BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shivaraj SM, Vats S, Bhat JA, Dhakte P, Goyal V, Khatri P, Kumawat S, Singh A, Prasad M, Sonah H, Sharma TR, Deshmukh R. Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiol Plant 2020;168:437-55. [PMID: 31587278 DOI: 10.1111/ppl.13028] [Cited by in Crossref: 16] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Zheng S, Fu Z, Lu Y. ELO2 Participates in the Regulation of Osmotic Stress Response by Modulating Nitric Oxide Accumulation in Arabidopsis. Front Plant Sci 2022;13:924064. [DOI: 10.3389/fpls.2022.924064] [Reference Citation Analysis]
2 Sharma P, Bano A, Nadda AK, Sharma S, Varjani S, Singh SP. Crosstalk and gene expression in microorganisms under metals stress. Arch Microbiol 2022;204:410. [PMID: 35729415 DOI: 10.1007/s00203-022-02978-8] [Reference Citation Analysis]
3 Havva EN, Kolupaev YE, Shkliarevskyi MA, Kokorev AI, Dmitriev AP. Hydrogen Sulfide Participation in the Formation of Wheat Seedlings’ Heat Resistance Under the Action of Hardening Temperature. Cytol Genet 2022;56:218-225. [DOI: 10.3103/s0095452722030045] [Reference Citation Analysis]
4 Khan MSS, Islam F, Ye Y, Ashline M, Wang D, Zhao B, Fu ZQ, Chen J. The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022;23:4272. [PMID: 35457090 DOI: 10.3390/ijms23084272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Kolupaev Y, Yur’ev Institute of Plant Breeding, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine 142 Moskovskyi Ave., Kharkiv, 61060, Ukraine, Havva K, State Biotechnological University 44 Alcheskikh Ave., Kharkiv, 61002, Ukraine, State Biotechnological University 44 Alcheskikh Ave., Kharkiv, 61002, Ukraine. Molecular mechanisms of hydrogen sulfide's participation in adaptive reactions of plants. Fiziol rast genet 2022;54. [DOI: 10.15407/frg2022.01.003] [Reference Citation Analysis]
6 Rai KK, Pandey N, Rai N, Rai SK, Pandey-rai S. Salicylic Acid and Nitric Oxide: Insight Into the Transcriptional Regulation of Their Metabolism and Regulatory Functions in Plants. Front Agron 2021;3:781027. [DOI: 10.3389/fagro.2021.781027] [Reference Citation Analysis]
7 Zhao R, Yin K, Chen S. Hydrogen sulphide signalling in plant response to abiotic stress. Plant Biol (Stuttg) 2021. [PMID: 34837449 DOI: 10.1111/plb.13367] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 De Brasi-Velasco S, López-Vidal O, Martí MC, Ortiz-Espín A, Sevilla F, Jiménez A. Autophagy Is Involved in the Viability of Overexpressing Thioredoxin o1 Tobacco BY-2 Cells under Oxidative Conditions. Antioxidants (Basel) 2021;10:1884. [PMID: 34942987 DOI: 10.3390/antiox10121884] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Espinosa-Vellarino FL, Garrido I, Ortega A, Casimiro I, Espinosa F. Response to Antimony Toxicity in Dittrichia viscosa Plants: ROS, NO, H2S, and the Antioxidant System. Antioxidants (Basel) 2021;10:1698. [PMID: 34829569 DOI: 10.3390/antiox10111698] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Tyagi A, Sharma S, Ali S, Gaikwad K. Crosstalk between H2 S and NO: an emerging signalling pathway during waterlogging stress in legume crops. Plant Biol (Stuttg) 2021. [PMID: 34693601 DOI: 10.1111/plb.13319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Khanna K, Sharma N, Kour S, Ali M, Ohri P, Bhardwaj R. Hydrogen Sulfide: A Robust Combatant against Abiotic Stresses in Plants. Hydrogen 2021;2:319-42. [DOI: 10.3390/hydrogen2030017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Thakur M, Anand A. Hydrogen sulfide: An emerging signaling molecule regulating drought stress response in plants. Physiol Plant 2021;172:1227-43. [PMID: 33860955 DOI: 10.1111/ppl.13432] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
13 Sudhakaran S, Thakral V, Padalkar G, Rajora N, Dhiman P, Raturi G, Sharma Y, Tripathi DK, Deshmukh R, Sharma TR, Sonah H. Significance of solute specificity, expression, and gating mechanism of tonoplast intrinsic protein during development and stress response in plants. Physiol Plant 2021;172:258-74. [PMID: 33723851 DOI: 10.1111/ppl.13386] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
14 Askari SH, Ashraf MA, Ali S, Rizwan M, Rasheed R. Menadione sodium bisulfite alleviated chromium effects on wheat by regulating oxidative defense, chromium speciation, and ion homeostasis. Environ Sci Pollut Res Int 2021;28:36205-25. [PMID: 33751380 DOI: 10.1007/s11356-021-13221-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
15 Fang P, Sun T, Wang Y, Ding Y, Pandey AK, Zhu C, Xu P. Plant gasotransmitters: light molecules interplaying with heavy metals. Rev Environ Sci Biotechnol 2021;20:31-53. [DOI: 10.1007/s11157-020-09562-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Hancock JT, Russell G. Downstream Signalling from Molecular Hydrogen. Plants (Basel) 2021;10:367. [PMID: 33672953 DOI: 10.3390/plants10020367] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
17 Iqbal N, Umar S, Khan NA, Corpas FJ. Nitric Oxide and Hydrogen Sulfide Coordinately Reduce Glucose Sensitivity and Decrease Oxidative Stress via Ascorbate-Glutathione Cycle in Heat-Stressed Wheat (Triticum aestivum L.) Plants. Antioxidants (Basel) 2021;10:108. [PMID: 33466569 DOI: 10.3390/antiox10010108] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 30.0] [Reference Citation Analysis]
18 Arif MS, Yasmeen T, Abbas Z, Ali S, Rizwan M, Aljarba NH, Alkahtani S, Abdel-Daim MM. Role of Exogenous and Endogenous Hydrogen Sulfide (H2S) on Functional Traits of Plants Under Heavy Metal Stresses: A Recent Perspective. Front Plant Sci 2020;11:545453. [PMID: 33488636 DOI: 10.3389/fpls.2020.545453] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
19 Iranbakhsh A, Oraghi Ardebili Z, Oraghi Ardebili N. Gene regulation by H2S in plants. Hydrogen Sulfide in Plant Biology 2021. [DOI: 10.1016/b978-0-323-85862-5.00014-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Adak MK, Saha I, Dolui D, Debnath SC. Sulfur in Soil: Abiotic Stress Signaling, Transmission and Induced Physiological Responses in Plants. Soil Science: Fundamentals to Recent Advances 2021. [DOI: 10.1007/978-981-16-0917-6_24] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 González-morales S, López-sánchez RC, Juárez-maldonado A, Robledo-olivo A, Benavides-mendoza A. A Transcriptomic and Proteomic View of Hydrogen Sulfide Signaling in Plant Abiotic Stress. Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses 2021. [DOI: 10.1007/978-3-030-73678-1_10] [Reference Citation Analysis]
22 Alsahli AA, Bhat JA, Alyemeni MN, Ashraf M, Ahmad P. Hydrogen Sulfide (H2S) Mitigates Arsenic (As)-Induced Toxicity in Pea (Pisum sativum L.) Plants by Regulating Osmoregulation, Antioxidant Defense System, Ascorbate Glutathione Cycle and Glyoxalase System. J Plant Growth Regul. [DOI: 10.1007/s00344-020-10254-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
23 Khan MIR, Khan NA, Jahan B, Goyal V, Hamid J, Khan S, Iqbal N, Alamri S, Siddiqui MH. Phosphorus supplementation modulates nitric oxide biosynthesis and stabilizes the defence system to improve arsenic stress tolerance in mustard. Plant Biol (Stuttg) 2021;23 Suppl 1:152-61. [PMID: 33176068 DOI: 10.1111/plb.13211] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
24 Abdel Latef AAH, Zaid A, Abo-Baker AA, Salem W, Abu Alhmad MF. Mitigation of Copper Stress in Maize by Inoculation with Paenibacillus polymyxa and Bacillus circulans. Plants (Basel) 2020;9:E1513. [PMID: 33171623 DOI: 10.3390/plants9111513] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
25 Kolukisaoglu Ü. D-amino Acids in Plants: Sources, Metabolism, and Functions. Int J Mol Sci 2020;21:E5421. [PMID: 32751447 DOI: 10.3390/ijms21155421] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Kaya C, Ashraf M, Al-Huqail AA, Alqahtani MA, Ahmad P. Silicon is dependent on hydrogen sulphide to improve boron toxicity tolerance in pepper plants by regulating the AsA-GSH cycle and glyoxalase system. Chemosphere 2020;257:127241. [PMID: 32526468 DOI: 10.1016/j.chemosphere.2020.127241] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
27 Kumar R, Bhardwaj S, Kaur G. Toxicity of Arsenic and Molecular Mechanism in Plants. Metalloids in Plants 2020. [DOI: 10.1002/9781119487210.ch12] [Reference Citation Analysis]
28 Aroca A, Yruela I, Gotor C, Bassham DC. Persulfidation of ATG18a regulates autophagy under ER stress in Arabidopsis. Proc Natl Acad Sci U S A 2021;118:e2023604118. [PMID: 33975948 DOI: 10.1073/pnas.2023604118] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Reference Citation Analysis]