BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jadhav A, Tiwari S, Lee P, Ndisang JF. The heme oxygenase system selectively enhances the anti-inflammatory macrophage-M2 phenotype, reduces pericardial adiposity, and ameliorated cardiac injury in diabetic cardiomyopathy in Zucker diabetic fatty rats. J Pharmacol Exp Ther. 2013;345:239-249. [PMID: 23442249 DOI: 10.1124/jpet.112.200808] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu G, Yan D, Yang L, Sun Y, Zhan L, Lu L, Jin Z, Zhang C, Long P, Chen J, Yuan Q. The effect of miR-471-3p on macrophage polarization in the development of diabetic cardiomyopathy. Life Sci 2021;268:118989. [PMID: 33417962 DOI: 10.1016/j.lfs.2020.118989] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Ndisang JF, Chibbar R. Heme Oxygenase Improves Renal Function by Potentiating Podocyte-Associated Proteins in Nω-Nitro-l-Arginine-Methyl Ester (l-NAME)-Induced Hypertension. Am J Hypertens 2015;28:930-42. [PMID: 25498996 DOI: 10.1093/ajh/hpu240] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
3 Wegiel B, Nemeth Z, Correa-Costa M, Bulmer AC, Otterbein LE. Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal 2014;20:1709-22. [PMID: 24180257 DOI: 10.1089/ars.2013.5667] [Cited by in Crossref: 100] [Cited by in F6Publishing: 95] [Article Influence: 12.5] [Reference Citation Analysis]
4 Di Filippo C, Rossi C, Ferraro B, Maisto R, De Angelis A, Ferraraccio F, Rotondo A, D'Amico M. Involvement of proteasome and macrophages M2 in the protection afforded by telmisartan against the acute myocardial infarction in Zucker diabetic fatty rats with metabolic syndrome. Mediators Inflamm 2014;2014:972761. [PMID: 25110402 DOI: 10.1155/2014/972761] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
5 Tu TH, Kim C, Nam-goong IS, Nam CW, Kim Y, Goto T, Kawada T, Park T, Yoon Park JH, Ryoo ZY, Park JW, Choi H, Yu R. 4-1BBL signaling promotes cell proliferation through reprogramming of glucose metabolism in monocytes/macrophages. FEBS J 2015;282:1468-80. [DOI: 10.1111/febs.13236] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
6 Wise AF, Williams TM, Rudd S, Wells CA, Kerr PG, Ricardo SD. Human mesenchymal stem cells alter the gene profile of monocytes from patients with Type 2 diabetes and end-stage renal disease.Regen Med. 2016;11:145-158. [PMID: 26544198 DOI: 10.2217/rme.15.74] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
7 Refaie MM, Rifaai RA, Bayoumi AM, Shehata S. Cardioprotective effect of hemin in isoprenaline‐induced myocardial infarction: role of ATP‐sensitive potassium channel and endothelial nitric oxide synthase. Fundam Clin Pharmacol 2020;34:302-12. [DOI: 10.1111/fcp.12529] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ritchie RH, Abel ED. Basic Mechanisms of Diabetic Heart Disease. Circ Res 2020;126:1501-25. [PMID: 32437308 DOI: 10.1161/CIRCRESAHA.120.315913] [Cited by in Crossref: 45] [Cited by in F6Publishing: 25] [Article Influence: 22.5] [Reference Citation Analysis]
9 Yang YY, Sun XT, Li ZX, Chen WY, Wang X, Liang ML, Shi H, Yang ZS, Zeng WT. Protective effect of angiotensin-(1-7) against hyperglycaemia-induced injury in H9c2 cardiomyoblast cells via the PI3K̸Akt signaling pathway. Int J Mol Med 2018;41:1283-92. [PMID: 29286068 DOI: 10.3892/ijmm.2017.3322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
10 Tu TH, Joe Y, Choi HS, Chung HT, Yu R. Induction of heme oxygenase-1 with hemin reduces obesity-induced adipose tissue inflammation via adipose macrophage phenotype switching. Mediators Inflamm 2014;2014:290708. [PMID: 25477711 DOI: 10.1155/2014/290708] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
11 Yuan CW, Sun XL, Qiao LC, Xu HX, Zhu P, Chen HJ, Yang BL. Non-SMC condensin I complex subunit D2 and non-SMC condensin II complex subunit D3 induces inflammation via the IKK/NF-κB pathway in ulcerative colitis. World J Gastroenterol 2019; 25(47): 6813-6822 [PMID: 31885422 DOI: 10.3748/wjg.v25.i47.6813] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
12 Yu Y, Wu Z, Han Y, Yuan Y, Fan H, Wei X, Yu Y. Comparison of the Effects of Essential Oil Obtained from the Crude and Bran-Processed Atractylodes lancea on Lipopolysaccharide-Induced Inflammatory Injury of Human Colonic Epithelial Cells by Downregulating the IKK/NF-κB Signaling Pathway. Evid Based Complement Alternat Med 2021;2021:5219129. [PMID: 33628299 DOI: 10.1155/2021/5219129] [Reference Citation Analysis]
13 Jin L, Deng Z, Zhang J, Yang C, Liu J, Han W, Ye P, Si Y, Chen G. Mesenchymal stem cells promote type 2 macrophage polarization to ameliorate the myocardial injury caused by diabetic cardiomyopathy. J Transl Med 2019;17:251. [PMID: 31382970 DOI: 10.1186/s12967-019-1999-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
14 Shen CJ, Kong B, Shuai W, Liu Y, Wang GJ, Xu M, Zhao JJ, Fang J, Fu H, Jiang XB, Huang H. Myeloid differentiation protein 1 protected myocardial function against high-fat stimulation induced pathological remodelling. J Cell Mol Med 2019;23:5303-16. [PMID: 31140723 DOI: 10.1111/jcmm.14407] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
15 Mullen L, Mengozzi M, Hanschmann EM, Alberts B, Ghezzi P. How the redox state regulates immunity. Free Radic Biol Med 2020;157:3-14. [PMID: 31899344 DOI: 10.1016/j.freeradbiomed.2019.12.022] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
16 Naito Y, Takagi T, Higashimura Y. Heme oxygenase-1 and anti-inflammatory M2 macrophages. Archives of Biochemistry and Biophysics 2014;564:83-8. [DOI: 10.1016/j.abb.2014.09.005] [Cited by in Crossref: 186] [Cited by in F6Publishing: 176] [Article Influence: 23.3] [Reference Citation Analysis]
17 Ndisang JF, Jadhav A, Mishra M. The heme oxygenase system suppresses perirenal visceral adiposity, abates renal inflammation and ameliorates diabetic nephropathy in Zucker diabetic fatty rats. PLoS One. 2014;9:e87936. [PMID: 24498225 DOI: 10.1371/journal.pone.0087936] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 4.5] [Reference Citation Analysis]
18 Ndisang JF, Tiwari S. Mechanisms by which heme oxygenase rescue renal dysfunction in obesity. Redox Biol 2014;2:1029-37. [PMID: 25460740 DOI: 10.1016/j.redox.2014.09.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ndisang JF, Tiwari S. Featured article: induction of heme oxygenase with hemin improves pericardial adipocyte morphology and function in obese Zucker rats by enhancing proteins of regeneration. Exp Biol Med (Maywood) 2015;240:45-57. [PMID: 25053781 DOI: 10.1177/1535370214544268] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
20 Ge T, Yu Y, Cui J, Cai L. The adaptive immune role of metallothioneins in the pathogenesis of diabetic cardiomyopathy: good or bad. Am J Physiol Heart Circ Physiol 2019;317:H264-75. [PMID: 31100011 DOI: 10.1152/ajpheart.00123.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Chiang VS, Quek S. The relationship of red meat with cancer: Effects of thermal processing and related physiological mechanisms. Critical Reviews in Food Science and Nutrition 2016;57:1153-73. [DOI: 10.1080/10408398.2014.967833] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
22 Wildemann TM, Mirhosseini N, Siciliano SD, Weber LP. Cardiovascular responses to lead are biphasic, while methylmercury, but not inorganic mercury, monotonically increases blood pressure in rats. Toxicology 2015;328:1-11. [PMID: 25478804 DOI: 10.1016/j.tox.2014.11.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
23 Salley TN, Mishra M, Tiwari S, Jadhav A, Ndisang JF. The heme oxygenase system rescues hepatic deterioration in the condition of obesity co-morbid with type-2 diabetes. PLoS One. 2013;8:e79270. [PMID: 24260182 DOI: 10.1371/journal.pone.0079270] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
24 Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med 2017;104:298-310. [PMID: 28132924 DOI: 10.1016/j.freeradbiomed.2017.01.035] [Cited by in Crossref: 151] [Cited by in F6Publishing: 145] [Article Influence: 30.2] [Reference Citation Analysis]
25 Hu X, Bai T, Xu Z, Liu Q, Zheng Y, Cai L. Pathophysiological Fundamentals of Diabetic Cardiomyopathy. Compr Physiol 2017;7:693-711. [PMID: 28333387 DOI: 10.1002/cphy.c160021] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
26 Grace PM, Gaudet AD, Staikopoulos V, Maier SF, Hutchinson MR, Salvemini D, Watkins LR. Nitroxidative Signaling Mechanisms in Pathological Pain. Trends Neurosci 2016;39:862-79. [PMID: 27842920 DOI: 10.1016/j.tins.2016.10.003] [Cited by in Crossref: 54] [Cited by in F6Publishing: 53] [Article Influence: 9.0] [Reference Citation Analysis]
27 Kamaldinov T, Erndt-Marino J, Levin M, Kaplan DL, Hahn MS. Assessment of Enrichment of Human Mesenchymal Stem Cells Based on Plasma and Mitochondrial Membrane Potentials.Bioelectricity. 2020;2:21-32. [PMID: 32292894 DOI: 10.1089/bioe.2019.0024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
28 Ayer A, Zarjou A, Agarwal A, Stocker R. Heme Oxygenases in Cardiovascular Health and Disease. Physiol Rev 2016;96:1449-508. [PMID: 27604527 DOI: 10.1152/physrev.00003.2016] [Cited by in Crossref: 96] [Cited by in F6Publishing: 89] [Article Influence: 19.2] [Reference Citation Analysis]
29 Ndisang JF, Rastogi S, Vannacci A. Immune and inflammatory processes in obesity, insulin resistance, diabetes, and related cardiometabolic complications. J Immunol Res 2014;2014:579560. [PMID: 25328894 DOI: 10.1155/2014/579560] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
30 Wang Y, Qian Y, Fang Q, Zhong P, Li W, Wang L, Fu W, Zhang Y, Xu Z, Li X, Liang G. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun 2017;8:13997. [PMID: 28045026 DOI: 10.1038/ncomms13997] [Cited by in Crossref: 91] [Cited by in F6Publishing: 94] [Article Influence: 18.2] [Reference Citation Analysis]
31 Fuentes-Antrás J, Picatoste B, Gómez-Hernández A, Egido J, Tuñón J, Lorenzo Ó. Updating experimental models of diabetic cardiomyopathy. J Diabetes Res 2015;2015:656795. [PMID: 25973429 DOI: 10.1155/2015/656795] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 6.6] [Reference Citation Analysis]
32 Ndisang JF, Chibbar R, Lane N. Heme oxygenase suppresses markers of heart failure and ameliorates cardiomyopathy in L-NAME-induced hypertension. Eur J Pharmacol 2014;734:23-34. [PMID: 24726875 DOI: 10.1016/j.ejphar.2014.03.026] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
33 Alonso N, Moliner P, Mauricio D. Pathogenesis, Clinical Features and Treatment of Diabetic Cardiomyopathy. In: Islam MS, editor. Heart Failure: From Research to Clinical Practice. Cham: Springer International Publishing; 2018. pp. 197-217. [DOI: 10.1007/5584_2017_105] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
34 Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57:660-671. [PMID: 24477973 DOI: 10.1007/s00125-014-3171-6] [Cited by in Crossref: 421] [Cited by in F6Publishing: 406] [Article Influence: 52.6] [Reference Citation Analysis]
35 Bajpai A, Tilley DG. The Role of Leukocytes in Diabetic Cardiomyopathy. Front Physiol 2018;9:1547. [PMID: 30443223 DOI: 10.3389/fphys.2018.01547] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
36 Feng R, Morine Y, Ikemoto T, Imura S, Iwahashi S, Saito Y, Shimada M. Nrf2 activation drive macrophages polarization and cancer cell epithelial-mesenchymal transition during interaction. Cell Commun Signal 2018;16:54. [PMID: 30180849 DOI: 10.1186/s12964-018-0262-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 9.3] [Reference Citation Analysis]
37 Kaplan A, Abidi E, El-Yazbi A, Eid A, Booz GW, Zouein FA. Direct cardiovascular impact of SGLT2 inhibitors: mechanisms and effects. Heart Fail Rev 2018;23:419-37. [PMID: 29322280 DOI: 10.1007/s10741-017-9665-9] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 14.3] [Reference Citation Analysis]
38 Ben-Mordechai T, Palevski D, Glucksam-Galnoy Y, Elron-Gross I, Margalit R, Leor J. Targeting macrophage subsets for infarct repair. J Cardiovasc Pharmacol Ther 2015;20:36-51. [PMID: 24938456 DOI: 10.1177/1074248414534916] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 6.3] [Reference Citation Analysis]
39 Ndisang JF, Jadhav A. Hemin therapy improves kidney function in male streptozotocin-induced diabetic rats: role of the heme oxygenase/atrial natriuretic peptide/adiponectin axis. Endocrinology 2014;155:215-29. [PMID: 24140713 DOI: 10.1210/en.2013-1050] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
40 Hurtubise J, Mclellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The Different Facets of Dyslipidemia and Hypertension in Atherosclerosis. Curr Atheroscler Rep 2016;18. [DOI: 10.1007/s11883-016-0632-z] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 11.3] [Reference Citation Analysis]
41 Khan S, Kamal MA. Can Wogonin be Used in Controlling Diabetic Cardiomyopathy? Curr Pharm Des 2019;25:2171-7. [PMID: 31298148 DOI: 10.2174/1381612825666190708173108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
42 Radlinger B, Hornsteiner F, Folie S, Salvenmoser W, Haubner BJ, Schuetz T, Haas S, Ress C, Adolph TE, Salzmann K, Weiss B, Tilg H, Kaser S. Cardioprotective effects of short-term empagliflozin treatment in db/db mice. Sci Rep 2020;10:19686. [PMID: 33184414 DOI: 10.1038/s41598-020-76698-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Ndisang JF, Rastogi S, Vannacci A. Insulin Resistance, Type 1 and Type 2 Diabetes, and Related Complications 2015. J Diabetes Res 2015;2015:234135. [PMID: 26290878 DOI: 10.1155/2015/234135] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
44 Lahnwong S, Chattipakorn SC, Chattipakorn N. Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors. Cardiovasc Diabetol. 2018;17:101. [PMID: 29991346 DOI: 10.1186/s12933-018-0745-5] [Cited by in Crossref: 62] [Cited by in F6Publishing: 56] [Article Influence: 15.5] [Reference Citation Analysis]
45 Cohen CD, De Blasio MJ, Lee MKS, Farrugia GE, Prakoso D, Krstevski C, Deo M, Donner DG, Kiriazis H, Flynn MC, Gaynor TL, Murphy AJ, Drummond GR, Pinto AR, Ritchie RH. Diastolic dysfunction in a pre-clinical model of diabetes is associated with changes in the cardiac non-myocyte cellular composition. Cardiovasc Diabetol 2021;20:116. [PMID: 34074290 DOI: 10.1186/s12933-021-01303-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Bugger H, Bode C. The vulnerable myocardium. Diabetic cardiomyopathy. Hamostaseologie 2015;35:17-24. [PMID: 25408270 DOI: 10.5482/HAMO-14-09-0038] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
47 Szkudelski T, Dłużewicz K, Sadoch J, Szkudelska K. Effects of the activation of heme oxygenase-1 on hormonal and metabolic changes in rats fed a high-fat diet. Biomedicine & Pharmacotherapy 2017;87:375-80. [DOI: 10.1016/j.biopha.2016.12.060] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
48 Rossi S, Maisto R, Gesualdo C, Trotta MC, Ferraraccio F, Kaneva MK, Getting SJ, Surace E, Testa F, Simonelli F, Grieco P, Merlino F, Perretti M, D'Amico M, Di Filippo C. Activation of Melanocortin Receptors MC 1 and MC 5 Attenuates Retinal Damage in Experimental Diabetic Retinopathy. Mediators Inflamm 2016;2016:7368389. [PMID: 26949291 DOI: 10.1155/2016/7368389] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
49 Mure K, Yoshimura N, Hashimoto M, Muraki S, Oka H, Tanaka S, Kawaguchi H, Nakamura K, Akune T, Takeshita T. Urinary 8-iso-prostaglandin F2α as a marker of metabolic risks in the general Japanese population: The ROAD study: 8-Iso-Prostaglandin F2α and Metabolic Syndrome. Obesity 2015;23:1517-24. [DOI: 10.1002/oby.21130] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
50 Kaur N, Guan Y, Raja R, Ruiz-Velasco A, Liu W. Mechanisms and Therapeutic Prospects of Diabetic Cardiomyopathy Through the Inflammatory Response. Front Physiol 2021;12:694864. [PMID: 34234695 DOI: 10.3389/fphys.2021.694864] [Reference Citation Analysis]
51 Dai M, Wu L, He Z, Zhang S, Chen C, Xu X, Wang P, Gruzdev A, Zeldin DC, Wang DW. Epoxyeicosatrienoic acids regulate macrophage polarization and prevent LPS-induced cardiac dysfunction. J Cell Physiol 2015;230:2108-19. [PMID: 25626689 DOI: 10.1002/jcp.24939] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 5.4] [Reference Citation Analysis]
52 Howangyin KY, Silvestre JS. Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction. Arterioscler Thromb Vasc Biol. 2014;34:1126-1135. [PMID: 24675660 DOI: 10.1161/atvbaha.114.303090] [Cited by in Crossref: 91] [Cited by in F6Publishing: 46] [Article Influence: 11.4] [Reference Citation Analysis]
53 Puthanveetil P, Wan A, Rodrigues B. Lipoprotein lipase and angiopoietin-like 4 – Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease. Critical Reviews in Clinical Laboratory Sciences 2014;52:138-49. [DOI: 10.3109/10408363.2014.997931] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
54 Tiwari S, Mishra M, Jadhav A, Gerger C, Lee P, Weber L, Ndisang JF. The risk of heart failure and cardiometabolic complications in obesity may be masked by an apparent healthy status of normal blood glucose. Oxid Med Cell Longev 2013;2013:253657. [PMID: 24454978 DOI: 10.1155/2013/253657] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
55 Riehle C, Bauersachs J. Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res Cardiol 2018;114:2. [PMID: 30443826 DOI: 10.1007/s00395-018-0711-0] [Cited by in Crossref: 69] [Cited by in F6Publishing: 73] [Article Influence: 17.3] [Reference Citation Analysis]