. Front Cell Dev Biol 2021;9:617801. [PMID: 33928077 DOI: 10.3389/fcell.2021.617801] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
21 Faber J, Eldrup E, Selmer C, Pichat C, Hecquet SK, Watt T, Kreiner S, Karpatschof B, Gyntelberg F, Ballegaard S, Gjedde A. Reduction of Pressure Pain Sensitivity as Novel Non-pharmacological Therapeutic Approach to Type 2 Diabetes: A Randomized Trial. Front Neurosci 2021;15:613858. [PMID: 33776633 DOI: 10.3389/fnins.2021.613858] [Reference Citation Analysis]
22 Jentsch Matias de Oliveira JR, Amorim MA, André E. The role of TRPA1 and TRPV4 channels in bronchoconstriction and plasma extravasation in airways of rats treated with captopril. Pulm Pharmacol Ther 2020;65:102004. [PMID: 33610768 DOI: 10.1016/j.pupt.2021.102004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Naumov DE, Kotova OO, Gassan DA, Sugaylo IY, Afanas'eva EY, Sheludko EG, Perelman JM. Effect of TRPM8 and TRPA1 Polymorphisms on COPD Predisposition and Lung Function in COPD Patients. J Pers Med 2021;11:108. [PMID: 33567636 DOI: 10.3390/jpm11020108] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Undem BJ, Sun H. Molecular/Ionic Basis of Vagal Bronchopulmonary C-Fiber Activation by Inflammatory Mediators. Physiology (Bethesda) 2020;35:57-68. [PMID: 31799905 DOI: 10.1152/physiol.00014.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
25 Meng Q, Liu X, Liu X, Barry DM, Jin H, Sun Y, Yang Q, Wan L, Jin J, Shen K, Munanairi A, Kim R, Yin J, Tao A, Chen Z. BNP facilitates NMB-mediated histaminergic itch via NPRC-NMBR crosstalk.. [DOI: 10.1101/2021.01.26.428310] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Wang F, Trier AM, Li F, Kim S, Chen Z, Chai JN, Mack MR, Morrison SA, Hamilton JD, Baek J, Yang TB, Ver Heul AM, Xu AZ, Xie Z, Dong X, Kubo M, Hu H, Hsieh CS, Dong X, Liu Q, Margolis DJ, Ardeleanu M, Miller MJ, Kim BS. A basophil-neuronal axis promotes itch. Cell 2021;184:422-440.e17. [PMID: 33450207 DOI: 10.1016/j.cell.2020.12.033] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 30.0] [Reference Citation Analysis]
27 Oronowicz J, Reinhard J, Reinach PS, Ludwiczak S, Luo H, Omar Ba Salem MH, Kraemer MM, Biebermann H, Kakkassery V, Mergler S. Ascorbate-induced oxidative stress mediates TRP channel activation and cytotoxicity in human etoposide-sensitive and -resistant retinoblastoma cells. Lab Invest 2021;101:70-88. [PMID: 32948812 DOI: 10.1038/s41374-020-00485-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
28 Retamal JS, Grace MS, Dill LK, Ramirez-Garcia P, Peng S, Gondin AB, Bennetts F, Alvi S, Rajasekhar P, Almazi JG, Carbone SE, Bunnett NW, Davis TP, Veldhuis NA, Poole DP, McIntyre P. Serotonin-induced vascular permeability is mediated by transient receptor potential vanilloid 4 in the airways and upper gastrointestinal tract of mice. Lab Invest 2021;101:851-64. [PMID: 33859334 DOI: 10.1038/s41374-021-00593-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Roh J, Go EJ, Park JW, Kim YH, Park CK. Resolvins: Potent Pain Inhibiting Lipid Mediators via Transient Receptor Potential Regulation. Front Cell Dev Biol 2020;8:584206. [PMID: 33363143 DOI: 10.3389/fcell.2020.584206] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020;14:601324. [PMID: 33390906 DOI: 10.3389/fncel.2020.601324] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
31 Choi DS, Ji Y, Jang Y, Lee WJ, Shim WS. Crotamiton, an Anti-Scabies Agent, Suppresses Histamine- and Chloroquine-Induced Itch Pathways in Sensory Neurons and Alleviates Scratching in Mice. Biomol Ther (Seoul) 2020;28:569-75. [PMID: 32536619 DOI: 10.4062/biomolther.2020.063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Behrendt M, Gruss F, Enzeroth R, Dembla S, Zhao S, Crassous PA, Mohr F, Nys M, Louros N, Gallardo R, Zorzini V, Wagner D, Economou A, Rousseau F, Schymkowitz J, Philipp SE, Rohacs T, Ulens C, Oberwinkler J. The structural basis for an on-off switch controlling Gβγ-mediated inhibition of TRPM3 channels. Proc Natl Acad Sci U S A 2020;117:29090-100. [PMID: 33122432 DOI: 10.1073/pnas.2001177117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
33 Ohnishi K, Saito S, Miura T, Ohta A, Tominaga M, Sokabe T, Kuhara A. OSM-9 and OCR-2 TRPV channels are accessorial warm receptors in Caenorhabditis elegans temperature acclimatisation. Sci Rep 2020;10:18566. [PMID: 33122746 DOI: 10.1038/s41598-020-75302-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
34 Oh EH, Shin JH, Cho JW, Choi SY, Choi KD, Choi JH. TRPM7 as a Candidate Gene for Vestibular Migraine. Front Neurol 2020;11:595042. [PMID: 33193064 DOI: 10.3389/fneur.2020.595042] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
35 Schiffers C, Hristova M, Habibovic A, Dustin CM, Danyal K, Reynaert NL, Wouters EFM, van der Vliet A. The Transient Receptor Potential Channel Vanilloid 1 Is Critical in Innate Airway Epithelial Responses to Protease Allergens. Am J Respir Cell Mol Biol 2020;63:198-208. [PMID: 32182090 DOI: 10.1165/rcmb.2019-0170OC] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
36 Madasu MK, Thang LV, Chilukuri P, Palanisamy S, Arackal JS, Sheahan TD, Foshage AM, Houghten RA, Mclaughlin JP, Mccall JG, Al-hasani R. Peripheral kappa opioid receptor activation drives noxious cold hypersensitivity in mice.. [DOI: 10.1101/2020.10.04.325118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
37 Jeong I, Yun S, Shahapal A, Cho EB, Hwang SW, Seong JY, Park H. FAM19A5l affects mustard oil-induced peripheral nociception in zebrafish.. [DOI: 10.1101/2020.08.11.245738] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
38 Kleinau G, Heyder NA, Tao YX, Scheerer P. Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. Int J Mol Sci 2020;21:E5728. [PMID: 32785054 DOI: 10.3390/ijms21165728] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
39 Peng S, Grace MS, Gondin AB, Retamal JS, Dill L, Darby W, Bunnett NW, Abogadie FC, Carbone SE, Tigani T, Davis TP, Poole DP, Veldhuis NA, McIntyre P. The transient receptor potential vanilloid 4 (TRPV4) ion channel mediates protease activated receptor 1 (PAR1)-induced vascular hyperpermeability. Lab Invest 2020;100:1057-67. [PMID: 32341518 DOI: 10.1038/s41374-020-0430-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
40 Hong HK, Ma Y, Xie H. TRPV1 and spinal astrocyte activation contribute to remifentanil-induced hyperalgesia in rats. Neuroreport 2019;30:1095-101. [PMID: 31568203 DOI: 10.1097/WNR.0000000000001329] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
41 Kumar R, Geron M, Hazan A, Priel A. Endogenous and Exogenous Vanilloids Evoke Disparate TRPV1 Activation to Produce Distinct Neuronal Responses. Front Pharmacol 2020;11:903. [PMID: 32595512 DOI: 10.3389/fphar.2020.00903] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
42 Nemeth Z, Hildebrandt E, Ryan MJ, Granger JP, Drummond HA. Pressure-induced constriction of the middle cerebral artery is abolished in TrpC6 knockout mice. Am J Physiol Heart Circ Physiol 2020;319:H42-50. [PMID: 32412783 DOI: 10.1152/ajpheart.00126.2020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
43 Sisco NJ, Luu DD, Kim M, Van Horn WD. PIRT the TRP Channel Regulating Protein Binds Calmodulin and Cholesterol-Like Ligands. Biomolecules 2020;10:E478. [PMID: 32245175 DOI: 10.3390/biom10030478] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
44 Chen Y, Mu J, Zhu M, Mukherjee A, Zhang H. Transient Receptor Potential Channels and Inflammatory Bowel Disease. Front Immunol 2020;11:180. [PMID: 32153564 DOI: 10.3389/fimmu.2020.00180] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
45 Zhao J, Munanairi A, Liu XY, Zhang J, Hu L, Hu M, Bu D, Liu L, Xie Z, Kim BS, Yang Y, Chen ZF. PAR2 Mediates Itch via TRPV3 Signaling in Keratinocytes. J Invest Dermatol 2020;140:1524-32. [PMID: 32004565 DOI: 10.1016/j.jid.2020.01.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 10.0] [Reference Citation Analysis]
46 Kelemen B, Lisztes E, Vladár A, Hanyicska M, Almássy J, Oláh A, Szöllősi AG, Pénzes Z, Posta J, Voets T, Bíró T, Tóth BI. Volatile anaesthetics inhibit the thermosensitive nociceptor ion channel transient receptor potential melastatin 3 (TRPM3). Biochem Pharmacol 2020;174:113826. [PMID: 31987857 DOI: 10.1016/j.bcp.2020.113826] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
47 Smith M. Interacting with the environment receiving and interpreting signals. Gene Environment Interactions 2020. [DOI: 10.1016/b978-0-12-819613-7.00001-3] [Reference Citation Analysis]
48 Singh U, Upadhya M, Basu S, Singh O, Kumar S, Kokare DM, Singru PS. Transient Receptor Potential Vanilloid 3 (TRPV3) in the Cerebellum of Rat and Its Role in Motor Coordination. Neuroscience 2020;424:121-32. [DOI: 10.1016/j.neuroscience.2019.10.047] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
49 Momose A, Yabe M, Chiba S, Kumakawa K, Shiraiwa Y, Mizukami H. Role of Dysregulated Ion Channels in Sensory Neurons in Chronic Kidney Disease-Associated Pruritus. Medicines (Basel) 2019;6:E110. [PMID: 31766242 DOI: 10.3390/medicines6040110] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
50 Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2020;100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Cited by in Crossref: 123] [Cited by in F6Publishing: 133] [Article Influence: 30.8] [Reference Citation Analysis]
51 Sun H, Meeker S, Undem BJ. Role of TRP channels in Gq-coupled protease-activated receptor 1-mediated activation of mouse nodose pulmonary C-fibers. Am J Physiol Lung Cell Mol Physiol 2020;318:L192-9. [PMID: 31664854 DOI: 10.1152/ajplung.00301.2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
52 Achanta S, Chintagari NR, Balakrishna S, Liu B, Jordt S. Accelerating Inflammation Resolution to Counteract Chemical Cutaneous Injury.. [DOI: 10.1101/749184] [Reference Citation Analysis]
53 Alkhatib O, da Costa R, Gentry C, Quallo T, Bevan S, Andersson DA. Promiscuous G-Protein-Coupled Receptor Inhibition of Transient Receptor Potential Melastatin 3 Ion Channels by Gβγ Subunits. J Neurosci 2019;39:7840-52. [PMID: 31451581 DOI: 10.1523/JNEUROSCI.0882-19.2019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
54 Dias FC, Alves VS, Matias DO, Figueiredo CP, Miranda ALP, Passos GF, Costa R. The selective TRPV4 channel antagonist HC-067047 attenuates mechanical allodynia in diabetic mice. European Journal of Pharmacology 2019;856:172408. [DOI: 10.1016/j.ejphar.2019.172408] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
55 Avrampou K, Pryce KD, Ramakrishnan A, Sakloth F, Gaspari S, Serafini RA, Mitsi V, Polizu C, Swartz C, Ligas B, Richards A, Shen L, Carr FB, Zachariou V. RGS4 Maintains Chronic Pain Symptoms in Rodent Models. J Neurosci 2019;39:8291-304. [PMID: 31308097 DOI: 10.1523/JNEUROSCI.3154-18.2019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
56 Huang Y, Patil MJ, Yu M, Liptak P, Undem BJ, Dong X, Wang G, Yu S. Effects of ginger constituent 6-shogaol on gastroesophageal vagal afferent C-fibers. Neurogastroenterol Motil 2019;31:e13585. [PMID: 30947399 DOI: 10.1111/nmo.13585] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
57 Hooper JS, Stanford KR, Alencar PA, Alves NG, Breslin JW, Dean JB, Morris KF, Taylor-Clark TE. Nociceptive pulmonary-cardiac reflexes are altered in the spontaneously hypertensive rat. J Physiol 2019;597:3255-79. [PMID: 31077371 DOI: 10.1113/JP278085] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
58 Benemei S, Dussor G. TRP Channels and Migraine: Recent Developments and New Therapeutic Opportunities. Pharmaceuticals (Basel) 2019;12:E54. [PMID: 30970581 DOI: 10.3390/ph12020054] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 10.8] [Reference Citation Analysis]
59 Vu MN, Rajasekhar P, Poole DP, Khor SY, Truong NP, Nowell CJ, Quinn JF, Whittaker M, Veldhuis NA, Davis TP. Rapid Assessment of Nanoparticle Extravasation in a Microfluidic Tumor Model. ACS Appl Nano Mater 2019;2:1844-56. [DOI: 10.1021/acsanm.8b02056] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
60 Patil MJ, Sun H, Ru F, Meeker S, Undem BJ. Targeting C-fibers for peripheral acting anti-tussive drugs. Pulm Pharmacol Ther 2019;56:15-9. [PMID: 30872160 DOI: 10.1016/j.pupt.2019.03.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
61 Song C, Liu P, Zhao Q, Guo S, Wang G. TRPV1 channel contributes to remifentanil-induced postoperative hyperalgesia via regulation of NMDA receptor trafficking in dorsal root ganglion. J Pain Res 2019;12:667-77. [PMID: 30863139 DOI: 10.2147/JPR.S186591] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
62 Couvineau A, Voisin T, Nicole P, Gratio V, Abad C, Tan YV. Orexins as Novel Therapeutic Targets in Inflammatory and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2019;10:709. [PMID: 31695678 DOI: 10.3389/fendo.2019.00709] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
63 Xie B, Li XY. Inflammatory mediators causing cutaneous chronic itch in some diseases via transient receptor potential channel subfamily V member 1 and subfamily A member 1. J Dermatol 2019;46:177-85. [PMID: 30588658 DOI: 10.1111/1346-8138.14749] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
64 Bhattarai UR, Li F, Katuwal Bhattarai M, Masoudi A, Wang D. Phototransduction and circadian entrainment are the key pathways in the signaling mechanism for the baculovirus induced tree-top disease in the lepidopteran larvae. Sci Rep 2018;8:17528. [PMID: 30510155 DOI: 10.1038/s41598-018-35885-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
65 Frank EA, Haber LT, Genter MB, Maier A. Defining Molecular Initiating Events of Airway Sensory Irritation in Support of Predictive Testing Approaches. Applied In Vitro Toxicology 2018;4:317-331. [DOI: 10.1089/aivt.2018.0007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
66 Türker E, Garreis F, Khajavi N, Reinach PS, Joshi P, Brockmann T, Lucius A, Ljubojevic N, Turan E, Cooper D, Schick F, Reinholz R, Pleyer U, Köhrle J, Mergler S. Vascular Endothelial Growth Factor (VEGF) Induced Downstream Responses to Transient Receptor Potential Vanilloid 1 (TRPV1) and 3-Iodothyronamine (3-T1AM) in Human Corneal Keratocytes. Front Endocrinol (Lausanne) 2018;9:670. [PMID: 30524369 DOI: 10.3389/fendo.2018.00670] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
67 Türker E, Garreis F, Khajavi N, Reinach PS, Joshi P, Brockmann T, Lucius A, Ljubojevic N, Turan E, Cooper D, Schick F, Reinholz R, Pleyer U, Köhrle J, Mergler S. Vascular Endothelial Growth Factor (VEGF) Induced Downstream Responses to Transient Receptor Potential Vanilloid 1 (TRPV1) and 3-Iodothyronamine (3-T1AM) in Human Corneal Keratocytes. Front Endocrinol 2018;9:670. [DOI: 10.3389/fendo.2018.00670] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
68 Herman JA, Willits AB, Bellemer A. Gαq and Phospholipase Cβ signaling regulate nociceptor sensitivity in Drosophila melanogaster larvae. PeerJ 2018;6:e5632. [PMID: 30258723 DOI: 10.7717/peerj.5632] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
69 Bräunig J, Mergler S, Jyrch S, Hoefig CS, Rosowski M, Mittag J, Biebermann H, Khajavi N. 3-Iodothyronamine Activates a Set of Membrane Proteins in Murine Hypothalamic Cell Lines. Front Endocrinol (Lausanne) 2018;9:523. [PMID: 30298050 DOI: 10.3389/fendo.2018.00523] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
70 Wang C, Gu L, Ruan Y, Geng X, Xu M, Yang N, Yu L, Jiang Y, Zhu C, Yang Y, Zhou Y, Guan X, Luo W, Liu Q, Dong X, Yu G, Lan L, Tang Z. Facilitation of MrgprD by TRP-A1 promotes neuropathic pain. FASEB J 2019;33:1360-73. [PMID: 30148678 DOI: 10.1096/fj.201800615RR] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 6.6] [Reference Citation Analysis]
71 Rosas RF, Emer AA, Batisti AP, Ludtke DD, Turnes BL, Bobinski F, Cidral-Filho FJ, Martins DF. Far infrared-emitting ceramics decrease Freund's adjuvant-induced inflammatory hyperalgesia in mice through cytokine modulation and activation of peripheral inhibitory neuroreceptors. J Integr Med 2018;16:396-403. [PMID: 30139655 DOI: 10.1016/j.joim.2018.08.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
72 Giblin JP, Etayo I, Castellanos A, Andres-Bilbe A, Gasull X. Anionic Phospholipids Bind to and Modulate the Activity of Human TRESK Background K+ Channel. Mol Neurobiol 2019;56:2524-41. [PMID: 30039335 DOI: 10.1007/s12035-018-1244-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
73 An JY, Ahn C, Kang HY, Jeung E. Inhibition of mucin secretion via glucocorticoid-induced regulation of calcium-related proteins in mouse lung. American Journal of Physiology-Lung Cellular and Molecular Physiology 2018;314:L956-66. [DOI: 10.1152/ajplung.00417.2017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
74 Li G, Jiang H, Zheng C, Zhu G, Xu Y, Sheng X, Wu B, Guo J, Zhu S, Zhan Y, Lin W, Ding R, Zhang C, Liu S, Zou L, Yi Z, Liang S. Long noncoding RNA MRAK009713 is a novel regulator of neuropathic pain in rats. Pain 2017;158:2042-52. [PMID: 28708759 DOI: 10.1097/j.pain.0000000000001013] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 11.2] [Reference Citation Analysis]
75 Schwenk M. Chemical warfare agents. Classes and targets. Toxicol Lett 2018;293:253-63. [PMID: 29197625 DOI: 10.1016/j.toxlet.2017.11.040] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 6.2] [Reference Citation Analysis]
76 Wortley MA, Birrell MA, Belvisi MG. Drugs Affecting TRP Channels. Handb Exp Pharmacol 2017;237:213-41. [PMID: 27864675 DOI: 10.1007/164_2016_63] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
77 Khajavi N, Mergler S, Biebermann H. 3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8? Front Endocrinol (Lausanne) 2017;8:198. [PMID: 28861042 DOI: 10.3389/fendo.2017.00198] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
78 Khajavi N, Mergler S, Biebermann H. 3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8? Front Endocrinol 2017;8:198. [DOI: 10.3389/fendo.2017.00198] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Quallo T, Alkhatib O, Gentry C, Andersson DA, Bevan S. G protein βγ subunits inhibit TRPM3 ion channels in sensory neurons. Elife 2017;6:e26138. [PMID: 28826490 DOI: 10.7554/eLife.26138] [Cited by in Crossref: 58] [Cited by in F6Publishing: 62] [Article Influence: 9.7] [Reference Citation Analysis]
80 Dembla S, Behrendt M, Mohr F, Goecke C, Sondermann J, Schneider FM, Schmidt M, Stab J, Enzeroth R, Leitner MG, Nuñez-Badinez P, Schwenk J, Nürnberg B, Cohen A, Philipp SE, Greffrath W, Bünemann M, Oliver D, Zakharian E, Schmidt M, Oberwinkler J. Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. Elife 2017;6:e26280. [PMID: 28826482 DOI: 10.7554/eLife.26280] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 10.2] [Reference Citation Analysis]
81 Johnson WA. Two views of the same stimulus. Elife 2017;6:e30191. [PMID: 28806169 DOI: 10.7554/eLife.30191] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
82 Baratchi S, Khoshmanesh K, Woodman OL, Potocnik S, Peter K, McIntyre P. Molecular Sensors of Blood Flow in Endothelial Cells. Trends Mol Med 2017;23:850-68. [PMID: 28811171 DOI: 10.1016/j.molmed.2017.07.007] [Cited by in Crossref: 104] [Cited by in F6Publishing: 104] [Article Influence: 17.3] [Reference Citation Analysis]
83 Belvisi MG, Birrell MA. The emerging role of transient receptor potential channels in chronic lung disease. Eur Respir J 2017;50:1601357. [PMID: 28775042 DOI: 10.1183/13993003.01357-2016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 5.5] [Reference Citation Analysis]
84 Oz M, El Nebrisi EG, Yang KS, Howarth FC, Al Kury LT. Cellular and Molecular Targets of Menthol Actions. Front Pharmacol 2017;8:472. [PMID: 28769802 DOI: 10.3389/fphar.2017.00472] [Cited by in Crossref: 37] [Cited by in F6Publishing: 43] [Article Influence: 6.2] [Reference Citation Analysis]
85 Nilsson D, Jennische E, Cavallini N, Braide M. TRPA1 Mechanoreceptors Mediate the IL-6 Response to a Single PD Dwell in the Rat. Perit Dial Int 2017;37:509-15. [PMID: 28698251 DOI: 10.3747/pdi.2016.00290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
86 Risch N, Pointeau F, Poquet N. Nociception. Kinésithérapie, la Revue 2017;17:5-15. [DOI: 10.1016/j.kine.2017.02.130] [Reference Citation Analysis]
87 Balemans D, Boeckxstaens GE, Talavera K, Wouters MM. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2017;312:G635-48. [PMID: 28385695 DOI: 10.1152/ajpgi.00401.2016] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 8.0] [Reference Citation Analysis]
88 Boeckxstaens GE, Wouters MM. Neuroimmune factors in functional gastrointestinal disorders: A focus on irritable bowel syndrome. Neurogastroenterol Motil 2017;29. [PMID: 28027594 DOI: 10.1111/nmo.13007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
89 Weber EW, Muller WA. Roles of transient receptor potential channels in regulation of vascular and epithelial barriers. Tissue Barriers 2017;5:e1331722. [PMID: 28581893 DOI: 10.1080/21688370.2017.1331722] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
90 Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2016;96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Cited by in Crossref: 259] [Cited by in F6Publishing: 273] [Article Influence: 43.2] [Reference Citation Analysis]
91 Chai Z, Chen Y, Wang C. β-arrestin-1: Bridging GPCRs to active TRP channels. Channels (Austin) 2017;11:357-9. [PMID: 28459611 DOI: 10.1080/19336950.2017.1324003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
92 Rajasekhar P, Poole DP, Veldhuis NA. Role of Nonneuronal TRPV4 Signaling in Inflammatory Processes. Adv Pharmacol 2017;79:117-39. [PMID: 28528666 DOI: 10.1016/bs.apha.2017.03.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
93 Ru F, Sun H, Jurcakova D, Herbstsomer RA, Meixong J, Dong X, Undem BJ. Mechanisms of pruritogen-induced activation of itch nerves in isolated mouse skin. J Physiol 2017;595:3651-66. [PMID: 28217875 DOI: 10.1113/JP273795] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
94 Kumar R, Hazan A, Geron M, Steinberg R, Livni L, Matzner H, Priel A. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation. FASEB J 2017;31:1238-47. [PMID: 27986808 DOI: 10.1096/fj.201601132R] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
95 Ramachandran R, Altier C, Oikonomopoulou K, Hollenberg MD. Proteinases, Their Extracellular Targets, and Inflammatory Signaling. Pharmacol Rev 2016;68:1110-42. [PMID: 27677721 DOI: 10.1124/pr.115.010991] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 5.4] [Reference Citation Analysis]
96 Darby WG, Grace MS, Baratchi S, McIntyre P. Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol 2016;78:217-28. [PMID: 27425399 DOI: 10.1016/j.biocel.2016.07.012] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 7.0] [Reference Citation Analysis]
97 Kleinau G, Müller A, Biebermann H. Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol 2016;57:R59-80. [PMID: 27151573 DOI: 10.1530/JME-16-0049] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
98 Kurozumi A, Goto Y, Okato A, Ichikawa T, Seki N. Aberrantly expressed microRNAs in bladder cancer and renal cell carcinoma. J Hum Genet 2017;62:49-56. [PMID: 27357429 DOI: 10.1038/jhg.2016.84] [Cited by in Crossref: 31] [Cited by in F6Publishing: 37] [Article Influence: 4.4] [Reference Citation Analysis]
99 Lehmann R, Schöbel N, Hatt H, van Thriel C. The involvement of TRP channels in sensory irritation: a mechanistic approach toward a better understanding of the biological effects of local irritants. Arch Toxicol 2016;90:1399-413. [PMID: 27037703 DOI: 10.1007/s00204-016-1703-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
100 Preti D, Saponaro G, Szallasi A. Transient receptor potential ankyrin 1 (TRPA1) antagonists. Pharm Pat Anal 2015;4:75-94. [PMID: 25853468 DOI: 10.4155/ppa.14.60] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 4.9] [Reference Citation Analysis]
101 Wu SW, Lindberg JE, Peters JH. Genetic and pharmacological evidence for low-abundance TRPV3 expression in primary vagal afferent neurons. Am J Physiol Regul Integr Comp Physiol 2016;310:R794-805. [PMID: 26843581 DOI: 10.1152/ajpregu.00366.2015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
102 Misery L. Menthol, Camphor and Other Topical Treatments. Pruritus 2016. [DOI: 10.1007/978-3-319-33142-3_47] [Reference Citation Analysis]
103 Kleinau G, Khajavi N, Köhrle J, Biebermann H. Differential Modulation of Adrenergic Receptor Signaling by Octopamine, Tyramine, Phenylethylamine, and 3-Iodothyronamine. Trace Amines and Neurological Disorders 2016. [DOI: 10.1016/b978-0-12-803603-7.00005-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
104 Rohacs T. Phosphoinositide signaling in somatosensory neurons. Adv Biol Regul 2016;61:2-16. [PMID: 26724974 DOI: 10.1016/j.jbior.2015.11.012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
105 Zaccone EJ, Undem BJ. Airway Vagal Neuroplasticity Associated with Respiratory Viral Infections. Lung 2016;194:25-9. [PMID: 26678280 DOI: 10.1007/s00408-015-9832-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
106 Geppetti P, Veldhuis N, Lieu T, Bunnett N. G Protein-Coupled Receptors: Dynamic Machines for Signaling Pain and Itch. Neuron 2015;88:635-49. [DOI: 10.1016/j.neuron.2015.11.001] [Cited by in Crossref: 103] [Cited by in F6Publishing: 103] [Article Influence: 12.9] [Reference Citation Analysis]
107 Rajasekhar P, Poole DP, Liedtke W, Bunnett NW, Veldhuis NA. P2Y1 Receptor Activation of the TRPV4 Ion Channel Enhances Purinergic Signaling in Satellite Glial Cells. J Biol Chem 2015;290:29051-62. [PMID: 26475857 DOI: 10.1074/jbc.M115.689729] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
108 Dinter J, Khajavi N, Mühlhaus J, Wienchol CL, Cöster M, Hermsdorf T, Stäubert C, Köhrle J, Schöneberg T, Kleinau G, Mergler S, Biebermann H. The Multitarget Ligand 3-Iodothyronamine Modulates β-Adrenergic Receptor 2 Signaling. Eur Thyroid J 2015;4:21-9. [PMID: 26601070 DOI: 10.1159/000381801] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
109 Hsu WL, Yoshioka T. Role of TRP channels in the induction of heat shock proteins (Hsps) by heating skin. Biophysics (Nagoya-shi) 2015;11:25-32. [PMID: 27493511 DOI: 10.2142/biophysics.11.25] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
110 Marshall-gradisnik S, Smith P, Nilius B, Staines DR. Examination of Single Nucleotide Polymorphisms in Acetylcholine Receptors in Chronic Fatigue Syndrome Patients. Immunol Immunogenet Insights 2015;7:III.S25105. [DOI: 10.4137/iii.s25105] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]