BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fenn MA, Giovannoni JJ. Phytohormones in fruit development and maturation. Plant J 2021;105:446-58. [PMID: 33274492 DOI: 10.1111/tpj.15112] [Cited by in Crossref: 11] [Cited by in F6Publishing: 46] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Günther CS, Plunkett BJ, Cooney JM, Jensen DJ, Trower TM, Elborough C, Nguyen HM, Deng CH, Lafferty DJ, Albert NW, Dare AP, Espley RV. Biotic stress-induced and ripening-related anthocyanin biosynthesis are regulated by alternate phytohormone signals in blueberries. Environmental and Experimental Botany 2022;203:105065. [DOI: 10.1016/j.envexpbot.2022.105065] [Reference Citation Analysis]
2 Muñoz P, Almajano MP, Álvarez C, Hidalgo GI, Munné-bosch S. Mixing fruits in ready-to-eat packaging leads to physiological changes that modify quality attributes and antioxidant composition. Food Control 2022;140:109129. [DOI: 10.1016/j.foodcont.2022.109129] [Reference Citation Analysis]
3 Cai Y, Xu M, Liu J, Zeng H, Song J, Sun B, Chen S, Deng Q, Lei J, Cao B, Chen C, Chen M, Chen K, Chen G, Zhu Z. Genome-wide analysis of histone acetyltransferase and histone deacetylase families and their expression in fruit development and ripening stage of pepper (Capsicum annuum). Front Plant Sci 2022;13:971230. [DOI: 10.3389/fpls.2022.971230] [Reference Citation Analysis]
4 Li Z, Li J, Ye X, Zheng X, Tan B, Li J, Cheng J, Wang W, Zhang L, Wang X, Feng J. VvERF95 regulates chlorophyll degradation by transcriptional activation of VvPAO1 causing grape rachis degreening after harvesting. Scientia Horticulturae 2022;303:111224. [DOI: 10.1016/j.scienta.2022.111224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Wu W, Wang W, Zhu Q, Jin R, Liu X, Grierson D, Yin X. Convergent and divergent regulations of ethylene and abscisic acid biosynthesis during persimmon fruit postharvest ripening. Postharvest Biology and Technology 2022;191:111977. [DOI: 10.1016/j.postharvbio.2022.111977] [Reference Citation Analysis]
6 Jiang L, Liu C, Fan Y, Wu Q, Ye X, Li Q, Wan Y, Sun Y, Zou L, Xiang D, Lv Z. Dynamic transcriptome analysis suggests the key genes regulating seed development and filling in Tartary buckwheat (Fagopyrum tataricum Garetn.). Front Genet 2022;13:990412. [DOI: 10.3389/fgene.2022.990412] [Reference Citation Analysis]
7 Cheng H, Ji S, Ge H, Abdalhi MAM, Zhu T, Chen X, Ding W, Feng S. Optimizing Deficit Irrigation Management to Improve Water Productivity of Greenhouse Tomato under Plastic Film Mulching Using the RZ-SHAW Model. Agriculture 2022;12:1253. [DOI: 10.3390/agriculture12081253] [Reference Citation Analysis]
8 Ahammed GJ, Li X. Hormonal regulation of health-promoting compounds in tea (Camellia sinensis L.). Plant Physiology and Biochemistry 2022;185:390-400. [DOI: 10.1016/j.plaphy.2022.06.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Tian Y, Xin W, Lin J, Ma J, He J, Wang X, Xu T, Tang W. Auxin Coordinates Achene and Receptacle Development During Fruit Initiation in Fragaria vesca. Front Plant Sci 2022;13:929831. [DOI: 10.3389/fpls.2022.929831] [Reference Citation Analysis]
10 Ahammed GJ, Li X. Elevated carbon dioxide-induced regulation of ethylene in plants. Environmental and Experimental Botany 2022. [DOI: 10.1016/j.envexpbot.2022.105025] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Fan D, Wang W, Hao Q, Jia W. Do Non-climacteric Fruits Share a Common Ripening Mechanism of Hormonal Regulation? Front Plant Sci 2022;13:923484. [PMID: 35755638 DOI: 10.3389/fpls.2022.923484] [Reference Citation Analysis]
12 Wang Y, Acharya TP, Malladi A, Tsai H, Nesmith DS, Doyle JW, Nambeesan SU. Atypical Climacteric and Functional Ethylene Metabolism and Signaling During Fruit Ripening in Blueberry (Vaccinium sp.). Front Plant Sci 2022;13:932642. [DOI: 10.3389/fpls.2022.932642] [Reference Citation Analysis]
13 Fernández-cancelo P, Muñoz P, Echeverría G, Larrigaudière C, Teixidó N, Munné-bosch S, Giné-bordonaba J. Ethylene and abscisic acid play a key role in modulating apple ripening after harvest and after cold-storage. Postharvest Biology and Technology 2022;188:111902. [DOI: 10.1016/j.postharvbio.2022.111902] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
14 Gupta K, Wani SH, Razzaq A, Skalicky M, Samantara K, Gupta S, Pandita D, Goel S, Grewal S, Hejnak V, Shiv A, El-Sabrout AM, Elansary HO, Alaklabi A, Brestic M. Abscisic Acid: Role in Fruit Development and Ripening. Front Plant Sci 2022;13:817500. [PMID: 35620694 DOI: 10.3389/fpls.2022.817500] [Reference Citation Analysis]
15 Chen D, Mubeen B, Hasnain A, Rizwan M, Adrees M, Naqvi SAH, Iqbal S, Kamran M, El-sabrout AM, Elansary HO, Mahmoud EA, Alaklabi A, Sathish M, Din GMU. Role of Promising Secondary Metabolites to Confer Resistance Against Environmental Stresses in Crop Plants: Current Scenario and Future Perspectives. Front Plant Sci 2022;13:881032. [DOI: 10.3389/fpls.2022.881032] [Reference Citation Analysis]
16 Yu Y, Guo S, Ren Y, Zhang J, Li M, Tian S, Wang J, Sun H, Zuo Y, Chen Y, Gong G, Zhang H, Xu Y. Quantitative Transcriptomic and Proteomic Analysis of Fruit Development and Ripening in Watermelon (Citrullus lanatus). Front Plant Sci 2022;13:818392. [PMID: 35392508 DOI: 10.3389/fpls.2022.818392] [Reference Citation Analysis]
17 Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022;23:4124. [PMID: 35456943 DOI: 10.3390/ijms23084124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Arabia A, Munné-bosch S, Muñoz P. Melatonin triggers tissue-specific changes in anthocyanin and hormonal contents during postharvest decay of Angeleno plums. Plant Science 2022. [DOI: 10.1016/j.plantsci.2022.111287] [Reference Citation Analysis]
19 Zhao Y, Wang Y, Zhao X, Yan M, Ren Y, Yuan Z. ARF6s Identification and Function Analysis Provide Insights Into Flower Development of Punica granatum L. Front Plant Sci 2022;13:833747. [DOI: 10.3389/fpls.2022.833747] [Reference Citation Analysis]
20 Birlanga V, Acosta-motos JR, Pérez-pérez JM. Mitigation of Calcium-Related Disorders in Soilless Production Systems. Agronomy 2022;12:644. [DOI: 10.3390/agronomy12030644] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Liu L, Zheng Y, Feng S, Yu L, Li Y, Zong Y, Chen W, Liao F, Yang L, Guo W. Transcriptomic and Physiological Analysis Reveals the Responses to Auxin and Abscisic Acid Accumulation During Vaccinium corymbosum Flower Bud and Fruit Development. Front Plant Sci 2022;13:818233. [PMID: 35242154 DOI: 10.3389/fpls.2022.818233] [Reference Citation Analysis]
22 Wang M, Jiao Y, Zhao Y, Gao M, Wu L, Wang S, Yang J, Wang J, Chen Y, Wang Y. Phytohormone and transcriptome of pericarp reveals jasmonate and LcMYC2 are involved in neral and geranial biosynthesis in Litsea cubeba. Industrial Crops and Products 2022;177:114423. [DOI: 10.1016/j.indcrop.2021.114423] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
23 Hernández I, Uarrota V, Fuentealba C, Paredes D, Defilippi BG, Campos-vargas R, Nuñez G, Carrera E, Meneses C, Hertog M, Pedreschi R. Transcriptome and hormone analyses reveals differences in physiological age of ′Hass′ avocado fruit. Postharvest Biology and Technology 2022;185:111806. [DOI: 10.1016/j.postharvbio.2021.111806] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Wang Y, Zhang M, Du P, Liu H, Zhang Z, Xu J, Qin L, Huang B, Zheng Z, Dong W, Zhang X, Han S. Transcriptome analysis of pod mutant reveals plant hormones are important regulators in controlling pod size in peanut ( Arachis hypogaea L.). PeerJ 2022;10:e12965. [DOI: 10.7717/peerj.12965] [Reference Citation Analysis]
25 Wang D, Seymour GB. Molecular and biochemical basis of softening in tomato. Mol Horticulture 2022;2. [DOI: 10.1186/s43897-022-00026-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Liu GS, Li HL, Grierson D, Fu DQ. NAC Transcription Factor Family Regulation of Fruit Ripening and Quality: A Review. Cells 2022;11:525. [PMID: 35159333 DOI: 10.3390/cells11030525] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
27 Sun L, Nasrullah, Ke F, Nie Z, Xu J, Huang X, Sun J, Wang P. Genome-wide identification and transcript analysis during fruit ripening of ACS gene family in sweet orange (Citrus sinensis). Scientia Horticulturae 2022;294:110786. [DOI: 10.1016/j.scienta.2021.110786] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Tobaruela EC, Gomes BL, Bonato VCB, de Lima ES, Freschi L, Purgatto E. Ethylene and Auxin: Hormonal Regulation of Volatile Compound Production During Tomato (Solanum lycopersicum L.) Fruit Ripening. Front Plant Sci 2021;12:765897. [PMID: 34956263 DOI: 10.3389/fpls.2021.765897] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Petit J, Bres C, Reynoud N, Lahaye M, Marion D, Bakan B, Rothan C. Unraveling Cuticle Formation, Structure, and Properties by Using Tomato Genetic Diversity. Front Plant Sci 2021;12:778131. [PMID: 34912361 DOI: 10.3389/fpls.2021.778131] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Cainelli N, Forestan C, Angeli D, Villegas TR, Costa F, Botton A, Rasori A, Bonghi C, Ruperti B. Transcriptomic Insights on the Preventive Action of Apple (cv Granny Smith) Skin Wounding on Superficial Scald Development. Int J Mol Sci 2021;22:13425. [PMID: 34948219 DOI: 10.3390/ijms222413425] [Reference Citation Analysis]
31 Tayal R, Kumar V, Irfan M. Harnessing the power of hydrogen sulphide (H2 S) for improving fruit quality traits. Plant Biol (Stuttg) 2021. [PMID: 34866296 DOI: 10.1111/plb.13372] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
32 Paniagua C, Sinanaj B, Benitez-Alfonso Y. Plasmodesmata and their role in the regulation of phloem unloading during fruit development. Curr Opin Plant Biol 2021;64:102145. [PMID: 34826657 DOI: 10.1016/j.pbi.2021.102145] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Zhai Z, Feng C, Wang Y, Sun Y, Peng X, Xiao Y, Zhang X, Zhou X, Jiao J, Wang W, Du B, Wang C, Liu Y, Li T. Genome-Wide Identification of the Xyloglucan endotransglucosylase/Hydrolase (XTH) and Polygalacturonase (PG) Genes and Characterization of Their Role in Fruit Softening of Sweet Cherry. Int J Mol Sci 2021;22:12331. [PMID: 34830211 DOI: 10.3390/ijms222212331] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Wang Q, Jiang L, Chen Y, Tian X, Lv G. Abiotic stress-by-competition interactions drive hormone and nutrient changes to regulate Suaeda salsa growth. Global Ecology and Conservation 2021;31:e01845. [DOI: 10.1016/j.gecco.2021.e01845] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Ali-dinar H, Mohammed M, Munir M. Effects of Pollination Interventions, Plant Age and Source on Hormonal Patterns and Fruit Set of Date Palm (Phoenix dactylifera L.). Horticulturae 2021;7:427. [DOI: 10.3390/horticulturae7110427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Li J, Liu B, Li X, Li D, Han J, Zhang Y, Ma C, Xu W, Wang L, Jiu S, Zhang C, Wang S. Exogenous Abscisic Acid Mediates Berry Quality Improvement by Altered Endogenous Plant Hormones Level in "Ruiduhongyu" Grapevine. Front Plant Sci 2021;12:739964. [PMID: 34659307 DOI: 10.3389/fpls.2021.739964] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Lemaire-Chamley M, Koutouan C, Jorly J, Assali J, Yoshida T, Nogueira M, Tohge T, Ferrand C, Peres LEP, Asamizu E, Ezura H, Fraser PD, Hajirezaei MR, Fernie AR, Rothan C. A Chimeric TGA Repressor Slows Down Fruit Maturation and Ripening in Tomato. Plant Cell Physiol 2021:pcab150. [PMID: 34665867 DOI: 10.1093/pcp/pcab150] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Kou X, Feng Y, Yuan S, Zhao X, Wu C, Wang C, Xue Z. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. Plant Mol Biol 2021. [PMID: 34633626 DOI: 10.1007/s11103-021-01199-9] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
39 Ji Y, Wang A. Recent Advances in Phytohormone Regulation of Apple-Fruit Ripening. Plants (Basel) 2021;10:2061. [PMID: 34685870 DOI: 10.3390/plants10102061] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Dong X, Liu C, Wang Y, Dong Q, Gai Y, Ji X. MicroRNA Profiling During Mulberry (Morus atropurpurea Roxb) Fruit Development and Regulatory Pathway of miR477 for Anthocyanin Accumulation. Front Plant Sci 2021;12:687364. [PMID: 34567022 DOI: 10.3389/fpls.2021.687364] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
41 Pan H, Lyu S, Chen Y, Xu S, Ye J, Chen G, Wu S, Li X, Chen J, Pan D. MicroRNAs and Transcripts Associated with an Early Ripening Mutant of Pomelo (Citrus grandis Osbeck). Int J Mol Sci 2021;22:9348. [PMID: 34502256 DOI: 10.3390/ijms22179348] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
42 Wang P, Yang J, Li Z, Zhu J, Gao Q, Ni D, Duan K. Genome-wide identification and expression analysis revealed cinnamyl alcohol dehydrogenase genes correlated with fruit-firmness in strawberry. JBR 2021;11:447-64. [DOI: 10.3233/jbr-210729] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Wang S, Lv S, Zhao T, Jiang M, Liu D, Fu S, Hu M, Huang S, Pei Y, Wang X. Modification of Threonine-825 of SlBRI1 Enlarges Cell Size to Enhance Fruit Yield by Regulating the Cooperation of BR-GA Signaling in Tomato. Int J Mol Sci 2021;22:7673. [PMID: 34299293 DOI: 10.3390/ijms22147673] [Reference Citation Analysis]
44 Theine J, Holtgräwe D, Herzog K, Schwander F, Kicherer A, Hausmann L, Viehöver P, Töpfer R, Weisshaar B. Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time. BMC Plant Biol 2021;21:327. [PMID: 34233614 DOI: 10.1186/s12870-021-03110-6] [Reference Citation Analysis]
45 Saddhe AA, Karle SB, Aftab T, Kumar K. With no lysine kinases: the key regulatory networks and phytohormone cross talk in plant growth, development and stress response. Plant Cell Rep 2021. [PMID: 34110446 DOI: 10.1007/s00299-021-02728-y] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
46 Basile B, Brown N, Valdes JM, Cardarelli M, Scognamiglio P, Mataffo A, Rouphael Y, Bonini P, Colla G. Plant-Based Biostimulant as Sustainable Alternative to Synthetic Growth Regulators in Two Sweet Cherry Cultivars. Plants (Basel) 2021;10:619. [PMID: 33805215 DOI: 10.3390/plants10040619] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Nambara E, Van Wees SCM. Plant hormone functions and interactions in biological systems. Plant J 2021;105:287-9. [DOI: 10.1111/tpj.15151] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]