BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Waldron RT, Chen Y, Pham H, Go A, Su HY, Hu C, Wen L, Husain SZ, Sugar CA, Roos J, Ramos S, Lugea A, Dunn M, Stauderman K, Pandol SJ. The Orai Ca2+ channel inhibitor CM4620 targets both parenchymal and immune cells to reduce inflammation in experimental acute pancreatitis. J Physiol 2019;597:3085-105. [PMID: 31050811 DOI: 10.1113/JP277856] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Tsujikawa S, DeMeulenaere KE, Centeno MV, Ghazisaeidi S, Martin ME, Tapies MR, Maneshi MM, Yamashita M, Stauderman KA, Apkarian AV, Salter MW, Prakriya M. Regulation of neuropathic pain by microglial Orai1 channels. Sci Adv 2023;9:eade7002. [PMID: 36706180 DOI: 10.1126/sciadv.ade7002] [Reference Citation Analysis]
2 Petersen OH. The 2022 George E Palade Medal Lecture: Toxic Ca(2+) signals in acinar, stellate and endogenous immune cells are important drivers of acute pancreatitis. Pancreatology 2023;23:1-8. [PMID: 36539315 DOI: 10.1016/j.pan.2022.12.010] [Reference Citation Analysis]
3 Petersen OH. Watching Living Cells in Action in the Exocrine Pancreas: The Palade Prize Lecture. Function (Oxf) 2023;4:zqac061. [PMID: 36606242 DOI: 10.1093/function/zqac061] [Reference Citation Analysis]
4 Pandol SJ, Gottlieb RA. Calcium, mitochondria and the initiation of acute pancreatitis. Pancreatology 2022;22:838-45. [PMID: 35941013 DOI: 10.1016/j.pan.2022.07.011] [Reference Citation Analysis]
5 Hey-hadavi J, Velisetty P, Mhatre S. Trends and recent developments in pharmacotherapy of acute pancreatitis. Postgraduate Medicine 2022. [DOI: 10.1080/00325481.2022.2136390] [Reference Citation Analysis]
6 Wang YH, Noyer L, Kahlfuss S, Raphael D, Tao AY, Kaufmann U, Zhu J, Mitchell-Flack M, Sidhu I, Zhou F, Vaeth M, Thomas PG, Saunders SP, Stauderman K, Curotto de Lafaille MA, Feske S. Distinct roles of ORAI1 in T cell-mediated allergic airway inflammation and immunity to influenza A virus infection. Sci Adv 2022;8:eabn6552. [PMID: 36206339 DOI: 10.1126/sciadv.abn6552] [Reference Citation Analysis]
7 Tsujikawa S, Demeulenaere KE, Centeno MV, Ghazisaeidi S, Martin ME, Tapies MR, Maneshi MM, Yamashita M, Stauderman KA, Apkarian AV, Salter MW, Prakriya M. Regulation of neuropathic pain by microglial Orai1 channels.. [DOI: 10.1101/2022.09.02.506250] [Reference Citation Analysis]
8 Guo H, Huang B, Cui T, Chu X, Pu W, Huang G, Xing C, Zhang C. Cadmium exposure induces autophagy via PLC-IP3 -IP3 R signaling pathway in duck renal tubular epithelial cells. Environ Toxicol 2022. [PMID: 35926093 DOI: 10.1002/tox.23626] [Reference Citation Analysis]
9 Letizia M, Wang YH, Kaufmann U, Gerbeth L, Sand A, Brunkhorst M, Weidner P, Ziegler JF, Böttcher C, Schlickeiser S, Fernández C, Yamashita M, Stauderman K, Sun K, Kunkel D, Prakriya M, Sanders AD, Siegmund B, Feske S, Weidinger C; IBDome Researchers. Store-operated calcium entry controls innate and adaptive immune cell function in inflammatory bowel disease. EMBO Mol Med 2022;:e15687. [PMID: 35919953 DOI: 10.15252/emmm.202215687] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Nagy-pénzes M, Hajnády Z, Regdon Z, Demény MÁ, Kovács K, El-hamoly T, Maléth J, Hegyi P, Hegedűs C, Virág L. Tricetin Reduces Inflammation and Acinar Cell Injury in Cerulein-Induced Acute Pancreatitis: The Role of Oxidative Stress-Induced DNA Damage Signaling. Biomedicines 2022;10:1371. [DOI: 10.3390/biomedicines10061371] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Song T, Li P, Wang Q, Hao B, Wang Y, Bian Y, Shi Y. Comprehensive Assessment of the STIMs and Orais Expression in Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2022;13:874987. [PMID: 35669690 DOI: 10.3389/fendo.2022.874987] [Reference Citation Analysis]
12 Li M, Zhang B, Yin Y, Wen J, Wang J, He Y, Jiang Q, Loor JJ, Wang S, Yang W, Xu C. Intracellular Ca2+ Signaling and Calcium Release-Activated Calcium Modulator ORAI1 Are Associated With CD4+ T Lymphocytes in Dairy Cows. Front Immunol 2022;13:835936. [PMID: 35663942 DOI: 10.3389/fimmu.2022.835936] [Reference Citation Analysis]
13 Xue Y, Zhou S, Xie W, Meng M, Ma N, Zhang H, Wang Y, Chang G, Shen X. STIM1–Orai1 Interaction Exacerbates LPS-Induced Inflammation and Endoplasmic Reticulum Stress in Bovine Hepatocytes through Store-Operated Calcium Entry. Genes 2022;13:874. [DOI: 10.3390/genes13050874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Nakajima H, Fujita S, Kakae M, Nagayasu K, Oh-Hora M, Shirakawa H, Kaneko S. Orai2 channel regulates prostaglandin E2 production in TNFα/IL1α-stimulated astrocytes. Glia 2022. [PMID: 35506586 DOI: 10.1002/glia.24188] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Sousza Bomfim GH, Niemeyer BA, Lacruz RS, Lis A. On the Connections between TRPM Channels and SOCE. Cells 2022;11:1190. [DOI: 10.3390/cells11071190] [Reference Citation Analysis]
16 Castillo-galán S, Riquelme B, Iturriaga R. Crucial Role of Stromal Interaction Molecule-Activated TRPC-ORAI Channels in Vascular Remodeling and Pulmonary Hypertension Induced by Intermittent Hypoxia. Front Physiol 2022;13:841828. [DOI: 10.3389/fphys.2022.841828] [Reference Citation Analysis]
17 Petersen OH. Electrophysiology of Exocrine Gland Cells. Bioelectricity 2022;4:48-58. [DOI: 10.1089/bioe.2022.0011] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Castillo-Galán S, Parrau D, Hernández I, Quezada S, Díaz M, Ebensperger G, Herrera EA, Moraga FA, Iturriaga R, Llanos AJ, Reyes RV. The Action of 2-Aminoethyldiphenyl Borinate on the Pulmonary Arterial Hypertension and Remodeling of High-Altitude Hypoxemic Lambs. Front Physiol 2021;12:765281. [PMID: 35082688 DOI: 10.3389/fphys.2021.765281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Du W, Liu G, Shi N, Tang D, Ferdek PE, Jakubowska MA, Liu S, Zhu X, Zhang J, Yao L, Sang X, Zou S, Liu T, Mukherjee R, Criddle DN, Zheng X, Xia Q, Berggren PO, Huang W, Sutton R, Tian Y, Huang W, Fu X. A microRNA checkpoint for Ca2+ signaling and overload in acute pancreatitis. Mol Ther 2022:S1525-0016(22)00033-8. [PMID: 35077860 DOI: 10.1016/j.ymthe.2022.01.033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
20 Osipchuk NC, Soulika AM, Fomina AF. Modulation of Ryanodine Receptors Activity Alters the Course of Experimental Autoimmune Encephalomyelitis in Mice. Front Physiol 2021;12:770820. [PMID: 35027891 DOI: 10.3389/fphys.2021.770820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Berlansky S, Sallinger M, Grabmayr H, Humer C, Bernhard A, Fahrner M, Frischauf I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022;11. [PMID: 35053369 DOI: 10.3390/cells11020253] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
22 Li H, Wen W, Luo J. Targeting Endoplasmic Reticulum Stress as an Effective Treatment for Alcoholic Pancreatitis. Biomedicines 2022;10:108. [PMID: 35052788 DOI: 10.3390/biomedicines10010108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Panda S, Chatterjee O, Roy L, Chatterjee S. Targeting Ca2+ signaling: A new arsenal against cancer. Drug Discov Today 2021:S1359-6446(21)00491-8. [PMID: 34793973 DOI: 10.1016/j.drudis.2021.11.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
24 Li Y, Yang X, Shen Y. Structural Insights into Ca2+ Permeation through Orai Channels. Cells 2021;10:3062. [PMID: 34831285 DOI: 10.3390/cells10113062] [Reference Citation Analysis]
25 Uchimura T, Sakurai H. Orai1-STIM1 Regulates Increased Ca2+ Mobilization, Leading to Contractile Duchenne Muscular Dystrophy Phenotypes in Patient-Derived Induced Pluripotent Stem Cells. Biomedicines 2021;9:1589. [PMID: 34829817 DOI: 10.3390/biomedicines9111589] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Letizia M, Kaufmann U, Wang Y, Gerbeth L, Sand A, Brunkhorst M, Ziegler JF, Böttcher C, Schlickeiser S, Fernández-zapata C, Stauderman K, Kunkel D, Siegmund B, Feske S, Weidinger C, IBDome researchers. Store-Operated Calcium Entry Controls Innate and Adaptive Immune Cell Function in Inflammatory Bowel Disease.. [DOI: 10.1101/2021.09.11.21263401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Liang X, Zhang N, Pan H, Xie J, Han W. Development of Store-Operated Calcium Entry-Targeted Compounds in Cancer. Front Pharmacol 2021;12:688244. [PMID: 34122115 DOI: 10.3389/fphar.2021.688244] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
28 Radoslavova S, Folcher A, Lefebvre T, Kondratska K, Guénin S, Dhennin-Duthille I, Gautier M, Prevarskaya N, Ouadid-Ahidouch H. Orai1 Channel Regulates Human-Activated Pancreatic Stellate Cell Proliferation and TGFβ1 Secretion through the AKT Signaling Pathway. Cancers (Basel) 2021;13:2395. [PMID: 34063470 DOI: 10.3390/cancers13102395] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
29 Chang Y, Roy S, Pan Z. Store-Operated Calcium Channels as Drug Target in Gastroesophageal Cancers. Front Pharmacol 2021;12:668730. [PMID: 34012400 DOI: 10.3389/fphar.2021.668730] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
30 Milenina LS, Krutetskaya ZI, Antonov VG, Krutetskaya NI. Pyrazole Derivative Attenuates Store-Dependent Ca2+ Entry in Rat Peritoneal Macrophages. Cell Tiss Biol 2021;15:293-300. [DOI: 10.1134/s1990519x21030068] [Reference Citation Analysis]
31 Shawer H, Norman K, Cheng CW, Foster R, Beech DJ, Bailey MA. ORAI1 Ca2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Front Cell Dev Biol 2021;9:653812. [PMID: 33937254 DOI: 10.3389/fcell.2021.653812] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
32 Bruen C, Miller J, Wilburn J, Mackey C, Bollen TL, Stauderman K, Hebbar S. Auxora for the Treatment of Patients With Acute Pancreatitis and Accompanying Systemic Inflammatory Response Syndrome: Clinical Development of a Calcium Release-Activated Calcium Channel Inhibitor. Pancreas 2021;50:537-43. [PMID: 33939666 DOI: 10.1097/MPA.0000000000001793] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
33 Han YJ, Lee KH, Yoon S, Nam SW, Ryu S, Seong D, Kim JS, Lee JY, Yang JW, Lee J, Koyanagi A, Hong SH, Dragioti E, Radua J, Smith L, Oh H, Ghayda RA, Kronbichler A, Effenberger M, Kresse D, Denicolò S, Kang W, Jacob L, Shin H, Shin JI. Treatment of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19): a systematic review of in vitro, in vivo, and clinical trials. Theranostics 2021;11:1207-31. [PMID: 33391531 DOI: 10.7150/thno.48342] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
34 Barreto SG, Habtezion A, Gukovskaya A, Lugea A, Jeon C, Yadav D, Hegyi P, Venglovecz V, Sutton R, Pandol SJ. Critical thresholds: key to unlocking the door to the prevention and specific treatments for acute pancreatitis. Gut 2021;70:194-203. [PMID: 32973069 DOI: 10.1136/gutjnl-2020-322163] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 13.0] [Reference Citation Analysis]
35 Yang X, Yao L, Fu X, Mukherjee R, Xia Q, Jakubowska MA, Ferdek PE, Huang W. Experimental Acute Pancreatitis Models: History, Current Status, and Role in Translational Research. Front Physiol 2020;11:614591. [PMID: 33424638 DOI: 10.3389/fphys.2020.614591] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
36 Bakowski D, Wood AJ, Parekh AB. Sequi Ad Maius Bonum; Targeting Ion Channels in the Lung. Function (Oxf) 2021;2:zqaa045. [PMID: 34223171 DOI: 10.1093/function/zqaa045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
37 Serafini M, Cordero-Sanchez C, Di Paola R, Bhela IP, Aprile S, Purghè B, Fusco R, Cuzzocrea S, Genazzani AA, Riva B, Pirali T. Store-Operated Calcium Entry as a Therapeutic Target in Acute Pancreatitis: Discovery and Development of Drug-Like SOCE Inhibitors. J Med Chem 2020;63:14761-79. [PMID: 33253576 DOI: 10.1021/acs.jmedchem.0c01305] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
38 Zhang I, Hu H. Store-Operated Calcium Channels in Physiological and Pathological States of the Nervous System. Front Cell Neurosci 2020;14:600758. [PMID: 33328896 DOI: 10.3389/fncel.2020.600758] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
39 Radoslavova S, Ouadid-ahidouch H, Prevarskaya N. Ca2+ signaling is critical for pancreatic stellate cell’s pathophysiology : from fibrosis to cancer hallmarks. Current Opinion in Physiology 2020;17:255-260. [DOI: 10.1016/j.cophys.2020.08.018] [Reference Citation Analysis]
40 Chvanov M, Voronina S, Criddle DN, Tepikin AV. The role of Ca2+ signalling in the physiology and pathophysiology of exocrine pancreas. Current Opinion in Physiology 2020;17:96-105. [DOI: 10.1016/j.cophys.2020.07.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
41 Miller J, Bruen C, Schnaus M, Zhang J, Ali S, Lind A, Stoecker Z, Stauderman K, Hebbar S. Auxora versus standard of care for the treatment of severe or critical COVID-19 pneumonia: results from a randomized controlled trial. Crit Care 2020;24:502. [PMID: 32795330 DOI: 10.1186/s13054-020-03220-x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
42 Joshi S, Joshi M, Degani MS. Tackling SARS-CoV-2: proposed targets and repurposed drugs. Future Med Chem 2020;12:1579-601. [PMID: 32564623 DOI: 10.4155/fmc-2020-0147] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 12.7] [Reference Citation Analysis]
43 Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020;21:E4005. [PMID: 32503336 DOI: 10.3390/ijms21114005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
44 Menendez JA. Metformin and SARS-CoV-2: mechanistic lessons on air pollution to weather the cytokine/thrombotic storm in COVID-19. Aging (Albany NY) 2020;12:8760-5. [PMID: 32463794 DOI: 10.18632/aging.103347] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
45 Luo L, Zhang J, Yang J, Zhang H, Tang Y, Yang D, Dong H, Wu Y, Wang H, Ni B, Tian Z. The Use of Values WNR and GNR to Distinguish between and Diagnose Different Types of Pancreatitis. Mol Ther Methods Clin Dev 2020;18:7-14. [PMID: 32548210 DOI: 10.1016/j.omtm.2020.05.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
46 Burgos M, Philippe R, Antigny F, Buscaglia P, Masson E, Mukherjee S, Dubar P, Le Maréchal C, Campeotto F, Lebonvallet N, Frieden M, Llopis J, Domingo B, Stathopulos PB, Ikura M, Brooks W, Guida W, Chen J, Ferec C, Capiod T, Mignen O. p.E152K-STIM1 mutation deregulates Ca2+ signaling contributing to chronic pancreatitis.. [DOI: 10.1101/2020.01.22.916254] [Reference Citation Analysis]
47 Williams JA, Groblewski GE, Gorelick FS, Mayerle J, Apte M, Gukovskaya AS. American Pancreatic Association Frank Brooks Symposium: Fifty Years of Pancreatic Cell Biology. Pancreas 2020;49:604-11. [PMID: 32433396 DOI: 10.1097/MPA.0000000000001543] [Reference Citation Analysis]
48 Waldron RT, Lugea A, Pandol SJ. Brake adjustment: Ca2+ entry pathway provides a novel target for acute pancreatitis therapy. Ann Transl Med 2019;7:S284. [PMID: 32016003 DOI: 10.21037/atm.2019.11.119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
49 Chen YF, Lin PC, Yeh YM, Chen LH, Shen MR. Store-Operated Ca2+ Entry in Tumor Progression: From Molecular Mechanisms to Clinical Implications. Cancers (Basel) 2019;11:E899. [PMID: 31252656 DOI: 10.3390/cancers11070899] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]