BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tittel FK. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis. Opt Eng 2010;49:111123. [DOI: 10.1117/1.3498768] [Cited by in Crossref: 86] [Cited by in F6Publishing: 45] [Article Influence: 7.2] [Reference Citation Analysis]
Number Citing Articles
1 Ghorbani R, Schmidt FM. Real-time breath gas analysis of CO and CO2 using an EC-QCL. Appl Phys B 2017;123. [DOI: 10.1007/s00340-017-6715-x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
2 Zhou S, Han Y, Li B. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection. Appl Phys B 2018;124. [DOI: 10.1007/s00340-018-6898-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
3 Svanberg S. Gas in scattering media absorption spectroscopy - from basic studies to biomedical applications: Gas in scattering media absorption spectroscopy. Laser & Photonics Reviews 2013;7:779-96. [DOI: 10.1002/lpor.201200073] [Cited by in Crossref: 36] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
4 Dong L, Spagnolo V, Lewicki R, Tittel FK. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor. Opt Express 2011;19:24037-45. [PMID: 22109428 DOI: 10.1364/OE.19.024037] [Cited by in Crossref: 100] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
5 Arslanov DD, Swinkels K, Cristescu SM, Harren FJ. Real-time, subsecond, multicomponent breath analysis by Optical Parametric Oscillator based Off-Axis Integrated Cavity Output Spectroscopy. Opt Express 2011;19:24078-89. [PMID: 22109433 DOI: 10.1364/OE.19.024078] [Cited by in Crossref: 41] [Cited by in F6Publishing: 5] [Article Influence: 4.1] [Reference Citation Analysis]
6 Ciaffoni L, Hancock G, Harrison JJ, van Helden JP, Langley CE, Peverall R, Ritchie GA, Wood S. Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection. Anal Chem 2013;85:846-50. [PMID: 23231744 DOI: 10.1021/ac3031465] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
7 Ghorbani R, Schmidt FM. ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes. Opt Express 2017;25:12743-52. [PMID: 28786628 DOI: 10.1364/OE.25.012743] [Cited by in Crossref: 50] [Cited by in F6Publishing: 7] [Article Influence: 12.5] [Reference Citation Analysis]
8 Bayrakli I, Akman H. Ultrasensitive, real-time analysis of biomarkers in breath using tunable external cavity laser and off-axis cavity-enhanced absorption spectroscopy. J Biomed Opt 2015;20:037001. [DOI: 10.1117/1.jbo.20.3.037001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
9 Navas M, Jiménez A, Asuero A. Human biomarkers in breath by photoacoustic spectroscopy. Clinica Chimica Acta 2012;413:1171-8. [DOI: 10.1016/j.cca.2012.04.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
10 Schwaighofer A, Brandstetter M, Lendl B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev 2017;46:5903-24. [DOI: 10.1039/c7cs00403f] [Cited by in Crossref: 73] [Cited by in F6Publishing: 11] [Article Influence: 14.6] [Reference Citation Analysis]
11 Bertling K, Lim YL, Taimre T, Indjin D, Dean P, Weih R, Höfling S, Kamp M, von Edlinger M, Koeth J, Rakić AD. Demonstration of the self-mixing effect in interband cascade lasers. Appl Phys Lett 2013;103:231107. [DOI: 10.1063/1.4839535] [Cited by in Crossref: 14] [Article Influence: 1.6] [Reference Citation Analysis]
12 Dyksik M, Motyka M, Kurka M, Ryczko K, Dallner M, Höfling S, Kamp M, Sęk G, Misiewicz J. Photoluminescence quenching mechanisms in type II InAs/GaInSb QWs on InAs substrates. Opt Quant Electron 2016;48. [DOI: 10.1007/s11082-016-0667-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
13 Haakestad MW, Lamour TP, Leindecker N, Marandi A, Vodopyanov KL. Intracavity trace molecular detection with a broadband mid-IR frequency comb source. J Opt Soc Am B 2013;30:631. [DOI: 10.1364/josab.30.000631] [Cited by in Crossref: 38] [Article Influence: 4.2] [Reference Citation Analysis]
14 Kruczek T, Fedorova KA, Sokolovskii GS, Teissier R, Baranov AN, Rafailov EU. InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm. Appl Phys Lett 2013;102:011124. [DOI: 10.1063/1.4774088] [Cited by in Crossref: 22] [Cited by in F6Publishing: 4] [Article Influence: 2.4] [Reference Citation Analysis]
15 Antoniou SX, Gaude E, Ruparel M, van der Schee MP, Janes SM, Rintoul RC; The LuCID Group. The potential of breath analysis to improve outcome for patients with lung cancer. J Breath Res 2019;13:034002. [PMID: 30822771 DOI: 10.1088/1752-7163/ab0bee] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
16 Li C, Zheng C, Dong L, Ye W, Tittel FK, Wang Y. Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-μm continuous-wave interband cascade laser. Appl Phys B 2016;122. [DOI: 10.1007/s00340-016-6460-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
17 Bismuto A, Riedi S, Hinkov B, Beck M, Faist J. Sb-free quantum cascade lasers in the 3–4 μm spectral range. Semicond Sci Technol 2012;27:045013. [DOI: 10.1088/0268-1242/27/4/045013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
18 Jágerská J, Jouy P, Tuzson B, Looser H, Mangold M, Soltic P, Hugi A, Brönnimann R, Faist J, Emmenegger L. Simultaneous measurement of NO and NO(2) by dual-wavelength quantum cascade laser spectroscopy. Opt Express 2015;23:1512-22. [PMID: 25835908 DOI: 10.1364/OE.23.001512] [Cited by in Crossref: 29] [Cited by in F6Publishing: 2] [Article Influence: 4.1] [Reference Citation Analysis]
19 Ciaffoni L, Peverall R, Ritchie GA. Laser spectroscopy on volatile sulfur compounds: possibilities for breath analysis. J Breath Res 2011;5:024002. [PMID: 21593551 DOI: 10.1088/1752-7155/5/2/024002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
20 Das S, Pal M. Review—Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review. J Electrochem Soc 2020;167:037562. [DOI: 10.1149/1945-7111/ab67a6] [Cited by in Crossref: 49] [Cited by in F6Publishing: 10] [Article Influence: 24.5] [Reference Citation Analysis]
21 Pleil JD, Beauchamp JD, Miekisch W, Funk WE. Adapting biomarker technologies to adverse outcome pathways (AOPs) research: current thoughts on using in vivo discovery for developing in vitro target methods. J Breath Res 2015;9:039001. [DOI: 10.1088/1752-7155/9/3/039001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
22 Bolshov M, Kuritsyn Y, Romanovskii Y. Tunable diode laser spectroscopy as a technique for combustion diagnostics. Spectrochimica Acta Part B: Atomic Spectroscopy 2015;106:45-66. [DOI: 10.1016/j.sab.2015.01.010] [Cited by in Crossref: 117] [Cited by in F6Publishing: 19] [Article Influence: 16.7] [Reference Citation Analysis]
23 Tuzson B, Jágerská J, Looser H, Graf M, Felder F, Fill M, Tappy L, Emmenegger L. Highly Selective Volatile Organic Compounds Breath Analysis Using a Broadly-Tunable Vertical-External-Cavity Surface-Emitting Laser. Anal Chem 2017;89:6377-83. [PMID: 28514136 DOI: 10.1021/acs.analchem.6b04511] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
24 Manfred KM, Hunter KM, Ciaffoni L, Ritchie GA. ICL-Based OF-CEAS: A Sensitive Tool for Analytical Chemistry. Anal Chem 2017;89:902-9. [PMID: 27936594 DOI: 10.1021/acs.analchem.6b04030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
25 Li J, Yu B, Zhao W, Chen W. A Review of Signal Enhancement and Noise Reduction Techniques for Tunable Diode Laser Absorption Spectroscopy. Applied Spectroscopy Reviews 2014;49:666-91. [DOI: 10.1080/05704928.2014.903376] [Cited by in Crossref: 80] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
26 Cristescu SM, Mandon J, Harren FJ, Meriläinen P, Högman M. Methods of NO detection in exhaled breath. J Breath Res 2013;7:017104. [PMID: 23445766 DOI: 10.1088/1752-7155/7/1/017104] [Cited by in Crossref: 45] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
27 Cristescu SM, Marchenko D, Mandon J, Hebelstrup K, Griffith GW, Mur LAJ, Harren FJM. Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives. Appl Phys B 2013;110:203-11. [DOI: 10.1007/s00340-012-5050-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
28 van Helden J, Lopatik D, Nave A, Lang N, Davies P, Röpcke J. High resolution spectroscopy of silane with an external-cavity quantum cascade laser: Absolute line strengths of the ν 3 fundamental band at 4.6μm. Journal of Quantitative Spectroscopy and Radiative Transfer 2015;151:287-94. [DOI: 10.1016/j.jqsrt.2014.10.016] [Cited by in Crossref: 18] [Article Influence: 2.6] [Reference Citation Analysis]
29 Zhou T, Wu T, Wu Q, Ye C, Hu R, Chen W, He X. Real-time measurement of CO2 isotopologue ratios in exhaled breath by a hollow waveguide based mid-infrared gas sensor. Opt Express 2020;28:10970-80. [PMID: 32403618 DOI: 10.1364/OE.385103] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
30 Han H, Cheng X, Jia Z, Shore KA. Nonlinear Dynamics of Interband Cascade Laser Subjected to Optical Feedback. Photonics 2021;8:366. [DOI: 10.3390/photonics8090366] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Hashimura K, Ishii K, Akikusa N, Edamura T, Yoshida H, Awazu K. Coagulation and ablation of biological soft tissue by quantum cascade laser with peak wavelength of 5.7 μm. J Innov Opt Health Sci 2014;07:1450029. [DOI: 10.1142/s1793545814500291] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.1] [Reference Citation Analysis]
32 Diaz A, Thomas B, Castillo P, Gross B, Moshary F. Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor. Appl Phys B 2016;122. [DOI: 10.1007/s00340-016-6396-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
33 Fu B, Zhang C, Lyu W, Sun J, Shang C, Cheng Y, Xu L. Recent progress on laser absorption spectroscopy for determination of gaseous chemical species. Applied Spectroscopy Reviews. [DOI: 10.1080/05704928.2020.1857258] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Mandon J, Högman M, Merkus PJ, van Amsterdam J, Harren FJ, Cristescu SM. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors. J Biomed Opt 2012;17:017003. [PMID: 22352669 DOI: 10.1117/1.JBO.17.1.017003] [Cited by in Crossref: 43] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
35 Li C, Dong L, Zheng C, Tittel FK. Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser. Sensors and Actuators B: Chemical 2016;232:188-94. [DOI: 10.1016/j.snb.2016.03.141] [Cited by in Crossref: 62] [Cited by in F6Publishing: 21] [Article Influence: 10.3] [Reference Citation Analysis]
36 Kasyutich VL, Martin PA. A CO2 sensor based upon a continuous-wave thermoelectrically-cooled quantum cascade laser. Sensors and Actuators B: Chemical 2011;157:635-40. [DOI: 10.1016/j.snb.2011.05.038] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
37 Ma P, Li J, Chen Y, Zhou Montano BA, Luo H, Zhang D, Zheng H, Liu Y, Lin H, Zhu W, Zhang G, Mao H, Yu J, Chen Z. Non‐invasive exhaled breath diagnostic and monitoring technologies. Micro & Optical Tech Letters. [DOI: 10.1002/mop.33133] [Reference Citation Analysis]
38 Wang Z, Wang C. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J Breath Res 2013;7:037109. [DOI: 10.1088/1752-7155/7/3/037109] [Cited by in Crossref: 131] [Cited by in F6Publishing: 81] [Article Influence: 14.6] [Reference Citation Analysis]
39 Marchenko D, Neerincx AH, Mandon J, Zhang J, Boerkamp M, Mink J, Cristescu SM, Hekkert STL, Harren FJM. A compact laser-based spectrometer for detection of C2H2 in exhaled breath and HCN in vitro. Appl Phys B 2015;118:275-80. [DOI: 10.1007/s00340-014-5983-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
40 Du Z, Zhang S, Li J, Gao N, Tong K. Mid-Infrared Tunable Laser-Based Broadband Fingerprint Absorption Spectroscopy for Trace Gas Sensing: A Review. Applied Sciences 2019;9:338. [DOI: 10.3390/app9020338] [Cited by in Crossref: 27] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
41 Amann A, Costello Bde L, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014;8:034001. [PMID: 24946087 DOI: 10.1088/1752-7155/8/3/034001] [Cited by in Crossref: 284] [Cited by in F6Publishing: 237] [Article Influence: 35.5] [Reference Citation Analysis]
42 Cristescu SM, Gietema HA, Blanchet L, Kruitwagen CL, Munnik P, van Klaveren RJ, Lammers JW, Buydens L, Harren FJ, Zanen P. Screening for emphysema via exhaled volatile organic compounds. J Breath Res 2011;5:046009. [PMID: 22071870 DOI: 10.1088/1752-7155/5/4/046009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
43 Li JS, Chen W, Fischer H. Quantum Cascade Laser Spectrometry Techniques: A New Trend in Atmospheric Chemistry. Applied Spectroscopy Reviews 2013;48:523-59. [DOI: 10.1080/05704928.2012.757232] [Cited by in Crossref: 77] [Cited by in F6Publishing: 28] [Article Influence: 8.6] [Reference Citation Analysis]
44 Motyka M, Ryczko K, Dyksik M, Sęk G, Misiewicz J, Weih R, Dallner M, Höfling S, Kamp M. On the modified active region design of interband cascade lasers. Journal of Applied Physics 2015;117:084312. [DOI: 10.1063/1.4913391] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
45 Hébert NB, Scholten SK, White RT, Genest J, Luiten AN, Anstie JD. A quantitative mode-resolved frequency comb spectrometer. Opt Express 2015;23:13991-4001. [PMID: 26072768 DOI: 10.1364/OE.23.013991] [Cited by in Crossref: 14] [Article Influence: 2.0] [Reference Citation Analysis]
46 Walker RJ, Kirkbride J, van Helden JH, Weidmann D, Ritchie GAD. Sub-Doppler spectroscopy with an external cavity quantum cascade laser. Appl Phys B 2013;112:159-67. [DOI: 10.1007/s00340-013-5410-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
47 Lin C, Zhu Y. Dynamic photothermal-mechanical response of a microcantilever modified by carbon nanotube film. Appl Opt 2016;55:2324. [DOI: 10.1364/ao.55.002324] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
48 Centeno R, Mandon J, Harren F, Cristescu S. Influence of Ethanol on Breath Acetone Measurements Using an External Cavity Quantum Cascade Laser. Photonics 2016;3:22. [DOI: 10.3390/photonics3020022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
49 Zhang L, Tian G, Li J, Yu B. Applications of absorption spectroscopy using quantum cascade lasers. Appl Spectrosc 2014;68:1095-107. [PMID: 25239063 DOI: 10.1366/14-00001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 22] [Article Influence: 6.9] [Reference Citation Analysis]
50 Manfred KM, Kirkbride JMR, Ciaffoni L, Peverall R, Ritchie GAD. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation. Opt Lett 2014;39:6811. [DOI: 10.1364/ol.39.006811] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
51 van Dalfsen K, Aravazhi S, Grivas C, García-Blanco SM, Pollnau M. Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency. Opt Lett 2012;37:887-9. [PMID: 22378427 DOI: 10.1364/OL.37.000887] [Cited by in Crossref: 39] [Cited by in F6Publishing: 1] [Article Influence: 3.9] [Reference Citation Analysis]
52 Cao Y, Sanchez NP, Jiang W, Griffin RJ, Xie F, Hughes LC, Zah C, Tittel FK. Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser. Opt Express 2015;23:2121. [DOI: 10.1364/oe.23.002121] [Cited by in Crossref: 86] [Cited by in F6Publishing: 8] [Article Influence: 12.3] [Reference Citation Analysis]
53 van Helden JH, Lang N, Macherius U, Zimmermann H, Röpcke J. Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser. Appl Phys Lett 2013;103:131114. [DOI: 10.1063/1.4823545] [Cited by in Crossref: 33] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]