BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liin SI, Barro-Soria R, Larsson HP. The KCNQ1 channel - remarkable flexibility in gating allows for functional versatility. J Physiol. 2015;593:2605-2615. [PMID: 25653179 DOI: 10.1113/jphysiol.2014.287607] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Wu M, Takemoto M, Taniguchi M, Takumi T, Okazaki T, Song WJ. Regulation of membrane KCNQ1/KCNE1 channel density by sphingomyelin synthase 1. Am J Physiol Cell Physiol 2016;311:C15-23. [PMID: 27194473 DOI: 10.1152/ajpcell.00272.2015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
2 Wu X, Larsson HP. Insights into Cardiac IKs (KCNQ1/KCNE1) Channels Regulation. Int J Mol Sci 2020;21:E9440. [PMID: 33322401 DOI: 10.3390/ijms21249440] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
3 Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25(38): 5732-5772 [PMID: 31636470 DOI: 10.3748/wjg.v25.i38.5732] [Cited by in CrossRef: 60] [Cited by in F6Publishing: 56] [Article Influence: 20.0] [Reference Citation Analysis]
4 Nunes QM, Su D, Brownridge PJ, Simpson DM, Sun C, Li Y, Bui TP, Zhang X, Huang W, Rigden DJ, Beynon RJ, Sutton R, Fernig DG. The heparin-binding proteome in normal pancreas and murine experimental acute pancreatitis. PLoS One 2019;14:e0217633. [PMID: 31211768 DOI: 10.1371/journal.pone.0217633] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
5 Solé L, Roig SR, Vallejo-Gracia A, Serrano-Albarrás A, Martínez-Mármol R, Tamkun MM, Felipe A. The C-terminal domain of Kv1.3 regulates functional interactions with the KCNE4 subunit. J Cell Sci 2016;129:4265-77. [PMID: 27802162 DOI: 10.1242/jcs.191650] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
6 Eldstrom J, McAfee DA, Dou Y, Wang Y, Fedida D. ML277 regulates KCNQ1 single-channel amplitudes and kinetics, modified by voltage sensor state. J Gen Physiol 2021;153:e202112969. [PMID: 34636894 DOI: 10.1085/jgp.202112969] [Reference Citation Analysis]
7 Wu W, Sanguinetti MC. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology. Card Electrophysiol Clin 2016;8:275-84. [PMID: 27261821 DOI: 10.1016/j.ccep.2016.01.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
8 Huang H, Chamness LM, Vanoye CG, Kuenze G, Meiler J, George AL Jr, Schlebach JP, Sanders CR. Disease-linked supertrafficking of a potassium channel. J Biol Chem 2021;296:100423. [PMID: 33600800 DOI: 10.1016/j.jbc.2021.100423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Lipinsky M, Tobelaim WS, Peretz A, Simhaev L, Yeheskel A, Yakubovich D, Lebel G, Paas Y, Hirsch JA, Attali B. A unique mechanism of inactivation gating of the Kv channel family member Kv7.1 and its modulation by PIP2 and calmodulin. Sci Adv 2020;6:eabd6922. [PMID: 33355140 DOI: 10.1126/sciadv.abd6922] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wu X, Perez ME, Noskov SY, Larsson HP. A general mechanism of KCNE1 modulation of KCNQ1 channels involving non-canonical VSD-PD coupling. Commun Biol 2021;4:887. [PMID: 34285340 DOI: 10.1038/s42003-021-02418-1] [Reference Citation Analysis]
11 Larsson JE, Larsson HP, Liin SI. KCNE1 tunes the sensitivity of KV7.1 to polyunsaturated fatty acids by moving turret residues close to the binding site. Elife 2018;7:e37257. [PMID: 30014849 DOI: 10.7554/eLife.37257] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Kasak L, Rull K, Yang T, Roden DM, Laan M. Recurrent Pregnancy Loss and Concealed Long-QT Syndrome. J Am Heart Assoc 2021;10:e021236. [PMID: 34398675 DOI: 10.1161/JAHA.121.021236] [Reference Citation Analysis]
13 Wu M, Takemoto M, Luo H, Xu J, Lu M, Kameyama M, Takumi T, Song W. A novel role of the antitumor agent tricyclodecan-9-yl-xanthogenate as an open channel blocker of KCNQ1/KCNE1. European Journal of Pharmacology 2018;824:99-107. [DOI: 10.1016/j.ejphar.2018.02.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
14 Dixit G, Dabney-Smith C, Lorigan GA. The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights. Biochim Biophys Acta Biomembr 2020;1862:183148. [PMID: 31825788 DOI: 10.1016/j.bbamem.2019.183148] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
15 Rattanatham R, Settasatian N, Komanasin N, Kukongviriyapan U, Sawanyawisuth K, Intharaphet P, Senthong V, Settasatian C. Association of Combined TCF7L2 and KCNQ1 Gene Polymorphisms with Diabetic Micro- and Macrovascular Complications in Type 2 Diabetes Mellitus. Diabetes Metab J 2021;45:578-93. [PMID: 33752320 DOI: 10.4093/dmj.2020.0101] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
16 Cui J. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels. Biophys J 2016;110:14-25. [PMID: 26745405 DOI: 10.1016/j.bpj.2015.11.023] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 7.7] [Reference Citation Analysis]
17 Li R, Miao J, Tabaran AF, O'Sullivan MG, Anderson KJ, Scott PM, Wang Z, Cormier RT. A novel cancer syndrome caused by KCNQ1-deficiency in the golden Syrian hamster. J Carcinog 2018;17:6. [PMID: 30450013 DOI: 10.4103/jcar.JCar_5_18] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
18 Thompson E, Eldstrom J, Westhoff M, McAfee D, Fedida D. The IKs Channel Response to cAMP Is Modulated by the KCNE1:KCNQ1 Stoichiometry. Biophys J 2018;115:1731-40. [PMID: 30314657 DOI: 10.1016/j.bpj.2018.09.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
19 Lan X, Fan C, Ji W, Tian F, Xu T, Gao Z. Grafting voltage and pharmacological sensitivity in potassium channels. Cell Res 2016;26:935-45. [PMID: 27174053 DOI: 10.1038/cr.2016.57] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
20 Gao Q, Yang C, Meng L, Wang Z, Chen D, Peng Y, Yang K, Bian Z. Activated KCNQ1 channel promotes fibrogenic response in hereditary gingival fibromatosis via clustering and activation of Ras. J Periodontal Res 2021;56:471-81. [PMID: 33381870 DOI: 10.1111/jre.12836] [Reference Citation Analysis]
21 Murray CI, Westhoff M, Eldstrom J, Thompson E, Emes R, Fedida D. Unnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up to 4:4. Elife 2016;5:e11815. [PMID: 26802629 DOI: 10.7554/eLife.11815] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 6.7] [Reference Citation Analysis]
22 Thompson E, Eldstrom J, Westhoff M, McAfee D, Balse E, Fedida D. cAMP-dependent regulation of IKs single-channel kinetics. J Gen Physiol 2017;149:781-98. [PMID: 28687606 DOI: 10.1085/jgp.201611734] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
23 Wang Y, Eldstrom J, Fedida D. The I Ks Ion Channel Activator Mefenamic Acid Requires KCNE1 and Modulates Channel Gating in a Subunit-Dependent Manner. Mol Pharmacol 2020;97:132-44. [PMID: 31722973 DOI: 10.1124/mol.119.117952] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
24 Liin SI, Yazdi S, Ramentol R, Barro-Soria R, Larsson HP. Mechanisms Underlying the Dual Effect of Polyunsaturated Fatty Acid Analogs on Kv7.1. Cell Rep 2018;24:2908-18. [PMID: 30208316 DOI: 10.1016/j.celrep.2018.08.031] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 8.7] [Reference Citation Analysis]
25 Willegems K, Eldstrom J, Kyriakis E, Ataei F, Sahakyan H, Dou Y, Russo S, Van Petegem F, Fedida D. Structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277. Nat Commun 2022;13:3760. [PMID: 35768468 DOI: 10.1038/s41467-022-31526-7] [Reference Citation Analysis]
26 Liin SI, Larsson JE, Barro-Soria R, Bentzen BH, Larsson HP. Fatty acid analogue N-arachidonoyl taurine restores function of IKs channels with diverse long QT mutations. Elife 2016;5:e20272. [PMID: 27690226 DOI: 10.7554/eLife.20272] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
27 Westhoff M, Eldstrom J, Murray CI, Thompson E, Fedida D. I Ks ion-channel pore conductance can result from individual voltage sensor movements. Proc Natl Acad Sci U S A 2019;116:7879-88. [PMID: 30918124 DOI: 10.1073/pnas.1811623116] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
28 Pantazis A, Olcese R. Biophysics of BK Channel Gating. Int Rev Neurobiol 2016;128:1-49. [PMID: 27238260 DOI: 10.1016/bs.irn.2016.03.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
29 Taylor KC, Kang PW, Hou P, Yang ND, Kuenze G, Smith JA, Shi J, Huang H, White KM, Peng D, George AL, Meiler J, McFeeters RL, Cui J, Sanders CR. Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state. Elife 2020;9:e53901. [PMID: 32096762 DOI: 10.7554/eLife.53901] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
30 Huang H, Kuenze G, Smith JA, Taylor KC, Duran AM, Hadziselimovic A, Meiler J, Vanoye CG, George AL Jr, Sanders CR. Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations. Sci Adv 2018;4:eaar2631. [PMID: 29532034 DOI: 10.1126/sciadv.aar2631] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 9.8] [Reference Citation Analysis]
31 Taylor KC, Sanders CR. Regulation of KCNQ/Kv7 family voltage-gated K+ channels by lipids. Biochim Biophys Acta Biomembr 2017;1859:586-97. [PMID: 27818172 DOI: 10.1016/j.bbamem.2016.10.023] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
32 Bohannon BM, Perez ME, Liin SI, Larsson HP. ω-6 and ω-9 polyunsaturated fatty acids with double bonds near the carboxyl head have the highest affinity and largest effects on the cardiac IK s potassium channel. Acta Physiol (Oxf) 2019;225:e13186. [PMID: 30184322 DOI: 10.1111/apha.13186] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
33 Wang Y, Eldstrom J, Fedida D. Gating and Regulation of KCNQ1 and KCNQ1 + KCNE1 Channel Complexes. Front Physiol 2020;11:504. [PMID: 32581825 DOI: 10.3389/fphys.2020.00504] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]