BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hu DG, Marri S, McKinnon RA, Mackenzie PI, Meech R. Deregulation of the Genes that Are Involved in Drug Absorption, Distribution, Metabolism, and Excretion in Hepatocellular Carcinoma. J Pharmacol Exp Ther 2019;368:363-81. [PMID: 30578287 DOI: 10.1124/jpet.118.255018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Liu J, Guo M, Chen C. Nano-bio interactions: a major principle in the dynamic biological processes of nano-assemblies. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114318] [Reference Citation Analysis]
2 Wang J, Yu L, Jiang H, Zheng X, Zeng S. Epigenetic Regulation of Differentially Expressed Drug-Metabolizing Enzymes in Cancer. Drug Metab Dispos 2020;48:759-68. [PMID: 32601104 DOI: 10.1124/dmd.120.000008] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhu L, Yang X, Feng J, Mao J, Zhang Q, He M, Mi Y, Mei Y, Jin G, Zhang H. CYP2E1 plays a suppressive role in hepatocellular carcinoma by regulating Wnt/Dvl2/β-catenin signaling. J Transl Med 2022;20:194. [PMID: 35509083 DOI: 10.1186/s12967-022-03396-6] [Reference Citation Analysis]
4 Li X, Lu Y, Ou X, Zeng S, Wang Y, Qi X, Zhu L, Liu Z. Changes and sex- and age-related differences in the expression of drug metabolizing enzymes in a KRAS-mutant mouse model of lung cancer. PeerJ 2020;8:e10182. [PMID: 33240601 DOI: 10.7717/peerj.10182] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Tryndyak VP, Borowa-Mazgaj B, Steward CR, Beland FA, Pogribny IP. Epigenetic effects of low-level sodium arsenite exposure on human liver HepaRG cells. Arch Toxicol 2020;94:3993-4005. [PMID: 32844245 DOI: 10.1007/s00204-020-02872-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Marin JJG, Macias RIR, Monte MJ, Romero MR, Asensio M, Sanchez-Martin A, Cives-Losada C, Temprano AG, Espinosa-Escudero R, Reviejo M, Bohorquez LH, Briz O. Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020;12:E1663. [PMID: 32585893 DOI: 10.3390/cancers12061663] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
7 Han K, Wang J, Qian K, Zhao T, Zhang Y. Establishment of non-small-cell lung cancer risk prediction model based on prognosis-associated ADME genes. Biosci Rep 2021;41:BSR20211433. [PMID: 34522968 DOI: 10.1042/BSR20211433] [Reference Citation Analysis]
8 Wang J, Han K, Zhang C, Chen X, Li Y, Zhu L, Luo T. Identification and validation of ADME genes as prognosis and therapy markers for hepatocellular carcinoma patients. Biosci Rep 2021;41:BSR20210583. [PMID: 33988674 DOI: 10.1042/BSR20210583] [Reference Citation Analysis]
9 Ouyang G, Yi B, Pan G, Chen X. A robust twelve-gene signature for prognosis prediction of hepatocellular carcinoma. Cancer Cell Int 2020;20:207. [PMID: 32514252 DOI: 10.1186/s12935-020-01294-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
10 He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y, Wang X. miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci 2020;16:2628-47. [PMID: 32792861 DOI: 10.7150/ijbs.47203] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
11 Chen L, Hu C, Hood M, Kan J, Gan X, Zhang X, Zhang Y, Du J. An Integrated Approach Exploring the Synergistic Mechanism of Herbal Pairs in a Botanical Dietary Supplement: A Case Study of a Liver Protection Health Food. Int J Genomics 2020;2020:9054192. [PMID: 32351982 DOI: 10.1155/2020/9054192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Nong W, Ma L, Lan B, Liu N, Yang H, Lao X, Deng Q, Huang Z. Comprehensive Identification of Bridge Genes to Explain the Progression from Chronic Hepatitis B Virus Infection to Hepatocellular Carcinoma. J Inflamm Res 2021;14:1613-24. [PMID: 33907440 DOI: 10.2147/JIR.S298977] [Reference Citation Analysis]
13 Bedon L, Dal Bo M, Mossenta M, Busato D, Toffoli G, Polano M. A Novel Epigenetic Machine Learning Model to Define Risk of Progression for Hepatocellular Carcinoma Patients. Int J Mol Sci 2021;22:1075. [PMID: 33499054 DOI: 10.3390/ijms22031075] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Hu DG, Mackenzie PI, Nair PC, McKinnon RA, Meech R. The Expression Profiles of ADME Genes in Human Cancers and Their Associations with Clinical Outcomes. Cancers (Basel) 2020;12:E3369. [PMID: 33202946 DOI: 10.3390/cancers12113369] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
15 Ceylan H. Identification of hub genes associated with obesity-induced hepatocellular carcinoma risk based on integrated bioinformatics analysis. Med Oncol 2021;38:63. [PMID: 33900477 DOI: 10.1007/s12032-021-01510-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Yao Z, Jia C, Tai Y, Liang H, Zhong Z, Xiong Z, Deng M, Zhang Q. Serum exosomal long noncoding RNAs lnc-FAM72D-3 and lnc-EPC1-4 as diagnostic biomarkers for hepatocellular carcinoma. Aging (Albany NY) 2020;12:11843-63. [PMID: 32554864 DOI: 10.18632/aging.103355] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
17 Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021;1867:166083. [PMID: 33497819 DOI: 10.1016/j.bbadis.2021.166083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Ma X, Zhou L, Zheng S. Transcriptome analysis revealed key prognostic genes and microRNAs in hepatocellular carcinoma. PeerJ 2020;8:e8930. [PMID: 32296612 DOI: 10.7717/peerj.8930] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
19 Emami-Khoyi A, Parbhu SP, Ross JG, Murphy EC, Bothwell J, Monsanto DM, Vuuren BJV, Teske PR, Paterson AM. De Novo Transcriptome Assembly and Annotation of Liver and Brain Tissues of Common Brushtail Possums (Trichosurus vulpecula) in New Zealand: Transcriptome Diversity after Decades of Population Control. Genes (Basel) 2020;11:E436. [PMID: 32316496 DOI: 10.3390/genes11040436] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
20 Haberl EM, Pohl R, Rein-Fischboeck L, Feder S, Sinal CJ, Bruckmann A, Hoering M, Krautbauer S, Liebisch G, Buechler C. Overexpression of Hepatocyte Chemerin-156 Lowers Tumor Burden in a Murine Model of Diethylnitrosamine-Induced Hepatocellular Carcinoma. Int J Mol Sci 2019;21:E252. [PMID: 31905933 DOI: 10.3390/ijms21010252] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
21 Hu DG, Marri S, Mackenzie PI, Hulin JA, McKinnon RA, Meech R. The Expression Profiles and Deregulation of UDP-Glycosyltransferase (UGT) Genes in Human Cancers and Their Association with Clinical Outcomes. Cancers (Basel) 2021;13:4491. [PMID: 34503303 DOI: 10.3390/cancers13174491] [Reference Citation Analysis]
22 Board PG, Anders MW. Moonlighting in drug metabolism. Drug Metab Rev 2021;53:76-99. [PMID: 33264039 DOI: 10.1080/03602532.2020.1858857] [Reference Citation Analysis]
23 Brosseau N, Ramotar D. The human organic cation transporter OCT1 and its role as a target for drug responses. Drug Metab Rev 2019;51:389-407. [PMID: 31564168 DOI: 10.1080/03602532.2019.1670204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
24 Shen H, Wu H, Sun F, Qi J, Zhu Q. A novel four-gene of iron metabolism-related and methylated for prognosis prediction of hepatocellular carcinoma. Bioengineered 2021;12:240-51. [PMID: 33380233 DOI: 10.1080/21655979.2020.1866303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
25 Díaz Flaqué MC, Cayrol MF, Sterle HA, Del Rosario Aschero M, Díaz Albuja JA, Isse B, Farías RN, Cerchietti L, Rosemblit C, Cremaschi GA. Thyroid hormones induce doxorubicin chemosensitivity through enzymes involved in chemotherapy metabolism in lymphoma T cells. Oncotarget 2019;10:3051-65. [PMID: 31105885 DOI: 10.18632/oncotarget.26890] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]