BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mahnke H, Ballent M, Baumann S, Imperiale F, von Bergen M, Lanusse C, Lifschitz AL, Honscha W, Halwachs S. The ABCG2 Efflux Transporter in the Mammary Gland Mediates Veterinary Drug Secretion across the Blood-Milk Barrier into Milk of Dairy Cows. Drug Metab Dispos 2016;44:700-8. [PMID: 26956640 DOI: 10.1124/dmd.115.068940] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Benkerroum N, Ismail A. Human Breast Milk Contamination with Aflatoxins, Impact on Children's Health, and Possible Control Means: A Review. Int J Environ Res Public Health 2022;19. [PMID: 36554670 DOI: 10.3390/ijerph192416792] [Reference Citation Analysis]
2 Blanco-paniagua E, Garcia-lino AM, Alvarez-fernández L, Alvarez AI, Merino G. Ivermectin inhibits ovine ABCG2-mediated in vitro transport of meloxicam and reduces its secretion into milk in sheep. Research in Veterinary Science 2022;153:88-91. [DOI: 10.1016/j.rvsc.2022.10.019] [Reference Citation Analysis]
3 Gunes Y, Okyar A, Krajcsi P, Fekete Z, Ustuner O. Modulation of monepantel secretion into milk by soy isoflavones. Vet Pharm & Therapeutics 2022. [DOI: 10.1111/jvp.13106] [Reference Citation Analysis]
4 Blanco-Paniagua E, Álvarez-Fernández L, Garcia-Lino AM, Álvarez AI, Merino G. Secretion into Milk of the Main Metabolites of the Anthelmintic Albendazole Is Mediated by the ABCG2/BCRP Transporter. Antimicrob Agents Chemother 2022;66:e0006222. [PMID: 35736132 DOI: 10.1128/aac.00062-22] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Robey RW, Lusvarghi S, Chau CH, Basseville A, Figg WD, Ambudkar SV, Bates SE. ABCG2, THE BREAST CANCER RESISTANCE PROTEIN (BCRP). Drug Transporters 2022. [DOI: 10.1002/9781119739883.ch12] [Reference Citation Analysis]
6 Huang F, Teng K, Liu Y, Wang T, Xia T, Yun F, Zhong J. Nisin Z attenuates lipopolysaccharide-induced mastitis by inhibiting the ERK1/2 and p38 mitogen-activated protein kinase signaling pathways. J Dairy Sci 2022:S0022-0302(22)00095-9. [PMID: 35181137 DOI: 10.3168/jds.2021-21356] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Tardiveau J, Leroux-pullen L, Gehring R, Touchais G, Chotard-soutif MP, Mirfendereski H, Paraud C, Jacobs M, Magnier R, Laurentie M, Couet W, Marchand S, Viel A, Grégoire N. A physiologically based pharmacokinetic (PBPK) model exploring the blood-milk barrier in lactating species - A case study with oxytetracycline administered to dairy cows and goats. Food and Chemical Toxicology 2022. [DOI: 10.1016/j.fct.2022.112848] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Imperiale F, Lanusse C. The Pattern of Blood-Milk Exchange for Antiparasitic Drugs in Dairy Ruminants. Animals (Basel) 2021;11:2758. [PMID: 34679780 DOI: 10.3390/ani11102758] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Blanco-Paniagua E, García-Lino AM, García-Mateos D, Álvarez AI, Merino G. Role of the Abcg2 transporter in plasma levels and tissue accumulation of the anti-inflammatory tolfenamic acid in mice. Chem Biol Interact 2021;345:109537. [PMID: 34062171 DOI: 10.1016/j.cbi.2021.109537] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Garcia-Lino AM, Garcia-Mateos D, Alvarez-Fernandez I, Blanco-Paniagua E, Medina JM, Merino G, Alvarez AI. Role of eprinomectin as inhibitor of the ruminant ABCG2 transporter: Effects on plasma distribution of danofloxacin and meloxicam in sheep. Res Vet Sci 2021;136:478-83. [PMID: 33838457 DOI: 10.1016/j.rvsc.2021.03.026] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Homolya L. Medically Important Alterations in Transport Function and Trafficking of ABCG2. Int J Mol Sci 2021;22:2786. [PMID: 33801813 DOI: 10.3390/ijms22062786] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
12 Nauwelaerts N, Deferm N, Smits A, Bernardini C, Lammens B, Gandia P, Panchaud A, Nordeng H, Bacci ML, Forni M, Ventrella D, Van Calsteren K, DeLise A, Huys I, Bouisset-Leonard M, Allegaert K, Annaert P. A comprehensive review on non-clinical methods to study transfer of medication into breast milk - A contribution from the ConcePTION project. Biomed Pharmacother 2021;136:111038. [PMID: 33526310 DOI: 10.1016/j.biopha.2020.111038] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
13 Kerr ID, Hutchison E, Gerard L, Aleidi SM, Gelissen IC. Mammalian ABCG-transporters, sterols and lipids: To bind perchance to transport? Biochim Biophys Acta Mol Cell Biol Lipids 2021;1866:158860. [PMID: 33309976 DOI: 10.1016/j.bbalip.2020.158860] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
14 Kuhnert L, Giantin M, Dacasto M, Halwachs S, Honscha W. AhR-activating pesticides increase the bovine ABCG2 efflux activity in MDCKII-bABCG2 cells. PLoS One 2020;15:e0237163. [PMID: 32764792 DOI: 10.1371/journal.pone.0237163] [Reference Citation Analysis]
15 Garcia-Lino AM, Blanco-Paniagua E, Astorga-Simon EN, Alvarez-Fernandez L, Garcia-Mateos D, Alvarez-Fernandez I, Alvarez AI, Merino G. Abcg2 transporter affects plasma, milk and tissue levels of meloxicam. Biochem Pharmacol 2020;175:113924. [PMID: 32217099 DOI: 10.1016/j.bcp.2020.113924] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
16 Ventrella D, Forni M, Bacci ML, Annaert P. Non-clinical Models to Determine Drug Passage into Human Breast Milk. Curr Pharm Des 2019;25:534-48. [PMID: 30894104 DOI: 10.2174/1381612825666190320165904] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
17 Scuderi RA, Ebenstein DB, Lam YW, Kraft J, Greenwood SL. Inclusion of grape marc in dairy cattle rations alters the bovine milk proteome. J Dairy Res 2019;86:154-61. [PMID: 31210125 DOI: 10.1017/S0022029919000372] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
18 Kan X, Liu B, Guo W, Wei L, Lin Y, Guo Y, Gong Q, Li Y, Xu D, Cao Y, Huang B, Dong A, Ma H, Fu S, Liu J. Myricetin relieves LPS-induced mastitis by inhibiting inflammatory response and repairing the blood-milk barrier. J Cell Physiol 2019;234:16252-62. [PMID: 30746687 DOI: 10.1002/jcp.28288] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 9.5] [Reference Citation Analysis]
19 Virkel G, Ballent M, Lanusse C, Lifschitz A. Role of ABC Transporters in Veterinary Medicine: Pharmaco- Toxicological Implications. CMC 2019;26:1251-69. [DOI: 10.2174/0929867325666180201094730] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
20 Garcia-Mateos D, Garcia-Lino AM, Alvarez-Fernandez I, Blanco-Paniagua E, de la Fuente A, Alvarez AI, Merino G. Role of ABCG2 in Secretion into Milk of the Anti-Inflammatory Flunixin and Its Main Metabolite: In Vitro-In Vivo Correlation in Mice and Cows. Drug Metab Dispos 2019;47:516-24. [PMID: 30858238 DOI: 10.1124/dmd.118.085506] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
21 Mealey KL. Breed Differences and Pharmacogenetics. In: Mealey KL, editor. Pharmacotherapeutics for Veterinary Dispensing. Wiley; 2019. pp. 95-107. [DOI: 10.1002/9781119404576.ch5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Mealey KL, Karriker MJ. Comparative Pharmacokinetics and Pharmacodynamics. In: Mealey KL, editor. Pharmacotherapeutics for Veterinary Dispensing. Wiley; 2019. pp. 75-94. [DOI: 10.1002/9781119404576.ch4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Gleich A, Kaiser B, Honscha W, Fuhrmann H, Schoeniger A. Evaluation of the hepatocyte-derived cell line BFH12 as an in vitro model for bovine biotransformation. Cytotechnology 2019;71:231-44. [PMID: 30617848 DOI: 10.1007/s10616-018-0279-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
24 Özdemir Z, Traş B. İlaçların Sütteki Davranışları - Derleme. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 2018;13:364-372. [DOI: 10.17094/ataunivbd.319443] [Reference Citation Analysis]
25 Martinez MN, Court MH, Fink-Gremmels J, Mealey KL. Population variability in animal health: Influence on dose-exposure-response relationships: Part I: Drug metabolism and transporter systems. J Vet Pharmacol Ther 2018;41:E57-67. [PMID: 29917248 DOI: 10.1111/jvp.12670] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
26 Ballent M, Viviani P, Imperiale F, Dominguez P, Halwachs S, Mahnke H, Honscha W, Lanusse C, Virkel G, Lifschitz A. Pharmacokinetic assessment of the monepantel plus oxfendazole combined administration in dairy cows. J Vet Pharmacol Ther 2018;41:292-300. [PMID: 29139145 DOI: 10.1111/jvp.12466] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
27 Lifschitz A, Lanusse C, Alvarez L. Host pharmacokinetics and drug accumulation of anthelmintics within target helminth parasites of ruminants. N Z Vet J 2017;65:176-84. [PMID: 28415922 DOI: 10.1080/00480169.2017.1317222] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
28 Oskarsson A, Yagdiran Y, Nazemi S, Tallkvist J, Knight C. Short communication: Staphylococcus aureus infection modulates expression of drug transporters and inflammatory biomarkers in mouse mammary gland. Journal of Dairy Science 2017;100:2375-80. [DOI: 10.3168/jds.2016-11650] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
29 Yagdiran Y, Tallkvist J, Artursson K, Oskarsson A. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers. PLoS One 2016;11:e0161346. [PMID: 27584666 DOI: 10.1371/journal.pone.0161346] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]